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Abstract: Genome integrity can be threatened by various endogenous or exogenous events.
To counteract these stressors, the DNA damage response network contributes to the prevention
and/or repair of genomic DNA damage and serves an essential function in cellular survival. DNA
binding proteins are involved in this network. Recently, several RNA-binding proteins (RBPs) that
are recruited to DNA damage sites have been shown to be direct players in the prevention or repair
of DNA damage. In addition, non-coding RNAs, themselves, are involved in the RNA-mediated
DNA repair system. Furthermore, RNA modification such as m6A methylation might also contribute
to the ultraviolet-responsive DNA damage response. Accumulating evidence suggests that RNA
metabolism is more deeply involved in diverse cellular functions than previously expected, and is
also intricately associated with the maintenance of genome integrity. In this review, we highlight the
roles of RBPs in the maintenance of genome integrity.
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1. Introduction

Genome integrity is a fundamental issue that is associated with cell survival. To counteract
stress-induced DNA damage such as aberrant DNA replication, transcription, and uncontrolled
cell division, the coordination of numerous proteins is required to maintain genome integrity for
organism survival. Recently, RNA-binding proteins (RBPs) have emerged as important players
and coordinators in the maintenance of genome integrity. RBPs preferentially bind mature mRNA
sequences; therefore, RBPs are considered to regulate diverse aspects of mRNA metabolism and
modulate the destiny of mRNAs. [1]. Once RNA molecules are transcribed, RBPs associate with
nascent transcripts to form messenger ribonucleoprotein (mRNP) complexes. Co-transcriptional
assembly of these mRNPs modulates post-transcriptional processes, including polyadenylation,
splicing, localization, stabilization, and translation effifciency of mRNAs. RBPs can also contribute
to essential functions in non-coding RNA (ncRNA) biogenesis (e.g., microRNAs (miRNA)) [2].
RBPs and miRNAs cooperatively modulate of the post-transcriptional regulatory network during the
maintenance of cellular homeostasis. Given the central role of RBPs in the regulation of mRNA fate,
dysfunctional RBPs can lead to various disease pathologies including neurodegenerative disorders,
cardiovascular diseases, and cancers [1,3–5]. Gerstberger et al. presented an extensive classification of
the 1542 RBPs in humans, representing 7.5% of all protein-coding genes [1]. Whereas approximately
half of these RBPs can be grouped based on their mRNA targets, others might interact with a variety
RNAs including transfer RNAs, small nuclear RNAs, small nucleolar RNAs, or ncRNAs [1]. In addition
to binding RNA species, RBPs can interact with various functional proteins, suggesting undiscovered
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roles in cellular processes including the maintenance of genome integrity. Interestingly, it is known
that some of RBPs can bind DNA as well as RNA species. In other words, some DNA-binding proteins
have the capability to bind RNA. Hudson et al. defined 407 DNA- and RNA-binding proteins (DRBPs)
among 1267 RNA-binding proteins. Ontology analysis of DRBPs indicated that many of these might be
involved in unexpected biological processes including the DNA-damage response (DDR), apoptosis,
and responses to extreme temperature [6]. Accumulating knowledge suggests that the functional
domains of proteins with both DNA- and RNA-binding capacity are important for the modulation
of cellular homeostasis, including gene expression, cell proliferation, DDR, and genome stability.
In addition, crucial roles for RBPs in the modulation of R-loop formation have been noted to be highly
important for genome integrity [7]. Moreover, advanced analytical techniques such as RNA deep
sequencing and single cell analysis have been providing us with unexpected functions of RBPs and
RNA species in genome maintenance. Given the accelerating pace of this field, comprehensive reviews
regarding RBPs- and RNA-mediated genome maintenance will be useful. Thus, in this review, we
focus on aspects of the genome maintenance function of RBPs, especially regarding R-loop formation,
telomerase activity, DNA damage response, and replication.

