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Abstract 

Objective: Porphyromonas gingivalis (P. gingivalis) is a pathogen involved in periodontal disease. 

Recently, periodontal disease has been demonstrated to increase the risk of developing diabetes 

mellitus, although the molecular mechanism is not fully understood. Forkhead box protein O1 

(FoxO1) is a transcriptional factor that regulates gluconeogenesis in the liver. Gluconeogenesis is a 

key process in the induction of diabetes mellitus; however, little is known regarding the relationship 

between periodontal disease and gluconeogenesis. In this study, to investigate whether periodontal 

disease influences hepatic gluconeogenesis, we examined the effects of P. gingivalis on the 

phosphorylation and translocation of FoxO1 in insulin-induced human hepatocytes. 

 

Design: The human hepatocyte HepG2 was treated with insulin and Akt and FoxO1 phosphorylation 

was detected by western blot analysis. The localization of phosphorylated FoxO1 was detected by 

immunocytochemistry and western blot analysis. HepG2 cells were treated with SNAP26b-tagged P. 

gingivalis (SNAP-P. g.) before insulin stimulation, and then the changes in Akt and FoxO1 were 

determined by western blot analysis and immunocytochemistry.  

 

Results: Insulin (100 nM) induced FoxO1 phosphorylation 60 min after treatment in HepG2 cells. 

Phosphorylated FoxO1 translocated to the cytoplasm. SNAP-P.g. internalized into HepG2 cells and 

decreased Akt and FoxO1 phosphorylation induced by insulin. The effect of insulin on FoxO1 

translocation was also attenuated by SNAP-P.g.  

 

Conclusions: Our study shows that P. gingivalis decreases the phosphorylation and translocation of 

FoxO induced by insulin in HepG2 cells. Our results suggest that periodontal disease may increase 

hepatic gluconeogenesis by reducing the effects of insulin on FoxO1. 
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Highlights: 

1. We examined the effects of P. gingivalis on FoxO1-regulated hepatic gluconeogenesis. 

2. Insulin increased FoxO1 phosphorylation in HepG2 cells. 

3. The phosphorylated FoxO1 induced by insulin translocated to the cytoplasm. 

4. P. gingivalis attenuated the effects of insulin on FoxO1.  

5. P. gingivalis may increase gluconeogenesis by reducing insulin’s effects on FoxO1.  
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Introduction 

Porphyromonas gingivalis (P. gingivalis) is one of the primary pathogens involved in periodontal 

disease, which is chronic inflammation of the periodontal tissues that surround the tooth. Periodontal 

disease widely affects the adult population and the progress of periodontal disease results in tooth loss 

by the destruction of periodontal tissues. Thus, the prevention and treatment of periodontal disease 

have impacts on the patient’s quality of life (Needleman, McGrath, Floyd, & Biddle, 2004).  

It was recently shown that periodontal disease may not only cause tooth loss but also contribute to 

the development of systemic inflammation and diseases (Hajishengallis, 2015). Among these, the 

bidirectional relationship between diabetes mellitus and periodontal disease is well known (Taylor, 

Preshaw, & Lalla, 2013). For example, poor periodontal tissue status and tooth loss increased the 

level of glycated hemoglobin A1c (HbA1c) in patients without diabetes mellitus (Demmer et al, 

2010). Treatment with local minocycline in the periodontal pocket reduced HbA1c values in patients 

with type 2 diabetes (Iwamoto et al, 2001). After non-surgical periodontal therapy, P. gingivalis in 

subgingival plaque was detected more frequently in patients with increased HbA1c values compared 

to those with decreased values (Makiura et al, 2008). The results of these clinical studies suggest 

that periodontal disease has negative effects on glycemic control (Simpson, Needleman, Wild, 

Moles, & Mills, 2010). In contrast, many other studies showed that non-surgical periodontal therapy 

did not improve glycemic control in patients with type 2 diabetes (Christgau, Palitzsch, Schmalz, 

Kreiner, & Frenxel, 1998; Engebreston et al, 2013), and non-quantitative analysis was considered 

to cause the discrepant results (Janket, Wightman, Baird, Dyke, & Jones, 2005). The molecular 

mechanisms by which periodontal disease influences glucose metabolism in diabetes mellitus are not 

fully understood; thus, the question of whether periodontal disease is a risk factor for diabetes mellitus 

has not been resolved.  

