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Abstract: This paper presents the development of safety driving support system using 3 onboard cameras. One
camera monitors the driver to determine the driver ’s current gaze and the other is a front camera that detects
pedestrians, running lane and vehicles in front. The rear camera detects pedestrians and approaching vehicles.
The pedestrians and vehicles are detected using a specially trained HOG/Adaboost system. Lane detections uses
edge detection and RANSAC. Information from the 3 cameras is then used to determine whether a situation is
dangerous enough to warrant warning the driver. We have conducted experiments and the results confirm that this
system has the potential to support automatic driving
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1. Introduction

In recent years, the number of occurrences of traffic ac-
cidents in Japan is decreasing due to progress and appli-
cation of intelligent transportation systems [1]. However,
more than 500,000 traffic accidents still occur each year,
and the number of traffic accident deaths since 2005 has
been steadily increasing to over 4,000 people every year.
Moreover, the number of occurrences of traffic accidents by
violation of laws and regulations by drivers (first parties)
remains greater than that of mopeds. Of the causes, safety
non-confirmation accounts for about 30.4%, inattentiveness
operation about 16.7%, and vigorous and unconsciousness
about 11.5%. These 3 violations account for over 58% of
total accident causes. It can be confirmed that the causes
of those accidents are the following law violations; uncon-
firmed safety, negligence, erroneous confirmation of safety,
etc. Therefore, driver’s carelessness is a main cause. More-
over, various kinds of road conditions occur due to road sit-
uations, for example, changing of lanes, vehicles in front
and behind, intersections, sidewalks, etc. It is therefore also
paramount to grasp the numerous situations during driving
and to confirm the safety.

Several driver support systems have already been pro-
posed under the Advanced Safety Vehicle (ASV) technol-
ogy program. These include the LiDAR [2] and Mobileye
[3]. The LIDAR system uses an infrared camera attached on
the top of the vehicle. It can capture a surround image and
calculate distance to objects. However, its drawbacks in-
clude difficulty in installation and high cost. The mobileye
system uses one front dashboard camera to capture the dis-
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Figure 1: Sobel operator

tance to objects in front of the vehicle. Although it is easy
to install and inexpensive, its range of operation is narrow
and therefore, not very effective for driver support.

In this paper, we propose a system similar to Mobileye
but set up three cameras inside the vehicle to capture the
front, the back, and the driver ’s face, and propose a more
effective driving support system. The system uses HOG fea-
tures and Adaboost for person and vehicle detection, detects
driving lanes, driver features like nostril and pupils. This in-
formation is combined to design the driver support system.

The system first detects the lanes from the image acquired
from the front and rear cameras. Subsequently, objects such
as people and vehicles are detected using Adaboost and
HOG feature quantities, and the lane of the host vehicle is
also determined. We then detect the nostrils and pupils from
the image acquired from the internal camera and use the de-
gree of separation to judge the gaze direction of the driver.
The information is used to support the driver.

The following sections will explain each part of the pro-
posed method in details. Results of experiments and discus-
sions are presented before concluding.

2. Lane Detection
2.1 Edge Extraction After image capture, as a pre-
processing step, edge detection is performed on the im-
age. There are various operators for edge detection, among
which the Sobel operator can best detect darker edges. We
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(a) Original image (b) Edge detection

Figure 2: Edge detection result

choose this filter in this work. However, white and orange
lines existing on the road surface are thin, and there are
cases where it is difficult to capture the color change within
the asphalt surface. In addition, from the brightened image,
the orange line has a feature that makes it difficult to capture
the color change as compared with the white line. For this
reason, edge detection is performed separately using the So-
bel operator from the R, G, and B channels of the acquired
image, and those having the highest edge intensity among
them are detected as edges.

Fortunately, the white lines used to determine the driving
lane region exists only on the road surface. Therefore, by
limiting the range of edge detection, we aim to eliminate
noise that can be detected from artifacts such as buildings
along side roads and pedestrian bridges that are likely to
have linear edges. This step can greatly shorten the overall
processing time. Consequently, the range to be detected is
only the one to two-thirds area from the top of the captured
region surroundings the vehicle. Figure 1 shows the Sobel
operator, and Fig. 2 shows the edge detection result.