2. Role of RBPs in R-Loop Formation

DNA:RNA hybrids form during normal transcription and replication. The hybrids (8-bp
DNA:RNA duplexes), which form inside the active site of the RNA polymerase, are considered
as the normal transcription bubble. During replication, ~11-nt-long RNA primers form the hybrids
with the DNA templates [8]. In contrast to these relatively short hybrids, a longer form of DNA:RNA
hybrid is known as an R-loop. The nascent RNA hybridizes with the template single-stranded DNA
(ssDNA), leading to the formation of a DNA:RNA hybrid. The DNA:RNA hybrid on the template
strand and the associated non-template ssDNA form three-stranded nucleic acid structures, which is
the R-loop [7] (Figure 1a,b). Since the first identification of R-loops in bacteria [9], they have been found
in many organisms, and have been observed in greater than 5% of the human genome [10]. R-loops
usually have short life spans (approximately 20 min), and are efficiently removed under normal cellular
conditions. The programmed formation of R-loops has an important role in diverse cellular processes,
such as transcriptional termination [11], mitochondrial DNA replication [12], immunoglobulin class
switching [13], and chromatin modifications [10,14]. However, unscheduled (stable) R-loops might
represent a major threat to genome integrity. There are two major sources of R-loop formation: one
is polymerase collisions between replication forks and transcription elongation machinery, whereas
the other is a lack of RBPs coating the nascent RNAs. For example, if R-loops are not properly
eliminated, conflicts between unscheduled R-loops and replication forks can increase the risk of
compromised genome integrity [15]. When there is a replication-transcription conflict, the replication
fork always loses the replisome due to the stability of the R-loop resulting from the conflict-induced
RNA polymerase stalling. The stability of replication forks may be mediated by the resulting R-loop
formation. As a consequence of the conflict, whereas the DNA:RNA hybrid structures of R-loops are
particularly stable due to thermodynamic stability, the non-template ssDNA is relatively unstable and
susceptible to transcription-associated mutagenesis and recombination [16–18]. Certain regions of the
genome, where R-loops that are associated with ssDNA accumulate, can become more chemically labile,
leading to the accumulation of proteins that recognize R-loop structures, such as DNA-modifying
enzymes or other repair factors. Some of these proteins might be involved in initiating mutagenesis.
Alternatively, collisions between transcription and replication complexes induce replication-fork
stalling, leading to impaired DNA replication which, in turn, results in DNA double-stranded breaks
through fork collapse or the initiation of mitosis with incomplete DNA replication [19,20] (Figure 1).
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Figure 1. Roles of RNA-binding proteins (RBPs) in R-loops formation and DNA damage response. (a) 
RBPs coat nascent RNAs and prevent transcription-associated DNA:RNA hybrids (R-loops). 
Topoisomerase (TOP1) resolves the local negative supercoils behind the transcribing RNA 
polymerase II (RNAPII); (b) R-loop formation is accumulated in cells with absent or decrease of RBPs, 
inducing DNA damage at the non-template single-strand DNA; (c) various stressors, such as 
ultraviolet (UV), reactive oxygen species (ROS), and ionizing radiation (IR) evoke DNA damage. 
Certain RBPs and RNA species are recruited at DNA damage sites. RNA species serve as sensors of 
DNA damage or templates in DNA repair process, and RBPs interact with DNA repair proteins and 
facilitate DNA damage responses. 

However, in normal cells, distinct protection mechanisms usually overcome the formation of 
these R-loops and mitigate their detrimental effects to preserve genome integrity. These regulatory 
proteins, found during R-loop formation, can be categorized into two major subgroups based on their 
function: (1) factors that prevent R-loop formation such as DNA topoisomerase I, SRSF1, and the 
THO/TREX complex; and (2) factors that remove R-loops, such as RNase H enzymes and RNA/DNA 
helicases [15] (representative lists of regulatory genes are reviewed in [7,20]). 

DNA topoisomerase I, an evolutionarily-conserved regulator of DNA repair and transcription, 
suppresses R-loop-mediated genome instability through relaxing RNA polymerase-generated 
negative DNA supercoils. Defects or dysfunctions in these regulators accumulate aberrant R-loops 
formation in various cell types including Saccharomyces cerevisiae, mouse, and human cells [21,22]. 

