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Abstract

Tamaševičius et al. proposed a simple 3d chaotic oscillator for educational purpose. In fact the oscillator can be implemented

very easily and it shows typical bifurcation scenario so that it is a suitable training object for introductory education for

students. However, as far as we know, no concrete studies on bifurcations or applications on this oscillator have been

investigated. In this paper, we make a thorough investigation on local bifurcations of periodic solutions in this oscillator by

using a shooting method. Based on results of the analysis, we study chaos synchronization phenomena in diffusively coupled

oscillators. Both bifurcation sets of periodic solutions and parameter regions of in-phase synchronized solutions are revealed.

An experimental laboratory of chaos synchronization is also demonstrated.

Keywords: chaotic oscillator, bifurcation analysis, synchronization

1. Introduction

Tamaševičius et al. proposed a very simple chaotic circuit for education purpose[1] The main feature which is different

from other three dimensional chaotic circuit is utilization of the exponential nonlinearity of a diode, that is, only the Shockley

diode equation exhibits a nonlinear effect in the mathematical model of the circuit. Experimentally a Rössler-type chaotic

attractor is confirmed. However, although existence of a period-doubling cascade was described in Ref. [1], no detailed

bifurcation analyses have been reported.

In this paper, we investigate bifurcation phenomena in the circuit in detail. We firstly reveal all possible local bifurcations

of equilibria and limit cycles with 2-parameter bifurcation diagrams computed by using a shooting method[2, 3, 4] based on

numerical integration of variational equations. Secondly we discuss an application of this oscillator; chaos synchronization.

When we couple these two oscillators by a resistor, then in-phase chaos synchronization is obtained within a reasonable

parameter range. We show bifurcation diagrams of the coupled oscillators and specify the chaos synchronization parameter

regions in the diagrams. Finally we demonstrate a laboratory experiment of the coupled oscillator exhibiting a stable in-phase

chaos synchronization.
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Figure 1: Circuit diagram proposed by Tamaševičius [1].

2. Circuit Model

Figure 1 shows an oscillator proposed by Tamaševičius et al. By referring the formulations in Ref.[1], the circuit equation

is as follows:

Cα
dvα
dt

= iα

L
diα
dt

=
RR2

R1
i1 − vα − vβ

Cβ
dvβ
dt

= i0 + iα − i

(1)

where i0 = v0/R0. Here i is the diode current written by Shockley diode equation:

i = iS
(
exp

evβ
kT
− 1
)

(2)

where iS is the saturation current of the reverse direction, e, k, and T are the electron charge, Boltzmann constant, and

temperature, respectively. Let us use variable transformations[1]:

x =
vα
vx
, y =

ρiα
vx
, z =

vβ
vx

vx =
k
e
,

θ =
t
τ
, ρ =

√
L

Cα
, τ =

√
LCα, a =

RR2

R1ρ
,

b =
ρi0
vx
, c =

ρiS
vx
, ϵ =

Cβ
Cα
,

then we have the following normalized differential equations:

ẋ = y

ẏ = ay − x − z

ϵ ż = b + y − c(exp z − 1)

(3)

Figure 2 shows a chaotic attractor presented in Ref. [1] with a = 0.4, b = 20, c = 4 × 10−9, ϵ = 0.13.
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Figure 2: A typical chaotic attractor. A projection to x-y plane.

3. Local Bifurcations

We consistently fix the parameter c since it comes from a physical constant in a diode.

There is a unique equilibrium in Eq. (3); xe = (0,− log(b/c + 1), log(b/c + 1)). Only Hopf bifurcation is caused for this

equilibrium, and the bifurcation set can be solved analytically.

To track bifurcation sets of periodic solutions, the Poincaré mapping is applied. Suppose the system is described by ẋ =

f (x), where x = (x, y, z), and x(t) = φ(t, x0) be a solution with the initial condition x(0) = x0 = φ(0, x0). A periodic solution

is expressed as x(t) = φ(t + τ, x0), where τ is the period. We define the Poincaré section for Eq. (3) as Π = {x ∈ R3 | y = 0},

thus the Poincaré mapping T is written as follows:

T : R3 → R3; x 7→ T (x), x ∈ Rn (4)

Thereby the condition of the fixed point is written as T (x0) = x0. The Jacobian matrix ∂φ/∂x0 is a principal matrix solution

obtained by numerical integration of the following variational equation from t = 0 to t = τ(x0):

d
dt
∂φ

∂x0
=
∂ f
∂x
∂φ

∂x0
,
∂φ

∂x0

∣∣∣∣∣
t=0
= I3 (5)

where I3 is the 3 × 3 identical matrix. Stability of the fixed point of the Poincaré mapping depends on the roots of the

characteristic equation:

