- 1 Ketogenic diet induces expression of the muscle circadian gene *Slc25a25* via neural pathway
- 2 that might be involved in muscle thermogenesis
- 3
- 4 Reiko Nakao¹, Shigeki Shimba², Katsutaka Oishi^{1,3,4,*}
- 5
- ⁶ ¹Biological Clock Research Group, Biomedical Research Institute, National Institute of
- 7 Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- ⁸ ²Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Chiba
- 9 274-8555, Japan
- ³Department of Applied Biological Science, Graduate School of Science and Technology,
- 11 Tokyo University of Science, Noda, Chiba 278-8510, Japan
- ⁴Department of Computational and Medical Sciences, Graduate School of Frontier Sciences,
- 13 The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- 14 ^{*}Corresponding author.
- 15

16 Supplementary Information

17

18

Supplemental Figure 1. Ketogenic diet reduces body temperature in sciatic denervated and sham-operated mice.

21 Core body temperature rhythms for 24 h in mice fed with ketogenic diet (KD) starting from

22 10 days after sham operation (a) or bilateral sciatic nerve transection (b). Hourly averaged

values of body temperature at one day before (normal diet; ND) and after two weeks on KD

24 in sham-operated (a) and sciatic denervated (b) mice. Gray shading indicates dark period.

25 Data are expressed as means \pm SEM (n = 5 - 7 per group). **P* < 0.05 and ***P* < 0.01 for ND vs.

26 KD. ZT; zeitgeber time. Supplemental Table 9 shows results of statistical analysis.

30 expression in skeletal muscle.

31 Mice were individually housed in cages without running-wheels to mimic sedentary

32 conditions or with running-wheels for four weeks. Gray shading indicates dark period. Data

33 are means \pm SEM (n = 4 - 5 per group). Maximal value for sedentary mice is expressed as 1.0.

34 Supplemental Table 8 shows results of statistical analysis.

36

39 Supplemental Figure 3. Ketogenic diet decreases liver *Slc25a25* mRNA expression.

40 Messenger RNA expression of *Slc25a25* in livers of mice fed with ketogenic (KD) or normal

41 (ND) diet for 7 days. Data are expressed as means \pm SEM (n = 4 per group). Values for mice

42 given ND are expressed as 1.0. P < 0.05 ND vs. KD (P = 0.018 t-test).

44

45 Supplemental Figure 4. *Slc25a25* expression does not oscillate in C2C12 myotubes.

46 Temporal expression profiles of *Slc25a25* and *Per2* mRNA in C2C12 myotubes. C2C12 cells

47 were incubated in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum

48 (growth medium). Undifferentiated C2C12 cells were grown to confluence and then

49 transferred to Dulbecco's modified Eagle's medium containing 2% horse serum

50 (differentiation medium; changed every 48 h). The cells were stimulated 6 days later with 100

51 nM dexamethasone, and then collected every 6 h. Time 0 is expressed as 1.0.

Supplemental Figure 5. Day/night locomotor activity is retained in denervated, *Clk/Clk*, and M-*Bmal1* KO mice.

56 Representative actograms of C57BL/6 (WT; a), denervated (b), *Clk/Clk* (c), and M-*Bmal1* 57 KO (d) mice that were individually housed in cages with running-wheels. Wheel-running 58 activity was continuously recorded using Chronobiology Kits (Stanford Software Systems, 59 Stanford, CA). Locomotor activity was monitored at 5-min intervals and activity data are 60 displayed as actograms as described¹. Light/dark cycles are shown as white/black bars on 61 each actogram, respectively.

67 Temporal expression profiles of *Slc25a25* mRNAs in liver of *Clock* mutant (a, *Clk/Clk*),

68 global (b, G-Bmall KO) or muscle-specific (c, M-Bmall KO) Bmall knockout mice. Data

69 are expressed as means \pm SEM (n = 4 - 5 per group). Maximal value for wild-type (WT) mice

70 is expressed as 1.0. P < 0.05 and P < 0.01 for WT vs. mutant mice at corresponding

71 zeitgeber time (ZT). Supplemental Table 3 shows results of statistical analysis.

77 Circadian expression of *Slc25a25* in skeletal muscle (a), liver (b) and white adipose tissue

78 (WAT) (c) of mice fed during nighttime (NF; unfilled circles) or daytime (DF; filled circles).

79 Time-imposed feeding was restricted as described¹. Six-week-old male C57BL/6J mice

80 (Japan SLC, Hamamatsu, Japan) were fed with a high-fat high-sucrose F2HFHSD diet

81 (Oriental Yeast, Tokyo, Japan) *ad libitum* for two weeks under a 12-h light–12-h dark cycle.