RBPs are considered to prevent the formation of RNA:DNA hybrid R-loop structures by coating 
the nascent RNA. For example, R-loops were shown to accumulate in serine-arginine (SR) rich protein 
1 (SRSF1)-depleted cells. SRSF1 is a well-studied multifunctional SR protein that plays important 
roles in mRNA splicing, localization, stability, and translation [23]. Li and Manley performed a 
genetic screen of SRSF1-depleted cells and revealed an unexpected function of SRSF1, specifically the 
maintenance of genome integrity [24,25]. SRSF1 absence induced a hypermutagenic phenotype due 
to an accumulation of R-loop structures, which can be converted into double-strand breaks (DSBs) 
by the transcription-coupled nucleotide excision repair factor Cockayne syndrome group B [26]. 
SRSF2 and SRSF3 were also shown to prevent R-loop formation, suggesting that the recruitment of 
SR proteins, through the splicing of introns on the nascent RNA during transcription, prevents 
aberrant RNA:DNA hybrid structures and undesired DSBs. 

The THO/TREX-2 complex plays a central role in the packaging of nascent RNAs with various 
RBPs. Indeed, dysfunction of THO/TREX2 affects mRNA processing including transcriptional 
elongation and mRNA export [27,28]. Mutants of HRP1 and THO2, encoding components of THO, 

Figure 1. Roles of RNA-binding proteins (RBPs) in R-loops formation and DNA damage response.
(a) RBPs coat nascent RNAs and prevent transcription-associated DNA:RNA hybrids (R-loops).
Topoisomerase (TOP1) resolves the local negative supercoils behind the transcribing RNA polymerase
II (RNAPII); (b) R-loop formation is accumulated in cells with absent or decrease of RBPs, inducing
DNA damage at the non-template single-strand DNA; (c) various stressors, such as ultraviolet (UV),
reactive oxygen species (ROS), and ionizing radiation (IR) evoke DNA damage. Certain RBPs and
RNA species are recruited at DNA damage sites. RNA species serve as sensors of DNA damage or
templates in DNA repair process, and RBPs interact with DNA repair proteins and facilitate DNA
damage responses.

However, in normal cells, distinct protection mechanisms usually overcome the formation of
these R-loops and mitigate their detrimental effects to preserve genome integrity. These regulatory
proteins, found during R-loop formation, can be categorized into two major subgroups based on their
function: (1) factors that prevent R-loop formation such as DNA topoisomerase I, SRSF1, and the
THO/TREX complex; and (2) factors that remove R-loops, such as RNase H enzymes and RNA/DNA
helicases [15] (representative lists of regulatory genes are reviewed in [7,20]).

DNA topoisomerase I, an evolutionarily-conserved regulator of DNA repair and transcription,
suppresses R-loop-mediated genome instability through relaxing RNA polymerase-generated negative
DNA supercoils. Defects or dysfunctions in these regulators accumulate aberrant R-loops formation in
various cell types including Saccharomyces cerevisiae, mouse, and human cells [21,22].

RBPs are considered to prevent the formation of RNA:DNA hybrid R-loop structures by coating
the nascent RNA. For example, R-loops were shown to accumulate in serine-arginine (SR) rich protein 1
(SRSF1)-depleted cells. SRSF1 is a well-studied multifunctional SR protein that plays important
roles in mRNA splicing, localization, stability, and translation [23]. Li and Manley performed a
genetic screen of SRSF1-depleted cells and revealed an unexpected function of SRSF1, specifically the
maintenance of genome integrity [24,25]. SRSF1 absence induced a hypermutagenic phenotype due to
an accumulation of R-loop structures, which can be converted into double-strand breaks (DSBs) by the
transcription-coupled nucleotide excision repair factor Cockayne syndrome group B [26]. SRSF2 and
SRSF3 were also shown to prevent R-loop formation, suggesting that the recruitment of SR proteins,
through the splicing of introns on the nascent RNA during transcription, prevents aberrant RNA:DNA
hybrid structures and undesired DSBs.

The THO/TREX-2 complex plays a central role in the packaging of nascent RNAs with various
RBPs. Indeed, dysfunction of THO/TREX2 affects mRNA processing including transcriptional
elongation and mRNA export [27,28]. Mutants of HRP1 and THO2, encoding components of
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THO, result in a transcription-associated hypermutation phenotype in yeast [29,30]. A subsequent
study revealed that this phenotype is directly associated with aberrant R-loop formation [31].
In addition, the yeast Npl3, the most abundant heterogeneous nuclear ribonucleoprotein (hnRNP),
also prevented R-loop stabilization [32], suggesting that mRNA metabolism especially that associated
with transcription, is deeply involved in the maintenance of genome integrity.