χµ =

∣∣∣∣∣ ∂φ∂x0
− µI3

∣∣∣∣∣ = 0. (6)

Suppose that u ∈ Σ ⊂ R2 is a location on the local coordinate, then there is a projection satisfying p(x0) = u0. Let u1 be a

point on Σ, and φ(t, x1) be the solution starting in h−1(u1) = x1 ∈ Π. Let also the x2 ∈ Π be a point at which φ(t, x1) intersects

with the return time τ(x1), thus we have x2 = φ(τ(x1), x1). Then we define the Poincaré mapping on the local coordinate

system:

Tℓ : Σ→ Σ
u1 7→ u2 = p(φ(τ(h−1(u1)), p−1(u1)))

= p ◦ T ◦ p−1(u1)

(7)

The fixed point of the mapping Tℓ is given by:

Tℓ(u0) = u0. (8)
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A bifurcation set is tracked by a shooting method, i.e., a bifurcation parameter value is obtained by solving simultaneous

equations Eqs. (6) and (8) with Newton’s method[2].

In the following subsections, we investigate bifurcations of periodic solutions with variations of parameters a, b, and ϵ.

We fix the parameter c consistently as 4 × 10−9.

3.1. Bifurcations in a-b Plane

Figure 3 is a bifurcation diagram of equilibria and periodic solutions for Eq. (3) in a-b parameter plane. All phenomena

given in this diagram is realized by changing values of all resistors, i.e., R, R0, R1 and R2. h is Hopf bifurcation of the

equilibrium. With this bifurcation, the diagram is split into two parts; an oscillatory region and a non oscillatory region.

Right after getting Hopf bifurcation, a stable equilibrium becomes unstable and we have a stable limit cycle around the

equilibrium. Figure 4 (a) illustrates an unstable equilibrium xe, a stable limit cycle, and the fixed point x0 at the point (A) in

Fig.3. The period-doubling and tangent bifurcations are labeled by I and G, respectively. The superscription of them indicate

the period before the bifurcation.
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Figure 3: Bifurcation diagram in a-b plane. ϵ = 0.13.

There is an island surrounded by I in oscillatory region. Inside of the island, the period-doubling cascades are developed

and then chaotic attractors are obtained. Figures 4(a)–(d) demonstrate this process with parameter variations of a along arrows

from (A) and (B) in Fig.3. In a yellow region, we can observe chaotic attractors. There also exist many period-locking regions

surrounded by Gk. Figure 5 is an enlarged diagram around chaotic parameter region in Fig. 3. A period-m locking region

(window) is edged by Gm and Im. A stable period-m limit cycle meets a period doubling cascade I2m and eventually becomes

a chaotic attractor again. These locking regions are very thin, and they do not overlap each other in a-b plane. At the point

(C) in 5, we have a period-three solution, see Fig. 6. These windows tend to be very narrow, thus in the yellow region in Fig.

3, chaotic attractors are abundantly embedded.

Beyond b > 30, all bifurcation sets become parallel for b, i.e., the bifurcation structure is insensitive for the value of b.
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Figure 4: Phase portraits (projections to x-y) with b = 11.5. The parameter variation along the arrow from the point (A) in Fig. 3; (a): a = 0.15, (b):
a = 0.25, (c): a = 0.285, (d): a = 0.32, and along the arrow from the point (B) in Fig. 3; (e): a = 0.89, (f): a = 0.88, (g): a = 0.86, (h): a = 0.83.

3.2. Bifurcations in a-ϵ Plane

Figure 7 shows a bifurcation diagram in a-ϵ plane. b = 15, c = 4 × 10−9. Similar to Fig.3, the whole region is split

into oscillatory and non-oscillatory regions by Hopf bifurcation set h. In the oscillatory region, a fish hook structure[6][7] is

formed inside of period-doubling bifurcation set I. That is, two different I2 curves are overlapped and G2 in inserted between

them.

Both directions shown by arrows from points (A) and from (B) in Fig. 7 exhibit the period-doubling cascade. Phase

portraits of the corresponding period-doubling process are shown in Fig. 8. In contrast with Fig. 3, there exists a fish-hook

structure[7]. In the chaotic region, there are period-locking regions. G3 shows a beginning the period-three locking region.

The bifurcation diagram is trimmed in ϵ ≈ 0.8 and it is not expandable for the small values of ϵ since Eq.(3) is a singular

perturbation system, and its solution tends to explode.