To answer this question, we previously investigated whether oral P. gingivalis affects hepatic 

glycogen synthesis by using P. gingivalis tagged with the SNAP26b protein (SNAP-P. g.) to allow its 
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detection in mouse organs and cultured cells. We showed that SNAP-P. g., which is present in the oral 

cavity, was also detected in the liver, and the accumulation of hepatic glycogen tended to be 

attenuated in mice. SNAP-P. g. internalized in human hepatic HepG2 cells and decreased 

insulin-induced glycogen synthesis by inhibiting the Akt pathway (Ishikawa et al, 2013). Our results 

suggested that periodontal disease may increase the blood glucose levels in diabetes mellitus by 

inhibiting insulin-induced glycogen synthesis in the liver. 

 

In addition to glycogen synthesis, gluconeogenesis also participates in the maintenance of glucose 

homeostasis. Gluconeogenesis is a process that induces glucose synthesis in the liver from amino 

acids and glycerol under fasting conditions (Moore, Connolly, & Cherrington, 1998). In addition, 

the rate of hepatic gluconeogenesis is considered to increase in patients with type 2 diabetes mellitus. 

Gluconeogenesis is regulated by transcription factors such as forkhead box protein O1 (FoxO1). For 

example, after insulin binds to the insulin receptor (IR), insulin receptor substrate 1 (IRS1) is 

activated by phosphorylation (White, 2003). Activated IRS1 phosphorylates Akt and increases its 

kinase activity (Guo et al, 2009). Akt activation leads to the phosphorylation of FoxO1 in the 

nucleus. Phosphorylated FoxO1 then translocates to the cytoplasm and decreases its transcriptional 

activity, leading to the inhibition of gluconeogenesis by reducing the expression of gluconeogenic 

genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) 

(Matsumoto, Pocai, Rossetti, Depinho, & Accili, 2007; Ayala et al, 1999). Finally, the 

inhibition of FoxO1 by insulin results in the attenuation of hepatic gluconeogenesis, and blood 

glucose levels are kept low in healthy subjects (Dong et al, 2008; Lu et al, 2012).  

These data indicate that gluconeogenesis is a critical mechanism to elevate the hepatic glucose 

output and to induce high levels of blood glucose in diabetes mellitus. However, little is known about 

the relationship between periodontal disease and hepatic gluconeogenesis. In the present study, we 

examined the effects of P. gingivalis on the phosphorylation and translocation of FoxO1 in HepG2 

cells. 
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Materials and Methods 

Materials 

Dulbecco's modified Eagle’s medium (DMEM), human recombinant insulin, and hemin were 

purchased from Wako Chemicals (Osaka, Japan). Brain heart infusion and yeast extract were obtained 

from BD Bioscience (Franklin Lakes, NJ, USA). 2-methyl-1,4-naphthoquinone (vitamin K3) was 

purchased from Tokyo Kasei (Tokyo, Japan). Antibodies against phospho-Akt (Ser473), FoxO1 

(C29H4), and phospho-FoxO1 (Thr 24)/FoxO3a (Thr 32) were obtained from Cell Signaling 

Technology (Danvers, MA, USA). Antibodies against β-actin and histone H3 were obtained from 

Sigma Aldrich (St Louis, MO, USA), and antibodies against B23 (C-19) and Eps15 (C-20) were 

obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

 

Cell culture 

Human hepatocyte carcinoma HepG2 cells were plated in plastic dishes at a density of 10 × 104 cells/ 

mL and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) at 37°C under a 

humidified atmosphere of 5% CO2. Cells were cultured for 3 days and used for experiments after 

reaching confluence.  

 

Bacterial culture and treatment with SNAP-P. g.  

