
  
Abstract—We previously proposed a parametric controller to 

avoid undesirable bifurcations of stable fixed and periodic points 
in discrete-time dynamical systems. The parameter regulation is 
derived from an optimization problem on the maximum local 
Lyapunov exponent and a method of steepest descent. In this 
paper, on the basis of the ideas and a stroboscopic mapping that 
transforms the trajectory of a continuous-time periodic solution 
into a sequence of points, we propose a technique to control the 
maximum local Lyapunov exponent on stable periodic oscillations 
in continuous-time non-autonomous dynamical systems. 
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I. INTRODUCTION 
Nonlinear dynamical systems expressed by parameterized 

difference or differential equations are widely used for 
mathematical modeling of physical systems in many fields [1], 
[2]. In general, the values of system parameters are set so that a 
desired behavior can appear in a steady state. However, a 
dynamical system may not work as expected for any reason, 
e.g., disappearance of the desired behavior for occurrence of 
bifurcation [3], [4]. 

For stable fixed and periodic points in discrete-time 
dynamical systems, we previously proposed a novel parametric 
controller to avoid undesirable bifurcation of stable ones 
[5]–[7]. This is one of bifurcation control techniques [8], and 
the parameter regulation is derived from an optimization 
problem on the maximum local Lyapunov exponent [9]–[12] 
and a method of steepest descent. The effectiveness of the 
proposed method has been demonstrated through numerical 
experiments for stable fixed or periodic points observed in 
Hènon map [13] and Kawakami map [14]. 

The proposed control technique, however, cannot be directly 
applied to stable periodic solutions in continuous-time 
dynamical systems. To avoid undesirable bifurcation of 
continuous-time solutions, we need a new scheme of parametric 
control methodology. In this paper, on the basis of the 
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aforementioned ideas and a stroboscopic mapping (otherwise 
known as Poincarè map) that transforms the trajectory of a 
continuous-time solution into a sequence of points, we propose 
a technique to control the maximum local Lyapunov exponent 
on stable periodic oscillations in continuous-time 
non-autonomous dynamical systems. 

II. PRELIMINARY 

A. Periodic Solution and its Stability 
Let us consider a continuous-time non-autonomous 

dynamical system defined by 
 

                                                                    (1) 

 
where t∈ R denotes continuous time, x=(x1, x2, …, xN)T∈ RN is 

the vector of state variables, p=(p1, p2, …, pM)T∈ RM is the 
vector of system parameters, and the superscript symbol T 
represents the transpose of a vector. We now assume that f is 
periodical on time, and its period is Ψ, i.e., 
 

                                                   (2) 

 
is satisfied. 

We express a solution to (1) as 
 

                                                               (3) 
 
where x(0)=x(0)∈ RN represents an initial values at t=0, then a 
periodic solution with period LΨ (L=1, 2, …) can be defined by 
 

                                         (4) 
 
Note that a solution with L=1 is called fundamental harmonic 
solution, otherwise, sub-harmonic solution of order L. 

We now assume that local sections Ω≔{x∈ RN | t=kΨ, k=0, 1, 
2, …} are arranged in the state space in (1). To map a point of a 
solution’s trajectory, x(k)=x(t) at t=kΨ, on the local section at the 
time to the next point x(k+1) in the next local section at t=(k+1)Ψ, 
we define a stroboscopic mapping S as 
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             (5) 

 
To simplify derivation of a parametric controller in the 
followings, we assume that S is differentiable with respect to t, 
x, and p as many times as needed. 

This mapping enables us to express the trajectory of a 
continuous-time solution to (1) as a sequence of points on local 
sections. For example, a point (x*) on a fundamental harmonic 
solution maps to the same point on all local section, i.e., 
S(x*)−x*=0. It is, therefore, called as fixed point. Likewise, 
since a point (x*) on a sub-harmonic solution of order L satisfies 
SL(x*)−x*=0, we call it L-periodic point. Thus, by using the 
mapping, we can handle a periodic solution to (1) like a fixed or 
periodic point in a discrete-time dynamical system. 
 The stability of a fixed or periodic point (x*) can be discussed 
by eigenvalues μi∈ C (i=1, 2, …, N) of the Jacobian matrix 
derived from S(x*)−x*=0 or SL(x*)−x*=0, respectively. The 
fixed or periodic point (x*) is stable only if |μi|<1 for all i, which 
corresponds to the situation that all the eigenvalues are within 
the unit circle in the complex plane. On the other hand, when 
one or more eigenvalues are on the circumference of the unit 
circle, a stable fixed or periodic one becomes unstable and 
bifurcates. Note that Kawakami et al. [4] summarized types of 
general bifurcation, conditions that each bifurcation occurs, and 
a computational technique to find bifurcation points. 

