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Abstract: Clinical studies have shown that metabolic disorders such as type 2 diabetes and
dyslipidemia are associated with increased risk of oral-related diseases, such as periodontitis and
Sjögren’s syndrome. Although changes in the immune system are critical in both of these metabolic
disorders and oral-related diseases, the mechanism underlying the interaction between these diseases
remains largely unknown. Obesity and type 2 diabetes are known to be associated with higher
concentrations of free fatty acids in blood. Among free fatty acids, saturated fatty acids such as
palmitic acid have been demonstrated to induce inflammatory responses mainly via the innate
immune systems, and to be involved in the pathogenesis of type 2 diabetes in tissues such as adipose
tissue, liver, pancreas, and skeletal muscle. Here, we highlight recent advances in evidence for the
potential involvement of palmitic acid in the pathogenesis of periodontitis and Sjögren’s syndrome,
and discuss the possibility that improvement of the lipid profile could be a new strategy for the
treatment of these diseases.
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1. Introduction

Obesity is a global health issue which is related to morbidity and mortality of metabolic diseases.
Obese people have a more than ten-fold risk of developing type 2 diabetes (T2D) compared with
normal-weight people [1]. The level of free fatty acids (FFAs) in blood is elevated in obese individuals
and patients with T2D, as well as in animal models of these conditions [2], and is related to augmented
lipolysis in adipocytes and an increased intake of dietary fats [3]. Potential intracellular mechanisms
whereby FFAs cause insulin resistance have been explored, and a role of several inflammatory signaling
networks has emerged. Intracellular kinases linked to inflammatory signaling, such as protein kinase
C (PKC)-θ, IkB kinase (IKK) α, and c-jun N-terminal kinase (JNK) appear to play roles in FFA-induced
insulin resistance [4–7]. Plasma contains a variety of long-chain FFAs, of which about 35% are saturated
and 65% are unsaturated [8]. Among FFAs, saturated fatty acids, such as palmitic acid (Pal) and stearic
acid, induce inflammatory responses mainly via the Toll-like receptor (TLR) signaling pathway [9,10].
Furthermore, fatty acid translocase, which is also known as CD36, is involved in FFA uptake [11], and
CD36 ligands facilitate sterile inflammation through assembly of TLR heterodimers [12].

Periodontitis is a chronic bacterial infection that stimulates a host inflammatory response, leading
to periodontal tissue damage [13]. Clinical studies have demonstrated that obesity, diabetes, and
metabolic syndrome are associated with an increased risk of periodontitis [14–16], suggesting that
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lipid-related disorders, which are present in these diseases, may increase the risk of developing
periodontitis. However, the molecular mechanisms underlying the association between disorders of
lipid metabolism and periodontitis remain largely unknown.

Primary Sjögren’s syndrome (SS) is an autoimmune condition characterized by progressive
lymphocytic infiltration of the salivary and lacrimal glands. It is known that salivary gland epithelial
cells have an active role in the inflammatory process of SS [17]. The relationship between metabolic
disorders and SS was firstly demonstrated as “pseudo-SS” [18]. Subsequent studies reported that
patients with primary SS exhibited a markedly higher prevalence of metabolic disorders, such as
diabetes and dyslipidemia [19,20]. However, the clinical significance of FFAs in the pathogenesis of SS
is still unclear.

Herein, we introduce the potential involvement of FFAs, especially Pal, in the pathogenesis of
periodontitis and SS, and discuss whether improvement of the lipid profile may be a new strategy for
treating these diseases.

2. Involvement of Pal in Pathogenesis of Periodontitis

Periodontitis is known as the sixth complication of diabetes [21]; diabetes has been found to
be an important host risk factor for periodontal disease in large epidemiological studies [22,23].
Studies relating periodontitis to T2D, such as the Pima Indian study, have shown increased prevalence
and incidence of periodontal disease in patients with diabetes [24]. Experimental studies in animal
models have also shown the influence of diabetes on periodontitis. In mice [25,26] and rats [27],
a diabetic condition significantly increased the prevalence and severity of alveolar bone resorption
in periodontitis induced by ligatures or bacterial infection. The effects of obesity on periodontitis
have also been reported in animals and humans. In animals with periodontitis, greater alveolar bone
loss was observed in obese mice [28] and rats [29] than in non-obese animals. In 1998, a relationship
between obesity and periodontitis was first demonstrated in humans [30].