From the edge detection images, we remove noisy edges
for white line detection. There are many edges other than
the white lines, such as small edges existing on the road
surface, white line edges of the adjacent lane, edges such
as in front and oncoming cars, and curbstones on the de-
tected edges. We aim to improve the accuracy of detection
of white lines and the detection speed by eliminating these
edges as noise. One useful feature of the small edges exist-
ing on the road surface is small edge strength. Therefore,
when the strength of any edge is 80 or less, it is removed
as noise. However, the white line edges of the adjacent
lane, the edges of the front and the oncoming car, the curb
stone, etc. will still remain. Fortunately, the edges other
than the white line of the driving lane has a characteristic
that the gradient direction has a value close to 270 degrees,
so noise can also be reduced using the gradient direction.
Only the edges that satisfy the condition shown in expres-
sions (1) and (2) are used for white line detection with |∇ f |
and θ representing the edge strength and gradient direction
respectively. Figure 3 shows the edge detection image with
noise removed.

|∇ f | ≥ 80 (1)

{
200 < θ < 260
300 < θ < 360 (2)

(a) Edge detection (b) Noise removal

Figure 3: Noise removal result

(a) Edge detection (b) Line detection result

Figure 4: Line detection result

2.2 White line detection We aim to detect two
straight lines from the detected edges. RANSAC [4]
method is applied for straight line detection. RANSAC is
a robust model generation method based on random sam-
pling. Its concrete procedures are described below.

1. Randomly sample the data on the edge.

2. Select two points randomly from the sampled data.

3. Find the parameters of the straight line passing through
the two selected points.

4. Vote on the number of data that exists within the fixed
threshold of the obtained straight line.

5. Save the number of voted data and the two selected
points.

6. Repeat from step 2.

This operation is performed 1000 times to detect two
straight lines with positive and negative slopes and having
largest data. Figure 4 shows an example of straight lines
detection using RANSAC.

Since there are cases where the two straight lines detected
are not white lines, white line judgment is performed on
those straight lines. When capturing the image using the
front and the rear of the vehicle from the on-board camera,
the white line is often straight. Therefore, the intersection
of the straight lines on the white line exists near the van-
ishing point in the center of the image. In addition, when a
correct white line cannot be detected, the angle formed by
the straight line on the white line has a value close to 180 °
or 0 ° . Therefore, the white line is detected using the angle
formed by the intersection point of the straight line on the
white line.

Let the area sandwiched by white lines be the traffic lane
area, the left side of the white line detected on the left side
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Figure 5: Lane area

of the image will be the left lane area, and the right side of
the white line detected on the right side of the image will be
the right lane area. Let the intersection point of the straight
line on the white line be Lx, Ly and the angle formed be Lθ.
If conditional expressions 3 and 4 are satisfied, the detected
straight line will be a white line.{

240 < Lx < 420
180 < Ly < 310 (3)

10 < Lθ < 110 (4)

2.3 Dotted Line determination In order to classify
the lane that the host vehicle is on, the detected white and
orange lines are classified as straight or dotted. Lane clas-
sification is performed by a combination of a straight white
and dotted lines. If the left white line is straight and the
right white line is dotted, the running lane will be the left-
most lane. Also, if the left white line is a dotted line and
the left white line is a straight line, the running lane is the
rightmost lane. If both are dotted or straight lines, it is the
central lane.

For the determination of the dotted line and the straight
line, the existence ratio E of the number of pixels of the
edge present on the detected white line is used. Let the
distance from the point of intersection of the straight lines
to the edge of the vehicle be D and the number of pixels of
the edge on the detected white line be X. The existence rate
E of the white line is calculated by the formula 5. When the
existence ratio E of the white line is 0.3 or more, the line is
straight, otherwise it is a dotted (Fig. 6).

E =
X
D

(5)

3. People and vehicle object detection
3.1 HOG Feature Value In this work, images are
captured using a USB camera mounted on the vehicle.
Therefore, it is difficult to accurately detect vehicles using
background difference, etc. Hence, the HOG feature quan-
tity is used to capture the characteristics of the vehicle.