We used the SNAP26b-tagged P. gingivalis (SNAP-P. g.), which was previously constructed.11 

Briefly, a shuttle vector containing the SNAP26b gene cloned under the control of the P. gingivalis 

endogenous trxB prompter was transformed into P. gingivalis ATCC33277. SNAP-P.g. was cultured 

in brain heart infusion containing 0.5% yeast extract, 10 µg/mL hemin, and 1 µg/mL 2-methyl-1, 

4-naphthoquinone (vitamin K3) in an anaerobic jar at 37°C.  

The cultured bacteria were centrifuged and washed twice with phosphate buffered saline (PBS). 

SNAP-P.g. was then suspended in PBS at 100 multiplicity of infection (MOI) and added to the 

cultured medium of HepG2 cells. The growth medium was replaced with 2% FBS DMEM and the 
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cells were incubated overnight before treatment with SNAP-P. g. Insulin (100 nM) was added for the 

indicated periods.  

 

Cellular fractionation  

HepG2 cells were collected and fractionation was performed using a CelLyticTM NuCLEARTM 

Extraction Kit (Sigma Aldrich) according to the manufacturer’s protocol with some modifications. 

Briefly, cells were scraped into lysis buffer (100 mM HEPES, pH 7.9, 15 mM MgCl2, and 100 mM 

KCL) and incubated on ice for 30 min. Then, 10% Igepal CA-630 solution was added to the swollen 

cells in lysis buffer to a final concentration of 0.6%. Cells were mixed, centrifuged at 10,000 g for 30 

s, and the supernatants were collected as the cytoplasmic fraction. The crude nucleic pellets were 

suspended in extraction buffer (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 0.42 M NaCl, 0.2 mM 

EDTA, and 25% (v/ v) glycerol) containing dithiothreitol (DTT) and protease inhibitor cocktail, 

mixed for 30 min, and centrifuged for 5 min at 10,000 g. The supernatants were collected as the 

nucleic fraction. 

 

SDS-PAGE and western blot analysis 

Cells were washed twice with PBS and then scraped into radioimmunoprecipitation assay (RIPA) 

buffer (1 mM DTT, 0.2 mM PMSF, 1 μg/mL leupeptin, 4 μg/mL aprotinin, and 50 mM NaF). Twelve 

micrograms of each sample were separated by SDS-PAGE and transferred to polyvinylidene fluoride 

membranes (Millipore, Medford, MA, USA). The membranes were incubated for 1 h at ambient 

temperature in 5% non-fat skim milk in PBS containing 0.05% Tween-20 (PBS-Tween), and then 

incubated overnight at 4°C in blocking solution containing specific antibodies (diluted at 1:1000). 

After washes in PBS-Tween, the membranes were incubated for 1 h at room temperature in blocking 

solution containing horseradish peroxidase-conjugated secondary antibodies (diluted at 1:5000). The 

membranes were then washed and the proteins recognized by the antibodies were visualized with an 
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Immobilon Western Chemiluminescent HRP Substrate (Merck Millipore Corp, MA, USA) according 

to the manufacturer's instructions.  

 

Immunocytochemistry 

HepG2 cells were cultured on sterile 18-mm round coverslips, and immunocytochemistry was 

performed as described previously (Yoshida et al, 2012). Briefly, the cells were fixed with 3% 

formalin for 30 min and then permeabilized with 0.1% Triton X-100 in PBS for 2 min on ice. After 

blocking with 4% BSA in PBS for 1 h, the cells were incubated with anti-phospho-FoxO1 antibody or 

normal rabbit IgG overnight at 4°C, followed by Alexa Fluor 488-conjugated anti-rabbit IgG. The 

cells were then treated with Hoechst 33342 for nuclear staining. The samples were mounted and 

observed using an inverted fluorescence microscope (ECLIPSE Ti-U, Nikon, Tokyo). Images were 

acquired using an ECLIPSE Ti-U microscope with NIS-Elements software (Nikon, Tokyo, Japan). 
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Results 

Insulin increased the phosphorylation and translocation of FoxO1 in HepG2 cells 

To examine the effect of insulin on FoxO1 in HepG2 cells, we first treated the cells with 100 nM 

insulin for 0 to 60 min and determined the expression of phosphorylated-FoxO1 and FoxO1 proteins 

by western blot. The phosphorylation of FoxO1 on threonine 24 was induced after 60 min of exposure 

to insulin (Fig. 1A).  