The level of FFAs in blood is increased in obese individuals [31], in patients with T2D, and
in rodent models of T2D [2]. Recently, we demonstrated that: (i) Human gingival fibroblasts
(HGF) express cell surface CD36 protein; (ii) CD36 expression was upregulated in gingival
fibroblasts of diet-induced T2D model mice; (iii) Pal increased mRNA expression and secretion
of interleukin (IL)-6, IL-8, and GROα, which are involved in host defense against periodontal
lesions [32], in HGF; (iv) Saturated fatty acids, but not an unsaturated fatty acid, oleic acid,
stimulated IL-8 secretion; (v) An omega-3 polyunsaturated fatty acid, docosahexaenoic acid
(DHA), markedly decreased Pal-induced IL-6 and IL-8 secretion in HGF; (vi) Sulfosuccimidyl
oleate sodium, a CD36 inhibitor, also suppressed Pal-induced pro-inflammatory responses in
HGF; and (vii) Lipopolysaccharide and heat-killed component of Porphyromonas gingivalis (P.g.),
which is an important periodontopathogen [33], augmented Pal-induced chemokine production
in HGF [34]. Moreover, interesting papers recently reported that: (i) Contrary to oleic acid
(one of the monounsaturated fatty acids), Pal demonstrated inflammatory potential that could
accelerate alveolar bone loss in experimental periodontal disease in obese mice and affect the
pro-inflammatory osteoclastic response to P.g. infection in vitro [35]; and (ii) LPS derived from
Aggregatibacter actinomycetemcomitans, which is another important periodontopathogen, augmented
high-fat diet-induced CD36 expression in periodontal tissue [36]. In addition to their role in the
pathogenesis of periodontitis, it is also reported that P.g. and P.g. LPS augment high-fat diet- and
Pal-induced endothelial injury [37] and steatohepatitis [38]. Furthermore, we recently reported that
Pal-stimulated monocytes up-regulate adhesion molecules in vascular endothelial cells [39]. This
could further enhance migration of monocytes and neutrophils, which also plays an active role in
pro-inflammatory responses in periodontal lesions [40,41].

Considering these results, a proposed mechanism underlying the possible link between Pal in
blood and the onset of periodontitis is shown in Figure 1. (1) Elevated Pal levels in blood may induce
cytokine and chemokine secretion, and may augment P.g.-induced chemokine production in gingival
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fibroblasts, which promotes pro-inflammatory responses in periodontal lesions. (2) A high Pal level in
plasma may augment P.g.-induced alveolar bone loss in human periodontal lesions. (3) Upregulation of
adhesion molecules in vascular endothelial cells by Pal further enhances migration of monocytes and
neutrophils, which also induces pro-inflammatory responses in periodontal lesions. This hypothesis
suggests that a high level of Pal in plasma may be directly and indirectly involved in the pathogenesis
of periodontitis.
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Figure 1. Proposed model of influence of Pal on pathogenesis of periodontitis. AB: alveolar bone,
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3. Involvement of Pal in Pathogenesis of SS

Obesity, defined as body mass index above 30 kg/m2, cannot be considered only as an overweight
condition with excessive fatty storage, but as a complicated state that exerts biological stress on many
tissues and systems, including the immune system. Obesity seems to be a major environmental factor
involved in the onset and progression of autoimmune disorders, including not only SS, but also
rheumatoid arthritis, multiple sclerosis, psoriasis and psoriatic arthritis [42]. Moreover, as described
in the Introduction, patients with primary SS exhibit a significantly higher prevalence of metabolic
disorders, such as diabetes and dyslipidemia [19,20]. Thus, it could be reasonable to hypothesize the
involvement of FFAs, especially Pal, in the onset/progression of SS, which is further discussed below.