3.3. Bifurcations in b-ϵ Plane

The bifurcation structure in b-ϵ is shown in Fig. 9, where a = 0.9. In this plane, all phenomena in the diagram are

demonstrated by scanning the resistor R0, and capacitors Cα and Cβ.

The structure looks like Fig.7, i.e., non-oscillatory and oscillatory regions are divided by Hopf bifurcation, there are

the period-doubling cascades, a fish hook structure, and period-locking regions. The shapes of the corresponding periodic

solutions look also similar with Figs. 8.

4. Chaos Synchronization in Coupled Oscillators

As we have revealed that dynamic properties of Tamaševičius circuit by depicting bifurcation diagrams, Tamaševičius

circuit is a possible nonlinear oscillation unit which can exhibit a rich variety of attractors by changing parameters. In the

following, we call this circuit Tamaševičius oscillator. The next our interest is applications of this circuit.
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Figure 5: Enlarged bifurcation diagram of Fig. 3.
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Figure 6: Period-three orbit observed at the point (C) in Fig. 5, b = 11.5, (a) a = 0.431, a projection to x-y, (b) a 3D vision, a = 0.35.

Chaos synchronization attracts much attentions from researchers in nonlinear science[8]. The most successful application

of it is secure communication methods[9]. If one has chaotic oscillators which can realize synchronization easily, it is

useful for learning chaos synchronization. In this section, we investigate the existence of complete chaos synchronization in

diffusively coupled two Tamaševičius oscillators. Our clue of the exploration is bifurcation structures revealed in the previous

section.

Let us provide two identical Tamaševičius oscillators. The terminal between L and Cβ is chosen as an interface port.

Figure 11 shows two Tamaševičius oscillators coupled by a linear conductor Rδ. This kind of diffusive coupling system has an

in-phase synchronization of periodic solutions under certain conditions. Since the coupling term is composed by a difference

of corresponding variables of oscillators, the in-phase synchronization means vanishment of the coupling. Thus existence

of the in-phase synchronization in a diffusive coupling system is confirmed, however, its stability cannot be guaranteed. We

specify parameter regions showing stable synchronization with bifurcation diagram.
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Figure 7: Bifurcation diagram in a-ϵ plane. b = 15, c = 4 × 10−9.

Figure 10 shows the coupled Tamaševičius oscillators. The circuit equation is written as follows:

Cα
dvα1

dt
= iα1

L
diα1

dt
=

RR2

R1
iα1 − vα1 + vβ1

Cβ
dvβ1
dt

= i0 + iα1 − i1 −Gδ
(
vβ1 − vβ2

)
Cα

dvα2

dt
= iα2

L
diα2

dt
=

RR2

R1
iα2 − vα2 + vβ2

Cβ
dvβ2
dt

= i0 + iα2 − i2 −Gδ
(
vβ2 − vβ1

)
(9)

Let us try variable transformations as follows:

x j =
vα j

vT
, y j =

ρi j

vT
, z j =

vβ j

vT
, j = 1, 2.

θ =
t
τ
, vT =

kB

e
, ρ =

√
L

Cα
, τ =

√
LCα, a = (k − 1)

R
ρ
, b =

ρi0
vT
, c =

ρiS
vT
, ϵ =

Cβ
Cα
, δ =

ρ

vT
Gδ.

Thus we have:
ẋ1 = y1

ẏ1 = ay1 − x1 − z1

ϵ ż1 = b + y1 − c(exp z1 − 1) − δ(z1 − z2)

ẋ2 = y2

ẏ2 = ay2 − x2 − z2

ϵ ż2 = b + y2 − c(exp z2 − 1) − δ(z2 − z1)

(10)

To discuss bifurcations in the coupled system, we take similar way described in Sec. 3. We take y1 = 0 as the Poincaré

section, thus the dimension of the local coordinate u is five.
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Figure 8: Phase portraits with ϵ = 0.15. The parameter variation along the arrow from the point (A) in Fig. 7; (a): a = 0.1, (b): a = 0.2, (c): a = 0.245, (d):
a = 0.285, and along the arrow from the point (B); (e): a = 0.8, (f): a = 0.77, (g): a = 0.75, (h): a = 0.705.

4.1. Bifurcations in a-δ Plane

Figure 11 shows a bifurcation diagram in a-δ plane for Eq. (10), b = 11.4, c = 4 × 10−9, ϵ = 0.13, γ = 1. By varying R,

R1, R2, Rd, the whole parameter range shown in this figure can be scanned.

Since both oscillators are identical, there are three cases of synchronization in this system such as symmetric equilibria,

synchronized periodic orbits, and chaos synchronization.