The RNA/DNA helicase Senataxin (SETX) is involved in the regulation of R-loop formation [26].
In normal biology, R-loop formation is required for proper transcriptional termination (RNA pol II
pausing), and especially for RNA pol II-driven genes with G-rich pause sites [33]. Sen1, the yeast
homolog of human SETX, was shown to suppress unscheduled R-loop formation and help to release
RNA molecules from the transcriptional termination complex, which includes R-loop structures [34,35].
Another RNA/DNA helicase named Aquarius (AQR) might also be involved in the removal of
R-loops [26].

RNase H enzymes have been reported as direct regulators of this process, as they degrade the
RNA moiety of DNA:RNA hybrids. Depletion of endogenous RNase H activity results in the failure to
remove R-loops in Saccharomyces cerevisiae, causing DNA damage that is preferentially observed in the
repetitive ribosomal DNA locus [36]. Furthermore, Ohle et al. demonstrated that a direct evidence of a
role of DNA:RNA hybrids involved in DNA damage repair. RNase H enzymes play an essential role
in eliminating DSB-induced DNA:RNA hybrids, leading to the efficient repair of DSBs in yeast [37].
It has been suggested that RNase H enzymes might be involved in modulating the fate of a variety
DNA:RNA hybrids including R-loop formation and DNA repair process.

Recently, the maintenance of R-loop homeostasis is considered to be associated with genome
integrity and to be a dynamic process that counteracts deleterious consequences during transcription
or replication. Furthermore, aberrant R-loop formation is an important contributor to human
diseases [38,39]. Comprehensive studies on the mechanisms that regulate R-loop homeostasis are
needed to understand human diseases and to develop novel therapeutic strategies in the future.

3. Telomere Shortening

Telomeres play important roles in protecting chromosomal ends from DNA damage during the
maintenance of genome stability. Shortening of telomeres leads to detrimental cellular changes,
such as inhibition of cell division and increased cellular senescence [40,41] (Figure 2). Recent
studies have shown that telomere attrition influences mortality in inherited telomere aging-related
diseases [42,43]. In addition, variations in telomere maintenance affect cancer progression [44].
Activation of telomerase overcomes telomere shortening, resulting in sustained cell replication during
malignant transformation [45]. Telomere maintenance is mainly regulated by three factors: a tract
of tandemly-repeated DNA sequences, associated protein, such as shelterin, and the telomerase
complex [46]. A single-stranded G-rich overhang is formed through strand invasion of the 3’ overhang
at the telomere end, which is called the telomere loop (t-loop). Because of exonuclease degradation
after DNA replication and inabilities of DNA polymerases, human telomeres are shortened by ~50 base
pairs per cell division. The shortened telomeres are reconstructed by telomerase reverse transcriptase
(TERT), which can add TTAGGG repeats to the 3′ DNA ends of the chromosome [43,46]. Alterations
in the expression of telomere-associated proteins are closely related to telomere dysfunction, which
trigger chromosomal instability and tumorigenesis. Here, we focus on novel roles of RBPs in the
modulation of regulatory factors required for telomere maintenance.
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including telomeric repeat binding factor-1 (TRF1), TRF2, and protection of telomeres-1 (POT1), 
regulate the maintenance of telomere length. Telomeric repeat-containing RNA (TERRA) localizes to 
telomeres and regulates telomerase activity and telomere length. 

4. Roles of Heterogeneous Nuclear Ribonucleoproteins (hnRNP) in Telomere Regulation 

Increasing evidence suggests that several RBPs, especially hnRNPs, are involved in the 
regulation of telomeres and the maintenance of genome integrity (Figure 2). As shown in Figure 2, 
hnRNPs are implicated in the control of telomere activity at multiple steps. We categorized telomere-
related RBPs into four groups by their functions: (1) modulating associations among components of 
the telomeric complexes including telomeric DNA; (2) controlling localization of functional non-
coding RNAs such as TERRA; (3) directly binding to TERT; and (4) transcriptionally or post-
transcriptionally regulating gene expression of telomerase regulatory factors such as telomeric DNA-
binding proteins. 

