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ABSTRACT 

The authors have developed a β-tricalcium-phosphate (β-TCP) powder modified mechano-

chemically through the application of a ball-milling process (mβ-TCP). The resulting powder 

can be used in a calcium-phosphate-cement (CPC). In this study, the effects of the powder-to-

liquid ratio (P/L ratio) on the properties of the CPCs were investigated, and an appropriate P/L 

ratio that would simultaneously improve injectability and strength was clarified. The mβ-TCP 

cement mixed at a P/L ratio of 2.5 and set in air exhibited sufficient injectability until 20 min 

after mixing, and strength similar to or higher than that mixed at a P/L ratio of 2.0 and 2.78. 

Although the mβ-TCP cements set in vivo and in SBF were found to exhibit a lower strength 

than those set in air, it did have an appropriate setting time and strength for clinical 

applications. In conclusion, P/L ratio optimization successfully improved the strength of 

injectable mβ-TCP cement. 
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1. Introduction 

Calcium-phosphate-cements (CPCs) are widely used for bone repair and bone augmentation
1-

4)
. However, one of the problems with currently available commercial CPCs is their poor 

injectability
5, 6)

. CPC pastes are required to exhibit a sufficient degree of injectability to 

enable minimally invasive bone-defect filling
7)

. A effective approach to improving the 

injectability is to reduce the powder-to-liquid ratio (P/L ratio) of the CPC
8)

. However, doing 

so adversely affects the mechanical properties of a CPC after setting, while simultaneously 

increasing the setting time
3, 9)

. An effective approach to improve the injectability is decreasing 

the particle size of CPC powder
3)

. One popular process to reduce the size is mechanical 

milling process. The authors have developed β-TCP powders, produced using a ball-milling 

process, as a new CPC constituent
10)

. A few previous researches evaluated the effects of 

mechanical milling of β-TCP powders on their properties, and they indicated significant 

improvement of CPC strength after setting using motor grinding
11)

 and ball-milling
12)

. 

However, they did not evaluate the injectability of CPC paste. A CPC paste made of the 

modified β-TCP powders
10)

 simultaneously exhibited better injectability and a shorter setting 

time than a paste made of conventional β-TCP powders with the same liquid and P/L ratio. 

Moreover, after setting, the CPC exhibited a higher strength. The modified β-TCP cement had 

an extremely high level of injectability, suggesting that the injectability would be sufficient 

despite the value falling as the P/L ratio increases. In addition, cements mixed with a higher 

P/L ratio should simultaneously exhibit a shorter setting time and higher strength
3, 9, 13)

. 

 There is no standard for evaluating injectability. However, a major parameter is the 

time that a CPC remains injectable from a syringe after mixing. Commercial CPCs remain 

injectable for a wide range of times, making it difficult to find an appropriate benchmark 

value. It has been suggested that a suitable injectable time is 12 min
14)

. In this study, the 

authors increased the P/L ratio to improve the setting time and strength while maintaining a 

sufficient degree of injectability until approximately 10 min after mixing. The calcium-to-

phosphate molar ratio (Ca/P ratio) of the CPC after setting is also an important factor 

affecting the cement properties. In this study, the concentrations of Ca
2+

 and PO4
2-

 in the 

liquid were adjusted to maintain a constant Ca/P ratio. 
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CPCs demonstrate self-setting both in SBF and in vivo; however, the properties of a 

CPC set in SBF differ from those of a CPC set in vivo. In particular, in vivo reported as being 

less complete
15, 16)

. Because a major clinical application of CPCs is the direct filling of bone 

defects, the CPC setting inevitably occurs in vivo. Hence, the properties of CPCs when set in 

vivo must be evaluated. The objective of this study was to investigate the effects of the P/L 

ratio on the properties of a CPC formulated using the modified β-TCP, and to clarify an 

appropriate P/L ratio to produce an injectable CPC paste. Moreover, the setting properties and 

strengths of cements set in vivo were investigated. 

 

2. Materials and Methods 

2.1. Preparation of β-TCP and calcium-phosphate-cement 

The CPC powder used in this study was a β-TCP powder (Taihei Chemical Industrial Co. Ltd., 

Osaka, Japan), as was used in a previous study
10)

. The β-TCP powder was first crushed in a 

mortar and pestle and then further ground using an auto-mortar (ANM-200, Nitto Kagaku Co., 

Ltd., Nagoya, Japan), operating at 120 rpm for 30 min. The resulting β-TCP powder was 

evaluated as a control (control β-TCP; cβ-TCP) in this study. The median particle size and 

average crystal size of cβ-TCP was 2.5 µm and 92 nm, respectively. The β-TCP powder was 

then milled using a planetary ball-mill (Pulverisette7, Fritsch GmbH, Idar-Oberstein, 

Germany). We placed 8 g of the β-TCP powder, 4 cm
3
 of ethanol (99.5%), and seven zirconia 

balls (15 mm diameter, ditto) in a zirconia jar (45 cm
3
, ditto). The milling was performed at a 

rotational speed of approximately 1000 rpm, for working times of 1 h interspersed with 

intervals of 1 h, up to a total working time of 24 h. The resulting powder (modified β-TCP; 

mβ-TCP) was then dried in an oven at 60°C for 24 h. The median particle size and average 

crystal size of mβ-TCP was 1.6 µm and 15 nm, respectively. To produce a CPC paste, the β-

TCP powder was mixed with the two types of liquid listed in Table 1
10, 17)

. The P/L ratio of the 

mβ-TCP to the first liquid, a CaCl2 solution, and to the second liquid, a NaH2PO4 solution, 

were 1 g:0.25 cm
3
:0.25 cm

3
 (P/L: 2.0), 1 g:0.2 cm

3
:0.2 cm

3
 (P/L: 2.5), and 1 g:0.18 cm

3
:0.18 

cm
3
 (P/L: 2.78), respectively. The β-TCP cements were mixed with CaCl2 solution first for 5 

min and then with NaH2PO4 solution for 1 min. The paste was manually mixed on a glass slab 
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using a stainless-steel spatula. The P/L ratio of the cβ-TCP powder was 2.0, and the Ca/P ratio 

of the liquid used in this study was 1.67. 