82 Mice were individually housed in cages with running wheels and then separated into groups

83 that were fed only during sleep (ZT2-10; DF) or active (ZT14-22; NF) phases for one week.

B4 Data are shown as means \pm SEM (n = 5). Maximal value for NF mice is expressed as 1.0. **P*

85 < 0.05 and ^{**}*P* < 0.01 for NF and DF mice at corresponding zeitgeber times (ZT).

86 Supplemental Table 10 shows results of statistical analysis.

89 Supplemental Figure 8. Ketogenic diet induces *Slc25a25* mRNA expression in skeletal 90 muscle of *Clk/Clk* mice.

91 Messenger RNA expression of *Slc25a25* in skeletal muscle of Clock mutant (*Clk/Clk*) or WT

92 mice fed with ketogenic (KD) or normal (ND) diet for 7 days. Data are expressed as means \pm

93 SEM (n = 5 - 8 per group). Value for WT mice given ND is expressed as 1.0. *P < 0.001 for

94 ND vs. KD, $^{\dagger}P < 0.001$ for WT vs. *Clk/Clk*; P = 0.332 for interaction (two-way ANOVA).

101 after sciatic denervation or sham-operation. Blood collected in EDTA-coated tubes was

102 immediately separated by centrifugation for 15 min at $5800 \times g$ and then plasma was stored

103 at -80°C. Plasma concentration of FGF21 was measured using mouse-/rat-specific FGF21

104 ELISA (BioVendor Inc., Karasek, Czech Republic). Data are means \pm SEM (n = 5 per group).

105 P = 0.662, sham-operated vs. denervated mice; P < 0.001 for ND vs. KD; P = 0.655 for

- 106 interaction (two-way ANOVA).
- 107

Gene	Forward primer sequence (5' to 3')	Reverse primer sequence (5' to 3')
Slc25a25	GGGTGTCAAGATCTCGGAACA	GTAGTCCCTCCACTCGTTCCA
Slc25a23	TTGATTGGCAGGAATGGCGAGAC	GTCAGGCATTCACCGATGTCCA
Slc25a24	TGCAGCAGGGGGCTGCAAAGCCTG	CATAAATTCTTCAAAATCCAGCTTC
Ucp1	CTCAGGATTGGCCTCTACGACTC	TTGGTGTACATGGACATCGCA
Ucp2	CTGGGACAGCTGCCTGCATTG	GTGCGCACTAGCCCTTGACTC
Ucp3	GTATGCTGAAGATGGTGGCTC	CGGAGATTCCCGCAGTACCTG
Sln	GCTCCTCTTCAGGAAGTGAAG	TGGCCCCTCAGTATTGGTAGG
Pgcla	GTAGGCCCAGGTACGACAGC	GCTCTTGCGGTATTCATCCC
Nr1d1	CCCTGGACTCCAATAACAACACA	GCCATTGGAGCTGTCACTGTAG
Cidea	ATCACAACTGGCCTGGTTACG	TACTACCCGGTGTCCATTTCT
Actb	CACACCTTCTACAATGAGCTGC	CATGATCTGGGTCATCTTTTCA

108 Supplemental Table 1. Primer sequences for real-time RT-PCR.

109

111 Supplemental Table 2. Results of one-way ANOVA of mRNA expression in skeletal

ZT	p
2	0.075
6	0.747
10	0.423
14	< 0.001
18	0.025
22	0.555
3	

112 muscles of mice after sciatic denervation.

113

Mouse strain	Tissue	ZT	р
Clk/Clk	Skeletal muscle	2	0.193
		8	0.134
		14	0.050
		22	0.430
	Liver	2	0.021
		8	0.753
		14	0.001
		22	0.003
G-Bmall KO	Skeletal muscle	2	0.171
		14	0.011
	Liver	2	0.159
		14	0.387
M-Bmal1 KO	Skeletal muscle	2	0.132
		14	0.036
	Liver	2	0.561
		14	0.322

Supplemental Table 3. Results of Student's *t*-test of mRNA expression in skeletal 115

muscles and liver of clock gene mutant mice.

117

Tissue	Cana	Denervated/	Normal/	Demonstration	
Tissue	Gene	Sham-operated	Ketogenic diet	Denervation × KD	
Skeletal	Slc25a25	< 0.001	0.009	0.009	
muscle					
	Slc25a23	0.555	0.357	0.940	
	Slc25a24	< 0.001	0.033	0.423	
	Sln	< 0.001	0.831	0.838	
	Pgcla	< 0.001	0.644	0.540	
	Ucp2	0.855	0.186	0.048	
	<i>Ucp3</i>	< 0.001	< 0.001	0.004	
	Nr1d1	0.055	0.361	0.781	
BAT	Slc25a25	0.689	0.064	0.358	
	Ucp1	0.192	0.932	0.645	
	Cidea	0.087	0.160	0.101	
	Pgcla	0.138	0.960	0.050	
	Ucp2	0.847	0.012	0.414	
	Ucp3	0.603	0.679	0.278	

119 fed with ketogenic diet or normal diet after sciatic denervation or sham-operation.