The first group of RBPs contains hnRNP A1, fused-in-sarcoma (FUS), and telomeric repeat-
binding factor (TRF) 1 and 2. hnRNP A1, a regulator of pre-mRNA splicing, binds telomeric DNA 
and enhances telomerase activity by altering G-rich overhang structures [47]. hnRNP A1 also 
interacts with a long non-coding telomeric repeat-containing RNA (TERRA), which is transcribed 
from telomere DNA. This complex regulates telomere coating by POT1, one of the shelterin complex 
proteins, during DNA replication [48]. FUS, also known as translocated in liposarcoma (TLS), 
interacts with the G-quadruplex, consisting of telomere DNA and TERRA, via its Arg-Gly-Gly repeat 
(RGG) domains to regulate histone modifications of telomeres [49,50]. TRF1 is a component of the 
shelterin protein complex that regulates telomere length by modulating the accessibility of 
telomerase to telomeres [51]. Therefore, the expression of TRF1 needs to be strictly controlled to 
ensure sufficient telomere function. A pre-mRNA splicing factor, U2 small nuclear ribonucleoprotein 
(snRNP) auxiliary factor 65 (U2AF65), interacts with TRF1 and stabilizes TRF1 by inhibiting its 
ubiquitin-dependent regulation [52]. TRF2 is also a member of the shelterin protein complex, which 
functions in telomere protection [45]. Inhibition of TRF2 triggers a DNA damage response and affects 
cell fate in neuronal cells [53]. 

The second group of RBPs contains hnRNP A/B, hnRNP F, and hnRNP A1. hnRNP A/B and 
hnRNP F bind to TERRA to control its abundance and localization, which influences telomere 
lengthening [54]. hnRNP A1 is already mentioned above. 

The third group of RBPs contains hnRNP C and hnRNP U. Through the affinity purification of 
endogenous telomerase complexes, hnRNP C and hnRNP U were suggested to associate with TERT 
and influence telomere shortening [55]. 

Figure 2. Roles of RNA-binding proteins (RBPs) in telomere activity. Heterogeneous nuclear proteins
(hnRNPs) play multifunctional roles in regulating telomere maintenance. The shelterin complex,
including telomeric repeat binding factor-1 (TRF1), TRF2, and protection of telomeres-1 (POT1),
regulate the maintenance of telomere length. Telomeric repeat-containing RNA (TERRA) localizes to
telomeres and regulates telomerase activity and telomere length.

4. Roles of Heterogeneous Nuclear Ribonucleoproteins (hnRNP) in Telomere Regulation

Increasing evidence suggests that several RBPs, especially hnRNPs, are involved in the regulation
of telomeres and the maintenance of genome integrity (Figure 2). As shown in Figure 2, hnRNPs are
implicated in the control of telomere activity at multiple steps. We categorized telomere-related RBPs
into four groups by their functions: (1) modulating associations among components of the telomeric
complexes including telomeric DNA; (2) controlling localization of functional non-coding RNAs such
as TERRA; (3) directly binding to TERT; and (4) transcriptionally or post-transcriptionally regulating
gene expression of telomerase regulatory factors such as telomeric DNA-binding proteins.

The first group of RBPs contains hnRNP A1, fused-in-sarcoma (FUS), and telomeric repeat-binding
factor (TRF) 1 and 2. hnRNP A1, a regulator of pre-mRNA splicing, binds telomeric DNA and enhances
telomerase activity by altering G-rich overhang structures [47]. hnRNP A1 also interacts with a long
non-coding telomeric repeat-containing RNA (TERRA), which is transcribed from telomere DNA.
This complex regulates telomere coating by POT1, one of the shelterin complex proteins, during
DNA replication [48]. FUS, also known as translocated in liposarcoma (TLS), interacts with the
G-quadruplex, consisting of telomere DNA and TERRA, via its Arg-Gly-Gly repeat (RGG) domains
to regulate histone modifications of telomeres [49,50]. TRF1 is a component of the shelterin protein
complex that regulates telomere length by modulating the accessibility of telomerase to telomeres [51].
Therefore, the expression of TRF1 needs to be strictly controlled to ensure sufficient telomere function.
A pre-mRNA splicing factor, U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65),
interacts with TRF1 and stabilizes TRF1 by inhibiting its ubiquitin-dependent regulation [52]. TRF2 is
also a member of the shelterin protein complex, which functions in telomere protection [45]. Inhibition
of TRF2 triggers a DNA damage response and affects cell fate in neuronal cells [53].

