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Abstract 

Captan, a phthalimide fungicide, is considered to be relatively nontoxic to mammals. There is a 

possibility that captan affects membrane and cellular parameters of mammalian cells, resulting 

in adverse effects, because of high residue levels. To test the possibility, we examined the 

effects of captan on rat thymic lymphocytes using flow-cytometry with appropriate fluorescent 

probes. Treatment with 10 and 30 µM captan induced apoptotic and necrotic cell death. Before 

cell death occurred, captan elevated the intracellular concentrations of Ca2+ and Zn2+ and 

decreased the concentration of cellular thiol compounds. These captan-induced phenomena are 

shown to cause cell death and are similar to those caused by oxidative stress. Captan also 

elevated the cytotoxicity of hydrogen peroxide. Results indicate that 10 and 30 µM captan cause 

cytotoxic effects on mammalian cells. Despite no report on the significant environmental 

toxicity hazard of captan in humans, it may exhibit adverse effects, described above, on wild 

organisms.  
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Highlights 

• Captan at sublethal levels induces adverse effects on rat lymphocytes. 

• Captan raises intracellular Ca2+ level by increasing membrane Ca2+ permeability. 

• Captan raises intracellular Zn2+ level by increasing intracellular Zn2+ release. 

• Captan raises and lowers cellular thiol content as captan concentration increases. 

• Captan increases cell vulnerability to oxidative stress. 
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1. Introduction 

     Captan is a broad-spectrum phthalimide fungicide used to control fungal diseases in 

grapes and orchards (DeMarsay, 2012; Abbott and Beckerman, 2018). Annual agricultural use 

of captan in the USA was estimated to be about 3 million pounds during the last decade 

(Pesticide National Synthesis Project, US Geological Survey, 2018). Its main antifungal 

mechanism is to irreversibly react with endogenous substances containing thiol groups, 

resulting in an overall reduction of several fungal enzymatic activities (Arce et al., 2010; 

Lukens, 2013). This mechanism may be involved in the toxicity of captan against other 

organisms including mammals because the hepatotoxicity of captan on rats appears to be 

reduced by prior administration of glutathione, a sulfhydryl-containing compound (Dalvi, 1988). 

Captan increased cellular parameters for oxidative damages in isolated rat hepatocytes (Suzuki 

et al., 2004). It is therefore thought that the reduction of nonprotein thiols by captan augments 

the oxidative stress in nontarget microorganisms and mammalian cells. Captan induces necrotic 

and apoptotic cell death in nontarget microorganisms (Scariot et al., 2017). If captan causes 

strong oxidative stress in non-target organisms, it would induce various cellular actions that are 

linked with cell death. Excessive elevations of intracellular Ca2+ and Zn2+ levels are associated 

with cell death caused by cytotoxic chemicals (Kawanai et al., 2009; Hashimoto et al., 2009; 

Bhosale et al., 2015; Slepchenko et al., 2017). Since the homeostasis of intracellular Zn2+ is 

partly controlled by cellular thiols that complex with Zn2+ (Maret, 1994; Kocyła et al., 2018), it 

is possible that captan also affects intracellular Zn2+ levels. However, there is limited 

information regarding the captan-induced changes in intracellular Ca2+ and Zn2+ concentrations. 

Thus, we examined the effects of captan on intracellular Ca2+ and Zn2+ concentrations of rat 
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thymic lymphocytes using a flow cytometric technique with appropriate fluorescent probes. 

This study also provides a few insights on the impact of captan as an environmental pollutant on 

human and wild mammals because if captan exhibits adverse effects on thymic lymphocytes, an 

immunotoxic effect may result in neonates and adolescents, as the thymus is most active during 

those periods in mammalian lives. 

 

2. Materials and methods 

2.1. Chemicals 

     Phthalimide fungicides (captan, captafol, and folpet) with > 99.5 % purities were 

purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Fluorescent probes used to 

measure various cellular parameters and specific reagents such as Zn2+ chelators are listed in 

Table 1. Other chemical reagents were obtained from Wako Pure Chemicals (Osaka, Japan) and 

Dojin Chemicals (Kumamoto, Japan). 