We introduce HOG feature quantities to detect vehicles
from the captured images [5]. In order to obtain the HOG
feature amount, we extract the HOG feature quantity using
a cell size set as 8 × 8 pixels, the size of the block as 3 ×
3 cells, and the histogram of the edge to be created hav-
ing nine bins with 20 ° increments. Equations (6) and (7)

Figure 6: White line existence rate

Figure 7: Original image

are used for the gradient direction and strength calculation
respectively. Equation 9 is used to normalize feature quan-
tities for a certain nth block.

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (6)

θ(x, y) = tan−1 fx(x, y)
fy(x,Y)

(7)

{
fx(x, y) = L(x + 1, y) − L(x − 1, y)
fy(x, y) = L(x, y + 1) − L(x, y − 1) (8)


m(x, y) : Gradientstrength
θ(x, y) : Gradientdirection
L(x, y) : Luminancevalue

v(n) =
v(n)√(∑Q·N

k=1 v(k)2
)
+ 1

(9)


v(n) : Featurevalue
Q : Numberofcellsinblock
N : Gradientdirectionnumber

Figure 8 shows the result of calculating and converting
the HOG feature amount for the image shown in Fig. 7.

3.2 Adaboost The HOG feature quantity is learned
using Adaboost [6]. Adaboost is a machine learning algo-
rithm that can learn with less data. It calculates the sum
of the product of the output of weak classifiers hi allocated
to the cell in the search window and the reliability αi and
discriminate between human and non-human in the input
image. The expression of the weak classifier hi is shown in
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Figure 8: HOG

expression 10. The expression of the reliability αi is shown
in the expression 11.

hi(y, x) =
{

1 : hog(y, x) ≥ th
−1 : hog(y, x) < th (10)

th : Maximumseparationthreshold
hog(y, x) : TheHOGfeatureamount (y, x) oftheimagecell

αi = loge

(
1 − ei

ei

)
· 0.5 (11)

ei : Incorrectanswerrateofweakclassifiers

The weight of the learning sample is updated by the cal-
culated reliability, class label, and response of the weak
classifier. The formula for updating the weight is shown
in Equation 12. The denominator of Eq. 12 is the sum of
the weights of the samples. We also normalize the weights.

Dt+1(i) =
Dt(i) exp (−αtytht(i))∑N

i=1 Dt(i) exp (−αtytht(i))
(12)

4. Driving lane determination
We determine the traffic lanes of detected vehicles and lo-
cation of people using information acquired by lane detec-
tion, human and vehicle detection. In the case where the
midpoint of the lower side of the circumscribed quadran-
gle of the detected person or vehicle exists in the traveling
lane area, it is assumed that the front object is the preceding
vehicle, and if it is the rear image, the following vehicle.

5. Nostril and pupil detection
In this work, the position and size of the face greatly differs
for each subject depending on the vehicle, the sitting height,
the position of the chair, etc. Therefore, parameters of the
face search region are set for each subject. The face search
area is set so that its upper end is above the eyebrow, the
lower end is near the jaw and the horizontal width is about
3 times the eye width in a front facing state.

For the purpose of speeding up the processing performed
in this part, processing is performed on the luminance image
already obtained. Next, in order to improve the accuracy
of nostril and pupil detection and to reduce the processing
speed, the detection region is limited. Features of nostrils

(a) Original image (b) Search area extraction result

Figure 9: Nostril Search Area

Figure 10: Nostril detection filter

Figure 11: Eye detection filter

and pupils are characterized by low brightness values re-
gardless of changes in sunshine. For this reason, we use
only the area of the face search area whose luminance value
is 70 or less. Figure 9 shows the nostril search area.

Next, detection of the nostrils or pupils is performed us-
ing the degree of separation. In the interior of the vehicle,
the brightness fluctuates due to the influence of sunshine
and it is difficult to extract skin color. For this reason, sight
line classification is carried out using a region such as a nos-
tril or pupil where there is little change in color due to varia-
tion in brightness. When detecting the nostrils, detection is
performed using the nostril detection filter in Fig. 10. When
detecting the pupil, use the pupil detection filter in Fig. 11.
The pupil detection area is from the midpoint of the nostril
up to a fifth of the height of the face search area.