FoxO1 is known to translocate to the cytoplasm from the nucleus after its phosphorylation, and its 

activity as a transcription factor decreases. We therefore determined whether FoxO1 localization 

changed after insulin treatment in HepG2 cells. The immunocytochemistry results showed that 

phosphorylated FoxO1 was detected in the nucleus of untreated cells (Fig. 1B, a). In contrast, 30 min 

and 60 min after treatment with 100 nM insulin, phosphorylated FoxO1 translocated to the cytoplasm 

(Fig. 1B, b and c). Hoechst 33342 staining of nuclei (Fig. 1B, d, e, and f) and the merged images (Fig. 

1B, g, h, and i) are shown.  

To confirm the results presented in Figure 1B, cytosolic and nuclear proteins were prepared from 

the cells treated with or without insulin and analyzed by western blot. As shown in Figure 1C, the 

presence of the phosphorylated FoxO1 protein in the cytosolic fraction increased 60 min after 

treatment with 100 nM insulin compared to that in the untreated cells (Fig. 1C, upper panel). The 

purity of the nuclear (Fig. 1C, middle panel) and cytosolic fractions (Fig. 1C, bottom panel) was 

confirmed using antibodies against B23 and Eps15, respectively.  

 

SNAP-P. g. internalized into HepG2 cells and attenuated the insulin-induced Akt/FoxO1 

pathway 

Because P. gingivalis is known to internalize in host cells and express its virulence, we first 

confirmed whether P. gingivalis also invaded human HepG2 cells. To detect P. gingivalis within the 

cells, we used the previously constructed SNAP26b-tagged P. gingivalis (SNAP-P.g.) (8). The cells 

were incubated with SNAP-P.g. at a concentration of 100 MOI for 0 to 6 h, and SNAP-P.g. was 
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detected by western blot using an anti-SNAP26b antibody. As shown in Figure 2A, the intensity of 

the band corresponding to SNAP26b increased in a time-dependent manner up to 6 h, indicating that 

SNAP-P.g. internalized into HepG2 cells.  

Next, we examined the effects of SNAP-P.g. on the insulin-induced Akt/FoxO1 pathway in HepG2 

cells. HepG2 cells were treated with insulin for 30 min after incubation with or without 100 MOI of 

SNAP-P.g. for 6 h. Akt phosphorylation on serine 473 was then determined by western blot. The level 

of phosphorylated Akt increased after insulin treatment (Fig. 2B, lane 2). Pre-incubation with 

SNAP-P.g. decreased the rate of Akt phosphorylation induced by insulin (Fig. 2B, lane 3). Moreover, 

in HepG2 cells treated with 100 nM insulin for 60 min, FoxO1 phosphorylation on threonine 24 

increased compared with that of untreated cells (Fig. 2C, lane 1 and 2). This effect of insulin on 

FoxO1 phosphorylation was suppressed by pre-incubation with SNAP-P.g. for 6 h (Fig. 2C, lane 3). 

SNAP-P.g. itself did not affect FoxO1 phosphorylation (Fig. 2C, lane 4).  

 

SNAP-P. g. inhibited the insulin-induced translocation of FoxO1 in HepG2 cells 

We further verified whether SNAP-P.g. affected the translocation of FoxO1 regulated by insulin. 

HepG2 cells were incubated with or without 100 nM of insulin for 60 min after treatment with 100 

MOI of SNAP-P.g. for 6 h. FoxO1 localization was then detected by immunocytochemistry and 

western blot.  

In insulin-treated cells, the accumulation of phosphorylated FoxO1 in the cytoplasm was increased 

when compared with that of untreated cells (Fig. 3A, a and b). SNAP-P.g. inhibited the 

insulin-induced translocation of phosphorylated FoxO1 to the cytoplasm (Fig. 3A, c). The localization 

of phosphorylated-FoxO1 was not altered in cells treated with SNAP-P.g. only (Fig. 3A, d). The 

nuclei were stained with Hoechst 33342 (Fig. 3A, e to h) and images were merged (Fig. 3A, i to l). 