(Table 1 near here) 

2.2. Cell preparation 

     The use of (T29-54) experimental animals was approved by the Animal Experiment 

Committee of Tokushima University (Tokushima, Japan). The thymus glands were dissected 

from 12 thiopental-anesthetized male Wistar rats (6–12 weeks, Japan Charles River, Shizuoka, 

Japan), razor-sliced, triturated in Tyrode's solution at 1–4ºC, and buffered with HEPES to obtain 

a single-cell suspension (Chikahisa et al., 1996). The suspension was passed through a 50 µm 

filter before use in the experiments. The cells were incubated at 36–37ºC for at least 1 h before 

each experiment because the cells were isolated under cold conditions. 
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2.3. Experimental procedures and cytometric measurements 

     All experiments using the cell suspension were carried out at 36–37ºC. The phthalimide 

fungicides, dissolved in dimethyl sulfoxide (1–30 mM), were added to the cell suspension to 

achieve various final concentrations (1–30 µM); 300 µM H2O2 was used to induce oxidative 

stress in the cells. Dimethyl sulfoxide as a solvent at 0.1–0.3% was found not to affect the 

measurement of cellular parameters including probe fluorescence and cell viability of rat thymic 

lymphocytes under the present experimental conditions. 

     Fluorescence analysis was performed using a flow cytometer (CytoACE-150; JASCO, 

Tokyo, Japan with the JASCO software, Version 3.06). Cell lethality was assessed by adding 5 

µM propidium iodide (PI). The cells exhibiting PI fluorescence were assumed to be dead. 

Exposure of phosphatidylserine on the external surface of cell membrane was determined by 

FITC fluorescence after cell treatment with annexin V-FITC (10 µL/mL) and propidium iodide 

(5 µM) for 0.5 h (Koopman et al., 1994). To determine the changes in the intracellular 

concentrations of nonprotein thiols ([NPT]i), the cells were treated with 500 nM 5-CMF-DA for 

0.5 h before the measurement of 5-CMF fluorescence (Chikahisa et al., 1996). Fluo-3-AM and 

FluoZin-3-AM were used to monitor the changes in the intracellular concentrations of Ca2+ 

([Ca2+]i) (Kao et al., 1996) and Zn2+ ([Zn2+]i) (Gee et al., 2002), respectively. The cells were 

treated with 1 µM Fluo-3-AM or FluoZin-3-AM for 1 h before fluorescence measurement. To 

determine the cellular concentration of superoxide anions ([O2
-]i), the cells were treated with 5 

µM BES-SO-AM for 1 h before measuring BES-SO fluorescence (Maeda et al., 2005). 

Excitation and emission wavelengths for the fluorescent probes are also listed in Table 1. 

2.4. Statistical analysis 
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     The data were statistically analyzed using Tukey's multivariate analysis software (Excel 

Tokei, SSRI, Tokyo, Japan). P < 0.05 was considered significant. Experimental values are 

described as mean ± standard deviation (SD) of four samples. Each experiment was performed 

twice or thrice to validate the results. 

 

3. Results 

3.1. Cytotoxic action of captan 

    The cells were incubated with 1, 3, 10, and 30 µM captan for 3 h to assess the cytotoxicity 

(the population of cells exhibiting propidium fluorescence). As shown in the cytograms 

(forward scatter versus propidium fluorescence) of Figure 1A, the treatment with 30 µM captan 

greatly increased the population of cells with propidium fluorescence (dead cells). Figure 1B 

shows the concentration-dependent change in the percentage of dead cell population (cell 

lethality) induced by 1–30 µM captan. A significant increase in cell lethality was observed in 

cells treated with 10 and 30 µM captan. The forward scatter of propidium iodide-negative and 

-positive cells (living and dead cells) was reduced by 30 µM captan (Figure 1A and 1B), 

indicating that the cytotoxicity of 30 µM captan was associated with cell shrinkage. The side 

scatter, which reflects the cell density, of cells without propidium fluorescence was increased by 

the treatment with 10 and 30 µM captan (Figure 1C). 

(Figure 1 near here) 

3.2. Process of cell death induced by captan 

     The cells were treated with captan for 1 h and then the cells were further incubated with 

propidium iodide and annexin V-FITC for 0.5 h to assess the process of cell death. As shown in 
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Figure 2A, the cell treatment with 30 µM captan, but not with 10 µM, significantly increased 

the population of cells without propidium fluorescence and with FITC fluorescence (area A of 

cytogram, annexin V-positive living cells).. The population of cells exhibiting propidium 

fluorescence (areas P and AP, dead cells) was slightly increased by 30 µM captan. 

Captan-induced changes in the population of cells classified by propidium iodide and annexin 

V-FITC are summarized in Figure 2 B. 