It is known that salivary gland epithelial cells play an important role as a trigger in the
development of SS. For example, IL-6 is upregulated in ductal epithelial cells of salivary glands
in patients with primary SS. Furthermore, the extent and intensity of IL-6 expression in epithelial cells
correlated with the grade of mononuclear cell infiltration [43]. α-fodrin is a ubiquitous, heterodimeric
calmodulin-binding protein that is cleaved during apoptosis by caspase-3 or µ-calpain. Besides the
ribonucleoprotein particles SS-A/Ro and SS-B/La [44], these 120 kDa fragments derived from α-fodrin
have been demonstrated to act as auto-antigens in patients with primary SS [45]. Although the
molecular mechanisms underlying the relationship between metabolic disorders and SS are largely
unclear, we previously demonstrated that Pal induces IL-6 secretion and α-fodrin cleavage in salivary
gland epithelial cell lines, suggesting a possible link between the pathogenesis of primary SS and Pal
levels in blood [46]. When model mice for primary SS [47] were fed a high-fat diet, their salivary glands
and lacrimal glands exhibited inflammation significantly more advanced than that observed in model
mice fed a normal diet. Moreover, although a preliminary finding, auto-antibody concentrations in
plasma were significantly increased in primary SS model mice fed a high-fat diet compared with those
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in model mice fed a normal diet. Given these results, a schematic model of the potential involvement
of Pal in the pathogenesis of SS is shown in Figure 2. (1) Pal may induce IL-6 production in epithelial
cells of these glands, which would augment local inflammation in salivary glands by directing the
differentiation of IL-4-producing CD4+ T (T helper type 2) cells [48], inducing the maturation of
B cells into antibody-secreting cells, and promoting the survival and maintenance of long-lived
plasma cells [49–51]. (2) A high level of Pal in plasma may induce apoptosis in epithelial cells of
salivary glands in vivo, resulting in cleaved α-fodrin release, which antigen-presenting cells such as
macrophages and dendritic cells would recognize as an auto-antigen. (3) As described above, Pal
induces adhesion molecules in vascular endothelial cells via IL-1 signaling involving monocytes [39],
which could enhance monocyte migration to inflammatory lesions in the salivary glands of patients
with primary SS.
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4. Is Improvement of the Lipid Profile Effective for the Treatment of Periodontitis and SS?

Normalizing FFA levels has been proposed as a novel therapeutic approach for obesity and
metabolic diseases [31,52]. Recent studies have demonstrated that lipid-related molecules could
improve the condition of patients with periodontitis. For example, docosahexaenoic acid (DHA)
supplementation improved the periodontal condition in patients with periodontitis [53], and resolvin
D1, which is a derivative of DHA, decreased P.g.-induced chemokine secretion in HGF [54]. Moreover,
resolvin E1, which is another type of lipid mediator derived from eicosapentaenoic acid (EPA),
protects against local inflammation and osteoclast-mediated bone destruction in periodontitis [55].
We also confirmed that DHA markedly inhibited Pal-induced IL-6 and IL-8 production in HGF [34],
presumably via the suppressive effect of DHA on nuclear factor-κB (NF-κB) activation [56] and TLR
dimerization [10]. Considering that DHA and EPA supplementation does not induce a significant
change in the percentage of Pal in total fatty acids in plasma phospholipids [57], the ratio of ω-3
polyunsaturated fatty acids to Pal in plasma may be an important factor in the improving effects of
DHA, EPA, and these derivatives on the clinical condition in periodontitis. Supporting this hypothesis,
it was reported that the ratio of n3 (anti-inflammatory)- to n6 (pro-inflammatory)-polyunsaturated
fatty acids, namely (DHA + EPA)/arachidonic acid, is significantly lower in the gingival crevicular
fluid of aggressive periodontitis patients than in healthy controls [58].

Some papers have reported beneficial effects of lipid-related molecules on the salivary glands both
in vivo and in vitro. Leigh et al. [59] reported that a resolvin D1 biosynthetic pathway exists in murine
and human salivary gland cells, and the distribution of resolvin D1 biosynthesis-related mediators is
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different in human salivary gland cells of healthy subjects and patients with SS, which could suggest
that resolvin D1 is being produced but not delivered to target cells in the salivary glands of patients
with SS. Resolvin D1 also blocks inflammation mediated by tumor necrosis factor-α (TNF-α), which is
an inflammatory cytokine inducing apoptosis in salivary gland cells [60], and increases barrier function
and cell polarity of salivary gland cells [61,62]. These reports imply that DHA supplementation may
have preventive and therapeutic effects on inflammatory diseases of the salivary glands such as SS.

5. Conclusions

The pathogenesis and mechanisms of periodontitis and SS are highly complex, and many patients
develop refractory disease. Although the development of these diseases does not always lead to
death, quality of life in patients with these diseases is considerably decreased. Further research on the
association between lipid-related molecules and the pathogenesis of these diseases is warranted in
order to develop novel therapeutic strategies.
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