Images of cells stained with normal rabbit IgG instead of anti-phospho-FoxO1 antibody (negative 

control) are shown in Figure 3B. 
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We next prepared cytosolic and nuclear proteins from the cells and detected the localization of 

phosphorylated FoxO1 by western blot. Consistent with the results presented in Figure 3A, insulin 

treatment induced the translocation of phosphorylated FoxO1 to the cytoplasmic fraction (Fig. 3C, 

lane 1 and 4), and this effect of insulin on phosphorylated FoxO1 translocation was inhibited by 

SNAP-P.g. (Fig. 3C, lane 3). 
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Discussion 

P. gingivalis is an oral bacterium that is generally found within gingival tissues and dental plaque. P. 

gingivalis is also known to invade the cardiac endothelium (Deshpande, Khan, & Genco, 1998) 

and spread into the bloodstream in patients with periodontitis (Castillo et al, 2011). Additionally, P. 

gingivalis is considered to evade circulating phagocytes by adhering to erythrocytes (Belstrom et al, 

2011). Indeed, we previously found that SNAP-P. g. was detected in the liver of mice orally infected 

with SNAP-P.g. Additionally, it was detected at a high frequency in mice with high blood glucose 

levels (Ishikawa et al, 2013). These observations suggest that oral P. gingivalis probably translocates 

to the liver through systemic circulation and is implicated in hepatic gluconeogenesis. We therefore 

used hepatic HepG2 cells to investigate the effects of P. gingivalis on gluconeogenesis in the present 

study. To investigate association between oral bacteria and glucose metabolisms in the liver is 

important for understanding the mechanisms by which periodontal disease influences diabetes 

mellitus. However, there are few reports showing the relationship between oral bacteria and hepatic 

gluconeogenesis. This is the first report indicating that P. gingivalis is associated with  

gluconeogenesis by regulating FoxO1 in insulin-treated HepG2 cells. 

FoxO1 increases hepatic glucose production in response to insulin (Matsumoto, Pocai, Rossetti, 

Depinho, & Accili, 2007). There are four FoxO proteins in mammals: FoxO1, FoxO3, FoxO4, and 

FoxO6. Among these, FoxO1 is known to participate in glucose production in the liver (Haeusler, 

Kaestner, & Accili, 2010; Zhang et al, 2012). Thus, in the present study, we focused on FoxO1 in 

HepG2 cells treated with insulin and/or SNAP-P.g.  

Akt is phosphorylated in response to insulin and plays critical roles in regulating both glycogen 

synthesis and gluconeogenesis in the liver. Because FoxO1 contains potential Akt phosphorylation 

sites (Nakae, Park, & Accili, 1999), we verified the phosphorylation status of both Akt and FoxO1 

in insulin-treated HepG2 cells. Our results showed that Akt was phosphorylated 30 min after 

treatment with insulin (Fig. 2B). In contrast, the phosphorylation and translocation of FoxO1 was 
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induced 60 min after treatment with insulin following Akt phosphorylation (Fig. 1A). When HepG2 

cells were infected with SNAP-P.g. for 6 h, the effect of insulin on Akt phosphorylation was inhibited 

(Fig. 2B). SNAP-P. g. internalization also decreased the effects of insulin on the phosphorylation and 

translocation of FoxO1 (Fig. 3A and C). These results suggest that SNAP-P. g. is internalized into 

HepG2 cells and decreases FoxO1 phosphorylation, probably by inhibiting insulin-induced Akt 

phosphorylation.  

Although the Akt-dependent inactivation of FoxO1 is considered to be essential for the 

insulin-induced suppression of hepatic glucose output after feeding, Lu et al. (2012) reported that the 

genetic manipulation of Akt and FoxO1 does not affect insulin signaling and metabolic responses, 

suggesting an alternative mechanism through which liver responds to insulin signaling under some 

conditions in vivo. In the present study, we examined the effect of P. gingivalis on insulin signaling 

using HepG2 cells in vitro but not in vivo. It also remains unknown whether P. gingivalis affects the 

transcription activity of FoxO1 and the expression of its regulatory genes that are involved in 

gluconeogenesis, such as PEPCK and G6Pase. Further studies are needed to investigate whether our 

results shown in this study can be observed in mouse livers infected with P. gingivalis in vivo and 

whether the inhibitory effects of P. gingivalis on hepatic insulin signaling result in abnormal 

gluconeogenesis.  