Calculation of the degree of separation is performed us-
ing the outer and the inner regions both in the nostrils and
pupils. At first we find the degree of separation between the
red and the blue regions. The obtained degree of separa-
tion is calculated as a normalized value and is close to the
maximum value 1.0 when the two regions are completely
separated. On the other hand, when it is not separated, it
approaches the minimum value 0.0. Equation 13 shows the
equation for obtaining the degree of separation µ.

η =
σ2

b

σ2
T

(13)

σ2
b = n1(m1 − m)2 + n2(m2 − m)2

σ2
T =

∑
x∈C

(x − m)2
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Figure 12: W

Figure 13: Z

Figure 14: X, Y

For the nostril detection, two maximum values of the de-
gree of separation calculated from the nostril search region
are used. However, there are cases where the detected nos-
trils are double-counted by selecting two maximum values.
Therefore, when the maximum value of the degree of sepa-
ration is detected, nostrils are not detected from the region
less than 5 pixels in radius.

6. Gaze direction determination
In this work, we set the position and size of face in advance
and use it to classify the line of sight. Let W be the width of
the face, Y the distance in the vertical direction from the co-
ordinates obtained by shifting from the nostril horizontally
and vertically by one-sixth of W to the pupil, and X the dis-
tance in the lateral direction. Figures 12, 13, and 14 shows
W,Z, X, and Y .

Eye direction widths θx, and θy are calculated using ex-
pression (14). Let Z be the distance in the horizontal di-
rection from the center of the face area to the midpoint of
the nostril. The orientation θ of the face in the horizontal
direction is calculated by the formula (15).

θy = arctan
2Y
W
, θx = arctan

2X
W

(14)

θ = arctan
Z
W

(15)

The gaze direction is classified in eight directions. If the
face angle is large to the left or right, it is judged that the
subject is looking at the left or the right window, and if not,
looking at the front. Further, when the pupil is facing down-
ward, it is determined that the right or the left mirror is being
viewed. When facing the front and the pupil is upward, it
is judged that the subject is looking at the room mirror. If
it is judged that the subject is looking at the front and if the
pupil is facing the right or left, the subject is watching the
right lane or sidewalk or the left lane.

We classify our eyes using conditional expressions (16),
and (17).

Roommirror : 75 < θ < 110, 30 < θx < 70, 85, θy
Rightmirror : 90 < θ, 101 < θx, 102 < θy
Le f tmirror : θ < 80, θx < 70, 102 < θy
Front : 80 < θ < 130

(16)


Le f tLane : 75 < θx < 90, θy > 94
DrivingLane : 90 < θx < 100, θy > 94
RightLane : 100 < θx < 110, θy > 94

(17)

7. Dangerous object determination
We determine the danger posed by an object captured by the
cameras using the distance between the detected object and
the host vehicle.

7.1 Approach determination In this section, we will
describe approach determination of nearby vehicles and
people to establish the objects that the driver must pay at-
tention to while driving.

We estimate the distance (in pixels) change between the
host vehicle and the surrounding vehicles by measuring the
distance between them. In the case of a vehicle on the right
or left adjacent lane, the distance from the nearest point on
the white line detected from the center of gravity of the de-
tected vehicle to the lower end of the image along the white
line is the distance to the vehicle. In the case of the preced-
ing vehicle existing in the driving lane, the distance from
the center of gravity of the vehicle to the lower end of the
image is the distance to the vehicle.

The distance acquisition of the vehicle is performed in
every frame, and when the acquired distance decreases from
the previous frame, the approach count of the vehicle is
decremented by one. Also, if not approaching, increment
the approach count by +1. When the approaching count of
the vehicle falls below −3, it is determined that the vehicle
is approaching.

7.2 Warning judgment The monitoring and warning
determination are made to judge whether or not the driver
is performing safety confirmation using the information on
the approaching determination result of the gaze direction.