The second group of RBPs contains hnRNP A/B, hnRNP F, and hnRNP A1. hnRNP A/B
and hnRNP F bind to TERRA to control its abundance and localization, which influences telomere
lengthening [54]. hnRNP A1 is already mentioned above.

The third group of RBPs contains hnRNP C and hnRNP U. Through the affinity purification of
endogenous telomerase complexes, hnRNP C and hnRNP U were suggested to associate with TERT
and influence telomere shortening [55].
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The last group of RBPs contains AUF1, hnRNP H1 and H2, Yra1, and hnRNP A18. AUF1 (also
referred to as hnRNP D), a RNA destabilizing factor of AU-rich element-containing mRNAs, is a
regulator of telomere maintenance. AUF1 binds to the promoter of the mouse TERT (mTert) to activate
its transcription. AUF1-knockout mice exhibited rapid premature aging caused by significant telomere
erosion and pronounced cellular senescence [56]. hnRNP H1 and H2 specifically interact with exon 7
of Trf2 pre-mRNA and regulate alternative splicing of Trf2 mRNA, which is implicated in neuronal
differentiation [57]. Yra1 is a member of the hnRNP-like family, which is involved in the regulation of
mRNA export and cell growth [58]. Gavaldá et al. showed that Yra1 overexpression in yeast results in
impaired DNA replication and a cellular senescence-like phenotype, by altering associations between
Rrm3 DNA helicase and telomeres [59]. A recent study reported that hnRNP A18, also called cold
inducible RNA-binding protein, interacts with telomerase and maintains telomerase activities in a
temperature-dependent manner. Inhibition of hnRNP A18 reduces telomerase activities and shortens
telomeres [60]. Thus, these data demonstrate the possible roles of RBPs in diverse cellular processes
that are involved telomere regulation, which tightly regulate the preservation of genome integrity.

5. Roles of RBPs in DNA Damage Responses

Various environmental and chemical agents or cell-derived stressors, such as ionizing radiation,
ultraviolet light, or reactive oxygen species, continually evoke DNA damage, such as DSBs. To ensure
genome integrity, damaged cells upregulate a signaling network known as the DNA damage response
(DDR). In general, DDR signaling is orchestrated by three PI3K-like protein kinases, specifically
ATM (ataxia-telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent
protein kinase). The activation of these kinases facilitates the accumulation of proteins involved in
DNA repair and chromatin modification or remodeling [61]. Recently, new functions for RBPs in the
DDR have been described, and increasing evidence has suggested a role in the DNA repair process.
Whereas some RBPs permit the selective expression of DDR genes in response to DNA damage through
post-transcriptional regulation, some specific RBPs directly bind to sites of DNA damage and interact
with DNA and repair proteins. Many reports and reviews have already demonstrated that DNA
damage facilitate RBP-mediated post-transcriptional regulation of DDR genes [62–64]. Thus, here we
discuss the specific RBPs that accumulate at sites of DNA damage (Figure 1c).

It is thought that DNA damage stimulates a distinct set of enzymes that facilitates DNA repair
signaling. Recently, several studies have shown that some RBPs localized to sites of DNA damage, and
they can directly interact with DNA or repair proteins [65–73]. For example, the DNA/RNA-binding
nucleocytoplasmic shuttling protein, YB-1, was first described as a cytoplasmic mRNP that regulates
mRNA translation, stability, and storage. In addition to mRNA metabolism, YB-1 appears to play a
role in DNA repair by interacting with the DNA duplex and DNA repair proteins. YB-1 also functions
in strand separation and has endonuclease activity in vitro [74–76].