Furthermore, the mechanism by which SNAP-P.g. decreases Akt phosphorylation was not 

elucidated in this study. P. gingivalis presents many virulence factors that promote periodontal disease 

such as fimbriae, lipopolysaccharide (LPS), and cysteine proteinases. Moreover, it is considered that 

the ability of P. gingivalis to adhere to and invade host cells is critical to express its virulence 

(Lamont, & Yilmaz, 2002; Tribble, Mao, James, & Lamont, 2006). Recently, it was reported 

that gingipains, P. gingivalis cysteine proteinases, inactivated Akt phosphorylation on threonine 308 

and serine 473 in human gingival epithelial cells (Nakayama, Inoue, Naito, Nakayama, & Ohara, 

2015). LPS from P. gingivalis also suppressed Akt kinase activity in rat sublingual acinar cells 

(Slomiany, B. L., & Slomiany, A, 2011). Moreover, in our preliminary experiments, 
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heat-inactivated SNAP-P.g., which was incubated for 10 min at 100°C, did not internalize into HepG2 

cells, and insulin-induced Akt phosphorylation was not altered (data not shown). Based on these 

observations, it is likely that some gingipains and the internalization of SNAP-P. g. play important 

roles in the inhibition of FoxO1 phosphorylation and translocation. To understand the role of P. 

gingivalis in hepatic gluconeogenesis, further studies investigating which P. gingivalis factors 

regulate the Akt/FoxO1 pathway and whether the internalization of P. gingivalis into host cells is 

critical for its effects are needed. 

 

In conclusion, we demonstrated that P. gingivalis internalizes into human hepatocytes, HepG2 cells, 

and attenuates the insulin-induced activation of the Akt/FoxO1 pathway. Our results suggest that 

periodontal disease may increase hepatic gluconeogenesis by reducing the effects of insulin on 

FoxO1. 



15 
 

Acknowledgments 

We thank the Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, 

Tokushima University Graduate School for its technical support.  



16 
 

References

Ayala, J. E., Streeper, R. S., Desgrosellier, J. S., Durham, S. K., Suwanichkul, A., Svitek, C. 
A., et al. (1999). Conservation of an insulin response unit between mouse and human 
glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR 
binds the insulin response sequence. Diabetes, 48(9), 1885-1889. 

Belstrom, D., Holmstrup, P., Damgaard, C., Borch, T. S., Skjodt, M. O., Bendtzen, K., et al. 
(2011). The atherogenic bacterium Porphyromonas gingivalis evades circulating 
phagocytes by adhering to erythrocytes. Infect Immun, 79(4), 1559-1565. 

Castillo, D. M., Sanchez-Beltran, M. C., Castellanos, J. E., Sanz, I., Mayorga-Fayad, I., Sanz,  
M., et al. (2011). Detection of specific periodontal microorganisms from bacteraemia 
samples after periodontal therapy using molecular-based diagnostics. J Clin Periodontol, 
38(5), 418-427. 

Christgau, M., Palitzsch, K. D., Schmalz, G., Kreiner, U., & Frenxel, S. (1998). Healing 
response to non-surgical periodontal therapy in patients with diabetes mellitus: clinical, 
microbiological, and immunologic results. J Clin Periodontol, 25, 112-124. 

Demmer, R. T., Desvarieux, M., Holtfreter, B., Jacobs. DR, Jr., Wallaschofski, H., Nauck, M., 
et al. (2010). Periodontal status and A1C change: longitudinal results from the study of 
health in Pomerania (SHIP). Diabetes Care, 33(5), 1037-1043. 

Deshpande, R. G., Khan, M. B., & Genco, C. A. (1998). Invasion of aortic and heart 
endothelial cells by Porphyromonas gingivalis. Infect Immun, 66(11), 5337-5343. 