The vertical bifurcation lines are corresponding to bifurcation sets (Ik, Gk) occurred when a is scanned along ϵ = 0.13 in

Fig. 7. Therefore, chaotic region is roughly identified as the area sectioned by period-doubling cascades of a single oscillator.

Inside of the cascade, both synchronized and non-synchronized chaotic attractors could coexist together.

To detect synchronized regions, we evaluate the following discriminant value:∫ t1

t0
||x1(t) − x2(t)||dt < E (11)

where xi(t) = (xi(t), yi(t), zi(t)), i = 1, 2. We take E = 0.1. The integration interval [t0, t1] is chosen appropriately, e.g.

[200, 300] to remove transitions. The integral tick for the Runge-Kutta method is 0.01. With this discriminant, parameter

regions whose attractors satisfying Eq. (11) are regarded as stably synchronized areas. Since there is no general formulation

for detecting the edge between synchronized and non-synchronized regions, they should be computed by trial and error. We

apply a brute-force method examining Eq (11).

Figure 12 shows phase portraits given by changing parameter a along the arrow from the point (A) in Fig. 11. Initial

values with some noise are given appropriately and we obtain attractors after a certain transient time.

The in-phase synchronized attractor observed in the orange region in Fig. 11 gradually lose its synchronicity and may

not satisfy the criterion (11). This scenario is coincident to the literature on synchronization, e.g., see Ref. [8]. No local

bifurcation is related with this changing. Figure 13 is an example phase portrait of the solution observed at the point (B) in
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Figure 10: Coupled Tamaševičius oscillators.

Fig. 12. The difference x1andx2 does not vanish anymore, i.e., the criterion (11) is not satisfied there, however, the attractors

look almost in-phase synchronized.

One exception of this scenario is the period-doubling bifurcation caused around 0.8 < a < 1. Figure 14 shows an

enlargement diagram for Fig.11. Along the direction of arrows, a synchronized period-1 orbit observed inside of the orange

region becomes a non-synchronous period-2 orbit outside (the phase difference between z1 and z2 is not small). Figure 15

is another enlargement for Fig.11. At the point (D), there is a stable period-2 non-synchronous attractor. By touching the

Neimark-Sacker bifurcation[10] labeled by NS 2, a two-reel torus attractor is observed, see Fig. 16. By further changing of a,

we have a chaotic attractor via the torus breakdown.

5. Laboratory Experiment of Coupled Oscillator

We demonstrate the coupled Tamaševičius oscillators in a physical laboratory experiment. Circuit elements are chosen

as: L = 100 mH, Cα = 100 nF, Cβ = 22 nF, R = 1 kΩ, R2 = 10 kΩ, R0 = 20 kΩ, Rδ = 300 kΩ. These values correspond
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approximately the point (A) in Fig. 11. We choose an OP-amp and a diode are LM741 and 1N4148, respectively.

By changing R2 from 0 to 10 kΩ, we observe the period-doubling cascade of the in-phase synchronized attractors, see

Figs. 17. These results show that the chaos synchronization is stably achieved. One of the reasons why that the shape of the

attractors differs from the simulations in Fig. 13 is zi (i.e., vβ j) information is used in 17. But even if x j-z j is used for 13, the

shape still differs from Fig. 17. The nonlinear characteristics of the diode may not accurately modeled by Shockley equation,

however, period-doubling cascades of synchronized attractors are certainly confirmed.

6. Concluding Remarks

We have investigated bifurcation structure of Tamaševičius oscillator in detail. By using a shooting method featuring vari-

ational equations accurate bifurcation sets have been traced. Existence of various local bifurcations and chaotic parameter

regions have been shown in a-b, a-ϵ, and b-ϵ parameter plane. Typical bifurcation structures including period-doubling cas-

cades, fish hooks have been also confirmed. Next we studied in-phase synchronization of the resistively coupled Tamaševičius

oscillators based on bifurcation analysis. A wide in-phase chaos synchronization area has been confirmed in the bifurcation

diagram. This means that these oscillators are easy to synchronize. We conclude that the oscillator is suitable for educational

purposes including applications of chaos. According to this conclusion, chaos synchronization has been experimentally

confirmed in a real circuit implementation of coupled Tamaševičius oscillators.
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Figure 17: A shot of an oscillograph: in-phase synchronization of attractors. (a): R2 = 0 Ω, (b): R2 ≈ 4 kΩ, (c): R2 ≈ 10 kΩ. Horizontal: 1 V/div. Vertical:
500 mV/div. (a 10:1 attenuator inserted for the horizontal axis.)
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