Paraspeckles are sub-nuclear bodies composed of RNA-protein structures including ncRNAs
and core proteins, such as non-POU domain-containing octamer-binding protein (NONO), splicing
factor proline/glutamine-rich (SFPQ/PSF), and paraspeckle component 1. Paraspeckles are suggested
to regulate gene expression through the nuclear retention of RNAs. In addition to this function,
SFPQ/PSF is reportedly involved in DSB repair via canonical non-homologous end joining (NHEJ) and
homologous recombination (HR). SFPQ/PSF interacts with DNA and the homologous recombinase
Rad51 and TopBP1 proteins. The SFPQ-NONO complex substitutes for XLF, a core c-NHEJ factor,
and stabilizes paired DNA DSB ends, resulting in the promotion of DSB repair via NHEJ. The nuclear
matrix protein, Martin 3(MATR3), is also associated with the SFPQ-NONO complex. MATR3 was
found to be an ATM target, and microbeam-induced DNA damage in MART3-depleted cells led to the
abnormal accumulation of S-phase cells; in addition, it was observed that the SFPQ-NONO complex
retention at the sites of DNA damage was prolonged in these cells [67,77–80].

Like SFPQ/MONO proteins, the other paraspeckle proteins FUS, previously mentioned as
involved in telomere regulation, and RBM14 are also involved in DDR activation. Both FUS and
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RBM14 contain an unstructured prion-like domain (PLD). FUS accumulates at laser-induced DSB
sites in a PAR-dependent manner. The recruitment of FUS is necessary for γH2AX formation
during the DDR and following proper DDR signaling. The interaction between FUS and HDAC1,
a chromatin modification enzyme, suggests that FUS is involved in the regulation of histone acetylation
following DNA damage and in the modification of chromatin structure during the DNA repair process.
Interestingly, FUS proteins that are mutated with familial ALS exhibit diminished FUS-HDAC1
interactions in response to DNA damage [81]. RBM14 is required to recruit XRCC4 and XLF to
chromatin and to release KU proteins from chromatin during the DDR. Defects in this process lead to
the accumulation of DSBs and prolonged γH2AX foci, suggesting that RBM14 stimulates the DNA
repair process by regulating the DNA-PK-dependent NHEJ pathway [82,83].

By genome-wide screening, RBMX (RNA-binding motif protein, X-linked, also known as hnRNP
G) was identified as a positive regulator of HR during the DDR. RBMX transiently accumulates at sites
of DNA damage and increases the fidelity of DNA end joining, preventing further degradation in a
poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner [65,84]. However, PARP-depletion could
prevent RBMX accumulation at DNA damage sites without changing the HR efficiency, suggesting
that the inhibition of HR after RBMX knockdown might be caused by a reduction in BRCA2 expression.
Other hnRNPs, such as hnRNPU-like (hnRNPUL) and hnRNP C, have been identified as components
of the MRE11/RAD50/NBS1 (known as the MRN complex) and BRCA1/BRCA2/PALB2 complexes,
respectively. These components serve as DNA DSB sensors. hnRNPUL 1 and 2 proteins stimulate
DNA-end resection through their recruitment to sites of DNA damage, in an MRN-dependent manner;
consequently, DNA repair, initiated by ATR-dependent signaling, proceeds by HR. The authors also
showed that hnRNPUL1 and 2 act on downstream of MRN and CtBP-interacting protein, facilitating
of the recruitment of the BLM (Bloom syndrome, RecQ helicase-like) helicase to DSBs [72].

PRP19 is known as a core component of the NTC/PRP19 complex, which regulates spliceosome
activity through the ubiquitination of PRP3, a component of the U4 snRNP; this leads to stabilization of
the U4/U6 and U5 snRNPs [85–88]. A proteomic screen for proteins that interact with ssDNA-coated
with the replication protein A complex identified that PRP19 is also a sensor of DNA damage [89].
PRP19 localizes to sites of DNA damage via RPA, which directly binds PRP19 in vitro. CDC5L,
a component of the PRP19 complex, is required for the regulation of signaling downstream of ATR. [90].
Dysfunction of PRP19, specifically loss of binding activity to RPA or ubiquitin E3 ligase activity, results
in the inability to support a proper ATR response [89].