Dong, X. C., Copps, K. D., Guo, S., Li, Y., Kollipara, R., DePinho, R. A., et al. (2008) 
Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient 
homeostasis and endocrine growth regulation. Cell Metab, 8(1), 65-76. 

Engebreston, S. P., Hyman, L. G., Michalowicz, B. S., Schoenfeld, E. R., Gelato, M. C., Hou, 
W., et al. (2013) The effect of nonsurgical periodontal therapy on hemoglobin A1c levels 
in persons with type 2 diabetes and chronic periodontitis: a randomized clinical trial. 
JAMA, 310(23),282431. 

Guo, S., Copps, K. D., Dong, X., Park, S., Cheng, Z., Pocai, A., et al. (2009). The Irs1 branch 
of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. 
Mol Cell Biol, 29(18), 5070-5083. 

Haeusler, R. A., Kaestner, K. H., & Accili, D. (2010). FoxOs function synergistically to 
promote glucose production. J Biol Chem, 285(46), 35245-35248. 

Hajishengallis, G. (2015). Periodontitis: from microbial immune subversion to systemic 
inflammation. Nat Rev Immunol, 15(1), 30-44. 

Ishikawa, M., Yoshida, K., Okamura, H., Ochiai, K., Takamura, H., Fujiwara, N., et al. 
(2013). Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic 



 

glycogen synthesis through the Akt/GSK-3beta signaling pathway. Biochim Biophys 
Acta, 1832(12), 2035-2043. 

Iwamoto, Y., Nishimura, F., Nakagawa, M., Sugimoto, H., Shikata, K., Makino, H., et al. 
(2001). The effect of antimicrobial periodontal treatment on circulating tumor necrosis 
factor-alpha and glycated hemoglobin level in patients with type 2 diabetes. J 
Periodontol, 72(6), 774-778. 

Janket, S. J., Wightman, A., Baird, A. E., Dyke, T. E., & Jones, J. A. (2005). Does 
periodontal treatment improve glycemic control in diabetic patients? A meta-analysis of 
intervention studies. J Dent Res, 84(12), 1154-1159. 

Lamont, R. J., & Yilmaz, O. (2002). In or out: the invasiveness of oral bacteria. Periodontol 
2000, 30:61-69. 

Lu, M., Wan, M., Leavens, K. F., Chu, Q., Monks, B. R., Fernandez, S., et al. (2012). Insulin 
regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med, 
18(3), 388-395. 

Makiura, N., Ojima, M., Kou, Y., Furuta, N., Okahashi, N., Shizukuishi, S., et al. (2008). 
Relationship of Porphyromonas gingivalis with glycemic level in patients with type 2 
diabetes following periodontal treatment. Oral Microbiol Immunol, 23(4), 348-351. 

Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R. A., & Accili, D. (2007). Impaired 
regulation of hepatic glucose production in mice lacking the forkhead transcription factor 
Foxo1 in liver. Cell Metab, 6(3), 208-216. 

Moore, M. C., Connolly, C. C., & Cherrington, A. D. (1998). Autoregulation of hepatic 
glucose production. Eur J Endocrinol, 138(3), 240-248. 

Nakae, J., Park, B. C., & Accili, D. (1999). Insulin stimulates phosphorylation of the 
forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive 
pathway. J Biol Chem, 274(23), 15982-15985. 

Nakayama, M., Inoue, T., Naito, M., Nakayama, K., & Ohara, N. (2015). Attenuation of the 
phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis 
gingipains RgpA, RgpB, and Kgp. J Biol Chem, 290(8), 5190-5202. 

Needleman, I., McGrath, C., Floyd, P., & Biddle, A. (2004). Impact of oral health on the life 
quality of periodontal patients. J Clin Periodontol, 31(6), 454-457. 

Simpson, T. C., Needleman, I., Wild, S. H., Moles, & D. R., Mills, E. J. (2010). Treatment of 
periodontal disease for glycaemic control in people with diabetes. Cochrane Database 
Syst Rev (5), Cd004714. 