(Figure 2 near here) 

3.3. Captan-induced increase in [Ca2+]i 

     The cells preloaded with Fluo-3-AM were treated with 1–30 µM captan for 1 h to assess 

the captan-induced change in [Ca2+]i before cell death. As shown in Figure 3A, captan increased 

the intensity of Fluo-3 fluorescence in a concentration-dependent manner. Significant elevation 

of [Ca2+]i was observed in cells treated with 10–30 µM captan. Subsequent examination of the 

effect of captan under external Ca2+-free conditions to reveal the source of Ca2+ that contribute 

to captan-induced elevation of [Ca2+]i showed that captan failed to increase the intensity of 

Fluo-3 fluorescence (Figure 3B), indicating its dependence on external Ca2+. 

(Figure 3 near here) 

3.4. Captan-induced increase in [Zn2+]i 

     The effects of 1–30 µM captan were examined on the cells that were preloaded with 

FluoZin-3-AM to assess the captan-induced change in [Zn2+]i. Figure 4A shows that 10–30 µM 

captan increased the intensity of FluoZin-3 fluorescence in a concentration-dependent manner, 

indicating the elevation of [Zn2+]i. To determine the source of Zn2+ that contributes to the 

captan-induced elevation of [Zn2+]i, the effect of captan was examined under external Zn2+-free 
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conditions that was prepared with DTPA, a chelator for external Zn2+. Captan at 10–30 µM 

similarly increased the intensity of FluoZin-3 fluorescence under external Zn2+-free conditions, 

indicating the independence from external Zn2+ (Figure 2B). Furthermore, a large amount of 

captan-induced FluoZin-3 fluorescence disappeared in the cells treated with TPEN, a 

intracellular Zn2+ chelator (Figure 4B). 

(Figure 4 near here) 

3.5. Captan-induced changes in oxidative stress 

     The effects of 1–30 µM phthalimide fungicides on the [NPT]i and [O2
-]i were examined. 

The cells were treated with captan, captafol, or folpet for 1 h and then the cells were incubated 

with 5-CMF-DA for 0.5 h to assess the captan-induced change in [NPT]i in continued presence 

of respective fungicide. Total time of treatment with fungicide was 1.5 h. Figure 5A shows the 

decreases in 5-CMF fluorescence induced by 10 and 30 µM captan, 30 µM captafol, and 30 µM 

folpet, indicating significant reductions of [NPT]i. When the 5-CMF fluorescence was 

measured only from living cells (the cells without PI fluorescence), the cell lethalities were 3.6 

± 0.2 % (mean ± SD of four samples) for control, 5.6 ± 0.6 % for 30 µM captan, 7.8 ± 0.3 % for 

30 µM captafol, and 5.0 ± 0.5 % for 30 µM folpet. Such slight increases in cell lethalities were 

statistically significant (P < 0.01).  

     The effects of 10 and 30 µM captan were also examined on the cells that were preloaded 

with BES-SO-AM to assess the captan-induced change in [O2
-]i. The treatment of cells with 

captan for 1.5 h significantly increased the intensity of BES-SO fluorescence (Figure 5B), 

indicating significant increases in [O2
-]i. 

(Figure 5 near here) 
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3.6. Captan-induced increase in cell vulnerability to oxidative stress 

     A decrease in [NPT]i and an increase in [Zn2+]i may elevate the cytotoxicity of H2O2 

(Matsui et al., 2010). As shown in Figure 6, the treatment with 3 µM captan for 3 h did not 

result in the change of the cell lethality. However, the simultaneous treatment of 3 µM captan 

and 300 µM H2O2 resulted in the elevated cytotoxicity of H2O2. In addition, 10 µM captan 

slightly increased the cell lethality (Figures 1B and 6) and greatly elevated the cytotoxicity of 

H2O2 (Figure 6).  

(Figure 6 near here) 

3.7. Effect of TPEN on the captan-induced cytotoxicity 

     TPEN significantly attenuated the H2O2-induced increase in cell lethality (Matsui et al., 

2010). Therefore, the effect of TPEN on the captan-induced cytotoxicity was also examined. 

The treatment with 30 µM captan for 3 h greatly increased the lethality (Figs. 1B and 7). In the 

presence of 10 µM TPEN, the increase in cell lethality by 30 µM captan was reduced (Fig. 7). 

Thus, Zn2+ is partly involved in the cytotoxicity of captan. 