First, if the driver is not gazing at the vehicle when ap-
proaching is determined for the vehicle detected on the left
or the right lane, it is judged that the driver is not performing
safety confirmation and the warning is sounded. In addition,
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for vehicles or people detected on the driving lane, when the
distance to the detected object is less than 240 pixels for a
person, a warning is sounded because there is a possibility
of a collision.

8. Results and Discussions

8.1 Data capture environment A rear facing camera
in the rear of the vehicle, a front facing camera in front of
the driver and a camera oriented to face the driver on the
dashboard are installed to capture the data required.

The data set used for HOG vehicle and human detec-
tion is from INRIA Person Dataset [7] and CBCL Pedes-
trian Database [8] respectively. The driver-facing camera
is oriented such that the driver ’s face is at the center of
the frame. Also, cameras capturing the front and rear of
the vehicle are installed so to shoot above the position of
approximately 235 pixels. The image size is 640 × 480.
Three cameras with one laptop are used. Same numbers are
assigned to images taken at the same time and saved. Pro-
cessing is performed on the saved three sets of consecutive
number images. Shooting time was done during the day.

8.2 Experiment result accuracy This section shows
the accuracy of the experiments. Table 1 shows lane deter-
mination results, Table 2 shows gaze judgment, and Table 3
shows dangerous object judgment.

Table 1: Lane determination

Left lane Driving Right lane all

Scene1 - 57.2% 89.4% 73.3%
Scene2 97.4% - - 97.4%

All 97.4% 57.2% 89.4% 91.3%

Table 2: Gaze determination

All

Subject A 86.9%
Subject B 79.3%

All 82.3%

Table 3: Dangerous object determination

Warning Approach All

Scene 1 70.0% 72.7% 71.3%
Scene 2 16.6% 63.1% 39.9%
Scene 3 72.7% 55.9% 64.3%
Scene 4 54.5% 69.2% 61.9%
Scene 5 - 54.9% 54.9%

All 53.6% 63.2% 58.4%

8.3 Lane determination In scene 1, processing was
performed on a scene in which the left white line is straight
and the right white line is a dotted. In scene 1, it was judged
that the driving lane was the left end for 380 frames out of

Figure 15: Right lane determination image

Figure 16: Room mirror decision image

390 frames processed, and it was possible to obtain a highly
accurate result, so it can be said that generally good results
were obtained.

In scene 2, processing was carried out for scenes where
the white line on the left side is dotted, the white line on
the right side runs on a straight lane, and the white lines on
both sides are straight. In scene 2, among the 238 frames
processed, the traveling lane was judged to be the center for
71 frames out of the 124 frames for the center lane when
the left and right white lines were straight. In addition, the
driving lane was judged to be the right end for 102 frames
out of the 114. Generally good results were obtained. The
cause of erroneously determining of the central lane as the
rightmost lane is that the white line on the left was hidden
and the white line existence ratio decreased as it approached
the preceding vehicle at the time of signal change wait. In
order to improve the accuracy, it is necessary to determine
whether or not the white line is occluded by a vehicle, and
to add exception processing accordingly.

The right lane determination result is shown in Fig. 15.

8.4 Fixation judgment In gaze determination exper-
iments, experiments were conducted on two subjects, A and
B.

For subject A, we handled the scene where the driver
gazes to the front, right front, right, driving mirror and right
side mirror. For subject A, the driver’s gaze direction was
judged to be frontal for 930 frames out of the 1225 frames
(for which the driver was facing the front for 1002 frames).
In addition, the driver’s gaze direction was judged to be
right-front for 64 out of the 74 frames. Also, the driver’s
gaze direction of the driver was judged to be the right side

IIAE Journal, Vol.6, No.1, 2018



Advanced Safety Vehicle (ASV) Technology Driver Support System Monitor using Three Onboard Camera 27

mirror for 26 out of 36 frames. The gaze direction of the
driver was rightward for 97 out of 102 frames. Moreover, it
can be said that generally good results were obtained be-
cause the driver’s gaze direction was determined to be a
room mirror at 9 out of 10 frames.