Slomiany, B. L., & Slomiany, A. (2011). Ghrelin protects against the detrimental 
consequences of Porphyromonas gingivalis-induced Akt inactivation through 
S-Nitrosylation on salivary mucin synthesis. Int J Inflam, 807279. 



 

Taylor, J. J., Preshaw, P. M., & Lalla, E. (2013). A review of the evidence for pathogenic 
mechanisms that may link periodontitis and diabetes. J Clin Periodontol, 40 Suppl 14, 
S113-134. 

Tribble, G. D., Mao, S., James, C. E., & Lamont, R. J. (2006). A Porphyromonas gingivalis 
haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is 
important for invasion. Proc Natl Acad Sci U S A, 103(29), 11027-11032.  

White, M. F. (2003). Insulin signaling in health and disease. Science, 302, 1710-1711. 
Yoshida, K., Okamura, H., Hoshino, Y., Shono, M., Yoshioka, M., Hinode, D., et al. (2012). 

Interaction between PKR and PACT mediated by LPS-inducible NF-kappaB in human 
gingival cells. J Cell Biochem, 113(1), 165-173. 

Zhang, K., Li, L., Qi, Y., Zhu, X., Gan, B., DePinho, R. A., et al. (2012). Hepatic suppression 
of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology, 
153(2), 631-646. 

 

 

 

 



 

Figures  

Figure 1: Insulin induces the phosphorylation and translocation of FoxO1 in HepG2 cells  

HepG2 cells were treated with 100 nM of insulin for 0 to 60 min. (A) Cells were subjected to western 

blot analysis with anti-phospho-FoxO1 (pFoxO1), FoxO, and β-actin. A representative data of three 

separate experiments is shown. (B). Localization of phosphorylated FoxO1 detected by 

immunocytochemistry using an anti-phospho-FoxO1 antibody (green, a, b, and c). Hoechst 33342 was 

used to stain the nuclei (blue, d, e, and f). Microscopic images of the same field were taken and 

merged (g, h, and i). (C). Nuclear (Nucleus) and cytosolic (Cytoplasm) fractions were prepared from 

the cells. Each sample was subjected to western blot analysis with anti-phospho-FoxO1 (pFoxO1), 

B23, and Eps15 antibodies. The immunoblots shown are representative of three separate experiments. 

 

Figure 2: SNAP-P.g. internalizes into HepG2 cells and decreases insulin-induced Akt/FoxO1 

phosphorylation  

(A) HepG2 cells were treated with 100 MOI of SNAP-P.g. for up to 6 h. The presence of SNAP26b 

within the cells was analyzed by western blot using an anti-SNAP26b and β-actin antibody. The 

arrow indicates SNAP26b-specific bands; ns, non-specific bands. A representative data of three 

separate experiments is shown. (B), (C) HepG2 cells were pretreated with 100 MOI of SNAP-P.g for 

6 h and then treated with or without 100 nM insulin for 30 min (B) or 60 min (C). Cell lysates were 

analyzed by western blot using an anti-phospho-Akt (pAkt), Akt, phospho-FoxO1 (pFoxO1), FoxO1, 

and β-actin antibody. The immunoblots shown are representative of three separate experiments. 

 

Figure 3: SNAP-P.g. inhibits insulin-induced FoxO1 translocation in HepG2 cells  

HepG2 cells were pretreated with 100 MOI of SNAP-P.g. for 6 h and then treated with or without 100 

nM insulin for 60 min. (A) Phosphorylated FoxO1 (pFoxO1, green, a to d) was detected by 

immunocytochemistry using an anti-phospho-FoxO1 antibody and a fluorescence microscope. 

Hoechst 33342 was used to stain the nuclei (blue, e to h). Microscopic images of the same field were 



 

taken and merged (i to l). (B) As a negative control, cells stained with normal rabbit IgG instead of 

anti-phospho-FoxO1 are shown. (C) Nuclear (Nucleus) and cytosolic (Cytoplasm) fractions were 

prepared from the cells. Each sample was subjected to western blot analysis with an 

anti-phospho-FoxO1 (pFoxO1), histone H3, and Eps15 antibody. A representative data of three 

separate experiments is shown. 
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