B. Maximum Local Lyapunov Exponent 
Let us assume that the limit of the sequence x(k) starting from 

an initial point x(0) exists, besides, the limit set is a stable fixed 
or periodic point. We express the derivative of x(k) with respect 
to x(0) as 
 

         (6) 

 
and define the maximum Lyapunov Exponent on x(k) by 
 

 

 
 
 
 

(7) 

 
where v(0) is a nearby point at the vicinity of x(0), and ||⋅|| 
represents the Euclidean norm of a vector. Regardless of a given 
v(0), the maximum Lyapunov exponent takes the same value for 
almost all initial points in the basin of a stable fixed or periodic 
point [9]. For example, a stable fixed or periodic point is present 
under the values of p if Λ(x(0), p) takes a negative value. When 
the value of Λ(x(0), p) approaches to zero, the values of p are 
close to a bifurcation point of the stable fixed or periodic point. 
 Computing the maximum Lyapunov exponent based on (7) is 
numerically difficult because it is defined in infinite time. 

Instead of the maximum Lyapunov exponent, we introduce the 
maximum local Lyapunov exponent [11], [12] that is defined in 
finite time: 
 

                            (8) 

 
Here, we set the discrete-time interval τ to compute (8) to KL 
with a positive large integer K, which the interval corresponds to 
t∈ [0, KLΨ), and normalize v(k) so that the value of ||v(k)|| always 
becomes one as 
 

                                                               (9a) 

                                                    (9b) 
 
where w(0) ∈ RN is given as a perturbation of x(0). This 
normalization (9a) is due to relieve the difficulty in the 
numerical computation of (8). 

III. METHODOLOGY OF PARAMETRIC CONTROL 
We consider the situation that bifurcation of a stable 

fundamental harmonic or sub-harmonic solution of order L to 
(1), which corresponds to a stable fixed or periodic point of a 
stroboscopic mapping in (5), can occur by changing the value of 
one or more parameter values. Under the critical situation in the 
context that undesirable bifurcation may occur, we treat the 
problem to control the maximum local Lyapunov exponent so 
that it becomes a negative value that we prescribe in advance. 

To simplify the problem, we assume that the values of p are 
constant for the duration of t∈ [mτΨ, (m+1)τΨ), (m=0, 1, 2, …). 
From this assumption, (8), and (9), we can compute the value of 
λ(mτ)=λ(x(mτ), p(mτ), τ) at t=(m+1)τΨ−Ψ, i.e., it is defined as 
 

                                             (10) 

 
To design a parametric controller so as not to make 

bifurcation for forcibly change of a system-parameter value, we 
consider the minimization problem of an objective function 
defined by 
 

                                                (11) 

 
where λ* denotes the target value of the maximum local 
Lyapunov exponent to be controlled and is set to a negative 
value. 
 Now, let p be a controlled parameter, which corresponds to 
one of p, and we assume that λ(mτ) is differentiable with respect 
to p. Under the assumption, the method of steepest descent 
yields a gradient system of (11) with respect to p defined by 
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 (12) 

 
i.e., the parameter regulation of p is defined as 
 

                            (13) 

 
where η is a user-defined positive parameter. The differential 
value in (13) can be obtained by partially differentiating (10) 
with respect to p as 
 

                               (14a) 

 
where 
 

                                            (14b) 

 
From (9), the values of ∂w(k+1)/∂p can be calculated by 
 

              (15) 

 
where the initial values of ∂w/∂p and ∂v/∂p are set to zero 
because we arbitrarily give the initial points of w and v 
regardless of the value of p. 