For subject B, we handled the scene where the driver
gazed at the front, the driving mirror, the right side mir-
ror, and the left side mirror. The driver’s gaze direction was
determined to be frontal for 180 frames of 194 frames. In
addition, the driver’s gaze direction was judged to be the
driving mirror for 10 of the 16 frames. In addition, the
driver’s gaze direction was judged to be the right side mir-
ror for 10 of the 10 frames. Also, the driver’s gaze direction
was judged to be the left side mirror for 7 of the 10. In addi-
tion, the driver’s gaze direction was judged to be rightward
for 5 of 7 frames. Good results were generally obtained for
the front and right mirrors. There was a case that the gaze
direction was erroneously determined as the front when the
driver was looking at the room mirror. It is thought that
erroneous judgment occurred because the feature looking
at the front mirror is similar to the room mirror, the angle
calculation method of the current face in the horizontal di-
rection and the angle calculation of the eye. Therefore, it is
necessary to examine features that are more likely to cap-
ture changes in eye direction.

Fig. 16 shows the room mirror determination result.

8.5 Dangerous object determination In scene 1,
processing was performed on the frames that include a
pedestrian. It was possible for the driver to approach the
pedestrian for 8 of the 11 frames. In addition, the driver
was warned about the pedestrian in 7 of 10 frames. Errors
occurred when detecting the person. It can be considered
that a detection method corresponding to a change in size is
necessary.

In scene 2, processing was carried out for a scene with an
overtaking car and a passing bicycle. For the bicycle, the
driver gazed at it for 9 of the 13 frames. Also, we were able
to warn of the bicycle 6 of the 11.

Also, we made a decision on the oncoming vehicle. The
driver gazed at the oncoming vehicle for 7 of the 23 frames.
Also, it was not possible to make any judgment for 14 of 17
frames after passing the oncoming vehicle. It is necessary
to improve the method so that smaller and large vehicles can
be detected.

In scene 3, the vehicle being overtaken by the motorcy-
cle at the intersection was processed. An accuracy of 12
of 19 frames was achieved. Also, it was possible to de-
termine the approach of the motorcycle for 6 of 36 frames
when the driver focused on the motorcycle. We could not
detect the motorcycle because the approach determination
could not be made after being overtaken. It seems that the
detection failed because the side of the motorcycle was re-
flected. In order to cope with it, it is necessary to create a
learning image corresponding to the orientation of a person
or a motorcycle.

In scene 4, processing was carried out for a scene that
included an oncoming vehicle on a two-lane road. An ac-

Figure 17: Warning judgment

curacy of 28 of 51 was achieved. In many cases, approach
determination cannot be made when detecting an oncoming
vehicle at a short distance. Although the vehicle is moving
towards the lower end on the image, the area where the vehi-
cle is detected does not follow the movement of the vehicle
and the upper part of the vehicle is detect. It is necessary to
improve detection of vehicle movement.

In scene 5, processing was performed for a scene when
entering an intersection in front of an opposite car and turn-
ing right. An accuracy of 248 of 443 frames was achieved.
In addition, when the driver was looking at the right, it was
possible to trigger a warning of the oncoming vehicle ap-
proaching for 16 of the 22 frames. Also, after the oncoming
car passed, it was possible to make a decision for 127 of
194 frames away from the vehicle. The warning system ob-
tained generally good results.

A warning determination result is shown in Fig. 17.

9. Conclusion
In this paper, we proposed driver support system using 3 on
board cameras. We capture the driver, the vehicle in front
and behind using the 3 cameras.

After edge detection, the RANSAC method is used to ex-
tract straight lines. We detect the presence of a person of
vehicle using HOG feature quantity and Adaboost. We also
monitored the driver by detecting nostrils and pupils and
judging gaze direction.

Experimental results confirmed that we can detect people
and vehicles, estimate gaze direction, and detect hazardous
objects using USB cameras during the day.

In future, we need to deal with dark scenes such as
nighttime, tunnels, etc. In addition, when the driver wears
glasses or sunglasses, it is necessary to improve the detec-
tion method because of reflection of light by the lens. More-
over, the detection of the pupil cannot be performed when
the lens frame and pupil overlap. Finally, in order to put
the system into practical use, it is necessary to improve pro-
cessing speed using GPU or multithread processing.
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