6. Possible Roles of Non-Coding RNAs in DNA Damage Responses

It has been shown that most of the human genome is transcribed [91]. These numerous
transcripts often do not encode proteins, but have certain biologically functional roles. Some of
these ncRNAs are localized to the nuclear and might regulate the epigenetic modification of chromatin
in a sequence-specific manner [92]. Certain long ncRNAs (>200 nucleotides) have been reported
to modulate genotoxic stress responses [93–95]. However, most stress-induced ncRNAs have not
been shown to directly interact with DNA damage sites during the DDR. Several recent studies
demonstrated that RNAs themselves, especially distinct small RNAs, are implicated in the DDR [96,97].
Indeed, RNase treatment attenuates the induction of DNA damage-foci; in addition, small RNA
that is locally produced upon DNA damage is required for DNA repair [98]. Although small RNA
biogenesis involves various accessory proteins including DGCR8 and other RBPs, in addition to Dicer
and Drosha [99], the association between these proteins and DNA damage has not been well studied.
Inactivation of Dicer or Drosha leads to the downregulation of DSB-induced small RNA (diRNA).
For example, northern blotting, probing for diRNAs and using a probe spanning DSB sites, and
RNA deep sequencing have confirmed that these diRNAs are produced from sequences that flank
the DSB region in plant and human cells [100]. diRNAs are associated with Argonaute2 (Ago2), and
its inactivation decreases the DNA repair efficiency of DSBs. These proteins, which are associated
with small RNA biogenesis, are also linked to the DNA repair process through interactions with DDR
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proteins such as Rad51. In addition to endogenous small RNAs, RNA-elements are used as direct
templates for DSB repair. Keskin et al. showed that the endogenous transcript-RNA can guide HR at
sites of DNA damage in the yeast Saccharomyces cerevisiae [101]. Artificial RNA elements can also induce
genomic rearrangement. In addition to that in yeast, RNA oligonucleotides can serve as templates for
DSB repair of homologous chromosomal DNA in human embryonic kidney 293 cells [102]. Further
studies will uncover how RBPs function in the RNA-dependent DNA repair process (Figure 1c).

7. RNA Modification and DNA Damage Responses

Xiang et al. have provided other evidence suggesting that RNA is directly involved in DNA
repair [103]. N6-methyladenosine (m6A) is an RNA modification that modifies the fate and function of
the RNA species; the authors identified rapidly-induced m6A RNA modification after the induction
of DNA damage by UV laser micro-irradiation in U2OS cells. UV radiation induced the rapid
accumulation of m6A on RNA at DNA damage sites marked by γH2A.X histone modification. METTL3,
which is m6A methyltransferase, simultaneously localized to sites of DNA damage. The authors also
demonstrated that the accumulation and removal of m6A at sites of DNA damage is dependent on
the catalytic activity of METLL3 and the m6A demethylase, FTO, respectively. Furthermore, the
localization of the DNA repair enzyme, DNA polymerase κ, at DNA damage sites is dependent on the
catalytic activity of METTL3, suggesting that m6A modification of RNA after UV irradiation is the
initial trigger for the recruitment of DNA repair proteins (Figure 1c).

8. Conclusions

Increasing and unexpected roles of RBPs in genome integrity have been recently recognized.
Advances in analytical techniques, such as RNA deep sequencing and single cell analysis, have
provided far more detailed knowledge of RNA biology. Indeed, many RBPs have the potential to bind
DNA, and some are involved in DNA repair or accumulate at sites of DNA damage. In addition to
the direct function of RBPs in the DDR, the RNA-mediated DNA repair system is also an interesting
mechanism. It is known that lncRNAs are involved in diverse biological processes through their
function as scaffolds for molecular interactions. Thus, it will be of interest to further investigate
whether lncRNAs are involved in different protein-protein and protein-DNA interactions during DDR
activation. Furthermore, recently, RNA modification has been recognized as an important biological
process in RNA metabolism and fate. Indeed, the accumulation of m6A modifications at sites of DSBs
is proposed to serve as a beacon for the recruitment of DNA polymerase κ for the DNA repair process.
Other RNA modifications, such as m1A and m5C, might also contribute to genome integrity through
the DNA repair process or R-loop formation. Further investigation of RBPs or RBP-associated RNAs
(diRNA, lncRNA, etc.) after DNA damage will provide a deeper understanding of the multilayered
maintenance mechanisms governing genome integrity, and help to develop new treatments for the
numerous diseases that are linked to DNA damage, such as cancer.
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