Calculating the right-hand side of (15) is more complex than 
that of the case [4]–[6] that the original target is a fixed or 
periodic point in discrete-time dynamical systems because the 
original one is a continuous-time solution to (1). The 
computational procedure is as follows. As described in (5) and 
(6), DS(x(k), p) on the right-hand side of (15) means the 
derivative of S(x(kΨ), p)=φ((k+1)Ψ, x(kΨ), p) with respect to 
x(kΨ) that corresponds to the initial point in the duration of 
t∈ [kΨ, (k+1)Ψ]. Therefore, the (i, j)th element of the matrix is 
defined by 
 

                 (16a) 

or 

                           (16b) 

 
 To calculate these values, we revisit the continuous-time 
non-autonomous dynamical system described by (1). From (1) 
and (3), we have 

                                              (17) 

 

and its derivative with respect to x(0) is obtained as 
 

           (18) 

 
Since the order of differentiation on the left-hand side is 
commutative, we obtain the first variational equation of (17) 
with respect to initial value, 
 

 

(19) 
 
and the initial point of this differential equation is as ∂φ(t, x(0), 
p)/∂x(0)=E, where E denotes the N×N identity matrix. In 
addition, ∂f(t, φ(t, x(0), p), p)/∂x is the Jacobian matrix of f in 
(17), and all the elements can be algebraically calculated from a 
given f in advance. Therefore, we can calculate the value of the 
right-hand side of (16) by numerically integrating (19) with the 
initial point from t=kΨ to t=(k+1)Ψ. 
 The elements of ∂DS(x(k), p)/∂p on the first term of the 
right-hand side of (15) can be calculated from the partial 
derivative of (19) with respect to p as 
 

 

 
 
 
 
 
 
 
 
(20) 

 
with the initial point, ∂2φ(t, x(0), p)/∂x(0)∂p=0 at t=kΨ. In the 
right-hand side of (20), as aforementioned, we can algebraically 
calculate all the elements of ∂f(t, φ(t, x(0), p), p)/∂x from a given 
f in advance. Its derivatives with respect to x and p, ∂2f(t, φ(t, 
x(0), p), p)/∂x2 and ∂2f(t, φ(t, x(0), p), p)/∂x∂p, can be also 
calculated algebraically. In addition, the values of ∂φ(t, x(0), 
p)/∂x(0) have been already computed. 

Like the way of derivation of (19), we partially differentiate 
(17) with respect to p and permute the order of differentials as 
 

 

(21) 
and the initial point such that ∂φ(t, x(0), p)/∂p=0. Here, we can 
algebraically calculate all the elements of ∂f(t, φ(t, x(0), p), p)/∂x 
and ∂f(t, φ(t, x(0), p), p)/∂p for a given f in advance. Therefore, 
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the values of ∂φ(t, x(0), p)/∂p in (20) can be computed by 
numerically integrating (21) with the initial point from t=kΨ to 
t=(k+1)Ψ. Thus, the values of ∂DS(x(k), p)/∂p in (15) can be also 
computed by integrating (20) with the initial point from t=kΨ to 
t=(k+1)Ψ, numerically. Note that the four ordinary differential 
equations, which are (17) and (19)–(21), can be integrated in 
parallel. 
 Calculation of v(k) in (15) is based on algebraic calculation 
described in (9) because we already had the values of DS(x(k), 
p). The partial derivative of v(k+1) with respect to p can be 
calculated by 
 

      (22) 

 
where the initial values of ∂v/∂p are set to zero as 
aforementioned in (15). In addition, the values of ∂w(k+1)/∂p and 
∂||w(k+1)||/∂p can be assigned with the values computed from (15) 
and (14b), respectively. 

The updating procedure of the p value to control the 
maximum local Lyapunov exponent on a stable sub-harmonic 
solution of order L is summarized as the following algorithm. 
 

Algorithm: Updating the value of p at k=(m+1)τ 
k ← mτ 
Set p(k) and x(k) 
Set w(k) around x(k) 
Compute v(k) according to (9a) 

;  

S ← 0 
while k < (m+1)τ do 

   ; ;  

    for ℓ ← 1 to L do 

        Compute x(k+1), DS(x(k), p), , and  

        in parallel according to (17) and (19)–(21) 

        Compute  according to (15) 

        Compute w(k+1) according to (9b) 
        Compute ||w(k+1)|| 

        Compute  according to (14b) 

                  (see (14a)) 

        Compute v(k+1) according to (9a) 

        Compute  according to (22) 

        k ← k+1 
    end for 
end while 

          (see (14a)) 

          (see (13)) 

IV. CONCLUSION 
In this paper, we proposed a parametric control technique for 

the maximum local Lyapunov exponent on stable periodic 
solutions observed in continuous-time non-autonomous 
dynamical systems. It is expected that the proposed technique is 
available to avoid undesirable bifurcation of such solutions. 
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