(Figure 7 near here) 

 

4. Discussion 

4.1. Captan-induced cell death and possible reciprocal changes in the cellular parameters 

     The cell death induced by 30 µM captan was associated with a decrease in cell size (cell 

shrinkage) and an increase in cell density (Fig. 1). Large population of living cells treated with 

captan was positive for annexin V before cell death (Fig. 2). The fact that such phenomenon 

precedes captan-induced cell death suggests that the nature of captan-induced cell death is 
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apoptotic rather than necrotic (Becila et al., 2017).  

     Captan increased [Ca2+]i by increasing the membrane permeability to Ca2+ (Fig. 3) and 

[Zn2+]i by increasing the release of intracellular Zn2+ (Fig. 4). Sustained increases in both 

[Ca2+]i and [Zn2+]i may disrupt intracellular signaling because both Ca2+ and Zn2+ are 

recognized as intracellular messengers (Bagur and Hajnóczky, 2017; Chabosseau et al., 2018). 

Furthermore, abnormal increases in [Ca2+]i and [Zn2+]i are associated with oxidative stress 

(Matsui et al., 2010; Gangwar et al., 2017) and cell death (Kumari et al., 2017; Shimoji et al., 

2017; Parys and Bultynck, 2018). Captan-induced decrease in [NPT]i and increase in [O2
-]i (Fig. 

5) resulted in the augmentation of oxidative stress, which consequently increased the cell 

vulnerability to oxidative stress elicited by 300 µM H2O2 (Fig. 6). Oxidative stress elevates both 

[Ca2+]i and [Zn2+]i (Abiria et al., 2017; Furuta et al., 2017) and ZnCl2 may elevate the 

cytotoxicity of H2O2 by increasing the [Zn2+]i (Matsui et al., 2010), suggesting a reciprocal 

correlation between [Zn2+]i and oxidative stress (Matsui et al., 2010) and an inverse correlation 

between [NPT]i and [Zn2+]i (Kinazaki et al., 2009). Despite the difficulty to exactly determine 

the trigger of captan cytotoxicity and the mechanism for captan-induced potentiation of H2O2 

cytotoxicity, the present study showed a correlation between captan-induced changes in the 

cellular parameters and oxidative stress. Some results confirm the results of Suzuki et al. (2004) 

although the concentrations of captan were lower in this study. 

4.2. Toxicological implication 

     Because the in vitro concentrations of captan used in this study to induce cell death were 

higher than the urinary biomarker concentrations of captan in adults and children residing near 

agricultural land in Britain (Galea et al., 2015) and the plasma concentrations of 
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tetrahydrophthalimide (one of main metabolites of captan) in volunteers orally administered 

captan (Berthet et al., 2012), captan is considered unlikely to induce cell death in the daily lives 

of humans. However, the levels of captan residue detected in apples with no post-harvest 

preparation ranged from 0.02 mg/kg (minimum) to 3.0-5.1 mg/kg (maximum) (Rawn et al., 

2008; Lozowicka, 2015), suggesting that high concentration of captan can reach the areas where 

the apples are distributed, even though the exact concentration of captan in the residue has not 

been calculated. The fact that the concentrations of captan that induce necrotic and apoptotic 

cell death in Saccharomyces cerevisiae (Scariot et al., 2017) are similar to those in rat 

lymphocytes (Figs. 1 and 2), and the concentrations of captan that increase the [Ca2+]i and 

[Zn2+]i in rat lymphocytes were 10-30 µM (Figs. 3 and 4), indicate that captan at environmental 

levels may affect the [Ca2+]i, [Zn2+]i, and [NPT]i in wild organisms, resulting in adverse effects.  
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Figure legends 

Figure 1. Captan-induced changes in population of cells exhibiting propidium fluorescence, 

forward scatter, and side scatter of rat thymic lymphocytes. The cells were treated with captan 

for 3 h. (A) Captan-induced changes in cytogram (forward scatter intensity versus propidium 

fluorescent intensity), which was constructed with 2500 cells. (B) Captan-induced change in 

cell lethality (percentage population of propidium-stained cells). (C) Captan-induced changes in 

forward and side scatter intensities. Column and bar indicate mean and standard deviation of 

four samples, respectively. Asterisks (*, **) show significant difference (P < 0.05, 0.01) 

between the control group (CONTROL) and the captan-treated cells. 