Supplemental Table 4. Results of two-way ANOVA of gene expression profiles in mice

	Nr1d1	0.504	0.044^{*}	0.751
WAT	Slc25a25	0.969	0.160	0.292
	Ucp1	0.317	0.022	0.295
	Cidea	0.297	0.043*	0.554
	Pgcla	0.066	0.077	0.811

120 *Significantly different by ANOVA, but not in post-hoc analysis.

	Normal diet	Ketogenic diet
ZT	р	р
0	0.954	0.152
1	0.537	0.511
2	0.921	0.769
3	0.770	0.457
4	0.510	0.940
5	0.403	0.620
6	0.210	0.877
7	0.417	0.933
8	0.826	0.739
9	0.464	0.479
10	0.748	0.279
11	0.685	0.135
12	0.499	0.050
13	0.883	0.020
14	0.402	0.037

122 Supplemental Table 5. Results of Student's *t*-test of body temperature at corresponding

123 **ZT.**

15	0.424	0.145	124
16	0.166	0.044	
17	0.395	0.072	
18	0.250	0.206	
19	0.166	0.228	
20	0.382	0.332	
21	0.251	0.195	
22	0.404	0.156	
23	0.739	0.135	

Day	р
1	0.027
2	0.851
3	0.633
4	0.194
5*	0.050
6	0.998
7	0.090
8	0.409
9	0.031
10	0.256
11	0.320
12	0.668
13	0.739
14	0.461
15^{\dagger}	0.616
16	0.100

experimental period.

127 Supplemental Table 6. Results of Student's *t*-test of peak body temperature during

-18-

17	0.786
18	0.081
19	0.026
20	0.085
21	0.014
22	0.038
23	0.086
24	0.170
25	0.020
26	0.009
27	0.004
28	< 0.001

^{*}Day of denervation or sham-operation; [†]First day of ketogenic diet.

131 Supplemental Table 7. Results of Student's *t*-test of mRNA expression in skeletal muscle

	Gene	р
	Slc25a25	0.030
	Sln	< 0.001
	Pgcla	0.212
	Ucp3	0.610
133		
134		

132 of adult and aged mice.

135 Supplemental Table 8. Results of Student's *t*-test of mRNA expression in skeletal

Gene	ZT	р
Slc25a25	2	0.195
	6	0.544
	10	0.012
	14	0.280
	18	0.107
	22	0.334
<i>Ucp3</i>	2	0.568
	6	0.935
	10	0.246
	14	0.194
	18	0.860
	22	0.150

136 muscles of mice housed with or without running wheel.

137

		Sham-operated	Denervated
2	ZT	р	р
(0	0.004	0.003
	1	0.015	0.002
	2	0.010	0.012
	3	0.006	0.004
2	4	< 0.001	0.001
1	5	0.009	0.001
(6	0.007	0.001
-	7	0.062	0.045
8	8	0.383	0.256
ļ	9	0.510	0.306
-	10	0.735	0.420
-	11	0.769	0.438
-	12	0.201	0.011
-	13	0.010	< 0.001
	14	0.003	< 0.001

139 Supplemental Table 9. Results of Student's *t*-test of body temperature at corresponding

140 **ZT.**

15	0.002	< 0.001
16	0.001	< 0.001
17	0.005	< 0.001
18	0.002	< 0.001
19	0.006	< 0.001
20	0.001	< 0.001
21	0.001	< 0.001
22	0.001	< 0.001
23	0.001	< 0.001

143 Supplemental Table 10. Results of Student's *t*-test of Slc25a25 mRNA expression in mice

Tissue	ZT	р
Skeletal muscle	2	0.237
	8	0.009
	14	0.747
	22	0.025
Liver	2	0.100
	8	< 0.001
	14	0.004
	22	0.104
WAT	2	0.028
	8	0.047
	14	0.027
	22	< 0.001

144 with time-imposed restricted feeding.

145

147 **References**

148	1	Yasumoto, Y. et al. Short-term feeding at the wrong time is sufficient to
149		desynchronize peripheral clocks and induce obesity with hyperphagia, physical
150		inactivity and metabolic disorders in mice. Metabolism 65, 714-727 (2016).