Figure 2. Captan-induced change in population (N, A, P, and AP) of cells classified with 

propidium iodide and annexin V-FITC. The cells were treated with captan for 1 h and then the 

cells were further incubated with propidium iodide and annexin V-FITC for 0.5 h to assess the 

process of cell death. (A) Captan-induced changes in cytogram (propidium fluorescence versus 

FITC fluorescence), which was constructed with 2500 cells. N = intact living cells, A= annexin 

V-positive living cells, P = annexin V-negative dead cells, PA = annexin V-positive dead cells. 

(B) Captan-induced changes in the population described in (A). Column and bar indicate mean 

and standard deviation of four samples, respectively. Asterisks (*, **) show significant 

difference (P < 0.05, 0.01) between the control group (CONTROL) and the captan-treated cells. 

Figure 3. Captan-induced increase in the intensity of Fluo-3 fluorescence. The cells were 

treated with 1–30 µM captan for 1 h. (A) Concentration-dependent increase in the intensity 

induced by captan. (B) Captan-induced change in Fluo-3 fluorescence under external Ca2+-free 

condition. Column and bar indicate mean and standard deviation of four samples, respectively. 
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Asterisks (**) show significant difference (P < 0.01) between the control group (CONTROL) 

and the captan-treated cells. Symbols (##) indicate significant difference (P < 0.01) between the 

groups with and without Ca2+ (Ca-FREE). 

Figure 4. Captan-induced increase in the intensity of FluoZin-3 fluorescence. The cells were 

treated with 1–30 µM captan for 1 h. (A) Concentration-dependent increase in the intensity 

induced by captan. (B) Captan-induced change of Fluo-3 fluorescence in the presence of 

Zn2+-chelators (DTPA and TPEN). Column and bar indicate mean and standard deviation of 

four samples, respectively. Asterisks (**) show significant difference (P < 0.01) between the 

control group (CONTROL) and the captan-treated cells. Symbols (##) indicate significant 

difference (P < 0.01) between the groups without and with Zn2+ chelator (DTPA and TPEN). 

Figure 5. Captan-induced changes in oxidative stress. The cells were treated with captan for 1 h 

and then the cells were incubated with 5-CMF-DA for 0.5 h. (A) Captan-induced changes in the 

intensity of 5-CMF fluorescence. (B) Captan-induced increase in the intensity of BES-SO 

fluorescence. Asterisks (**) show significant difference (P < 0.01) between the control group 

(CONTROL) and the captan-treated cells. 

Figure 6. Captan-induced increase in the cytotoxicity of H2O2 and cell lethality. The cells were 

treated with captan, H2O2, or both for 3 h. Asterisks (*, **) show significant difference (P < 

0.05, 0.01) between the control group (CONTROL) and the cells treated with captan and/or 

H2O2. Symbols (##) indicate significant difference (P < 0.01) between the H2O2-treated groups 

without and with captan. 

Figure 7. Effect of TPEN on the cytotoxicity of captan. The cells were treated with 30 µM 

captan, 10 µM TPEN, or both for 3 h. Asterisks (**) show significant difference (P < 0.01) 
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between the control group (CONTROL) and the cells treated with 30 µM captan. Symbols (##) 

indicate significant difference (P < 0.01) between the captan-treated groups without and with 

TPEN.  
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Table 1. Specific reagents used in this study 

A. Fluorescent probes [Manufacturer] Emission 

Wavelength 

Propidium Iodide (PI)  

[Molecular Probes, Inc., Eugene, OR, USA] 

PI:  

600 ± 20 nm 

Annexin V-FITC 
[Molecular Probes] 

FITC:  
530 ± 20 nm 

Fluo-3-AM 

[Dojin Chemical Laboratory, Kumamoto, Japan] 

Fluo-3:  

530 ± 20 nm 

FluoZin-3-AM 

[Molecular Probes] 

FluoZin-3:  

530 ± 20 nm 

BES-SO-AM 
[Wako Pure Chemicals, Osaka, Japan] 

BES-SO:  
530 ± 20 nm 

5-Chloromethylfluorescein Diacetate (5-CMF-DA)  

[Molecular Probes] 

5-CMF:  

530 ± 20 nm 

(*) Excitation wavelength was 488 nm for all fluorescent probes. 

 

B. Zinc chelator [Manufacturer] Purpose 

Diethylenetriamine-N,N,N′,N′′,N′′-pentaacetic acid 

(DTPA) 

[Dojin Chemical Laboratory] 

Chelating 

external Zn2+ 

N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine 

(TPEN) 
[Dojin Chemical Laboratory] 

Chelating 

intracellular Zn2+ 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

 