 

2.2. Injectability evaluation 

To evaluate the injectability, 5.5 g of β-TCP cement paste was placed in a disposable syringe 

(Terumo Syringe, Terumo Corp., Tokyo, Japan) immediately after mixing. The syringe had an 

opening with a 2-mm inner diameter, a body with a 13-mm inner diameter, and a total internal 

volume of 6 mm
3
. After being filled with β-TCP cement, each syringe was stored in an 

incubator at 37°C and a humidity of 100%. Then, the cement was allowed to set. The plunger 

of the syringe was loaded using a universal test machine (frame: Auto-graph AGS-500A; load 

cell: Type SLBL-1kN, Shimadzu Corp., Kyoto, Japan) at a constant cross-head speed of 20 

mm/min until the load reached 300 N. The mass of the β-TCP cement paste ejected from the 

syringe was measured and the injectability was calculated as: 

 

I = Mi/M0  (1) 

 

where I is the injectability, Mi is the mass of cement paste ejected, and M0 is the initial mass 

of cement paste in the syringe. 

 

2.3. Mechanical property evaluation 

The compressive strength (CS) and diametral tensile strength (DTS) of the β-TCP cements 

were evaluated. The specimens prepared for CS evaluation were 3 mm in diameter and 6 mm 

in height, while those for DTS evaluation were 6 mm in diameter and 4 mm in height. These 

were produced using molds formed from silicone rubber (KE-1300T, Shin-Etsu Chemical Co., 

Ltd., Tokyo, Japan). Cement paste was placed in the molds using a stainless steel spatula, and 

pushed into the corners of the mold using a toothpick to eliminate any large voids. The 

specimens were then placed in an incubator at 37°C and a humidity of 100% to set for 1 h to 5 

h, 1 day, 3 days, 1 week, and 2 weeks. After setting, the specimens were carefully extracted 

from the mold, and then dried in air at 60°C for 24 h. The dimensions of the specimens after 

Page 5 of 31

Japan Science and Technology Information Aggregator, Electronic (J-STAGE)

innovative, web-based, database-driven peer review and online submission workflow solution



For Peer Review

drying were measured using a digital caliper. The crosshead speed used for CS and DTS 

evaluation was 10 mm/min, that is, the strain rate for the CS and DTS evaluation was 1.0×10
-

2
/s and 6.6×10

-3
/s, respectively. Twenty specimens were prepared for testing under each 

condition.  

 

2.4. Porosity evaluation 

The density and porosity of the β-TCP cement were measured using the DTS evaluation 

specimens after being in the incubator for 1 week. Three specimens were evaluated for each 

P/L ratio. The weight of each specimen was measured using a microbalance, and the apparent 

density was calculated from the weight and the specimen volume. The real density was 

measured three times for each specimen using a gas pycnometer (AccuPyc 1330, 

Micromeritics Instrument Inc., Norcross, GA, USA). The porosity of the specimen was 

calculated as: 

 

P (%) = (1 – ρa/ρr) × 100 (2) 

 

where P is the porosity, ρa is the apparent density, and ρr is the real density. 

 

2.5. Microstructure observation 

The fracture surface of the DTS evaluation specimens, 2 weeks after mixing, were gold-

coated using an ion-coater (IB-3, Eiko Engineering Co. Ltd., Tokyo, Japan), and then 

observed using a scanning electron microscope (SEM; JCM5700, JEOL Ltd., Tokyo, Japan).  

 

2.6. Evaluation of crystallization and degradation in vivo and in simulated body fluid 

The crystallization and degradation of the β-TCP cement in vivo were evaluated. We 

purchased six male 5-week-old Sprague-Dawley rats (CLEA Japan Inc., Tokyo, Japan), and 

fed them for 1 week following the fundamental guidelines for the proper conduct of animal 

experiments under Japanese law, and with the approval of the Tokushima University animal 

administration. Upon reaching 5 weeks, all of the rats, which had an initial weight of 
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311.7±9.8 g were anesthetized using a weight-adjusted peritoneal injection of pentobarbital 

sodium salt (45 mg/kg). Under anesthesia, each rat’s back skin was shaved, and then cleaned 

with Betadine (Meiji Seika Pharma, Tokyo, Japan). Two incisions of around 50 mm in length 

were made in the left and right sides of the shaved parts. To insert the cement specimens, 

three pockets were formed in the subcutaneous fascia and the skin on each side of the rats’ 

backs. The β-TCP cement specimens were prepared while the surgery was ongoing, and were 

immediately placed in the pocket. The β-TCP cement powder and the tools used for mixing 

the cement were sterilized by ethylene oxide, and the liquid components were sterilized using 

a 0.45-µm mesh syringe filter. The mixed β-TCP cement paste was filled into a molds made 

of silicone rubber (KE-1300T, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan). These molds 

were 6 mm high, with an outer diameter of 6 mm and an inner diameter of 3 mm. We allowed 

5 min to elapse after placing the paste into the molds, then three of the cβ-TCP cement 

specimens, still in their molds, were inserted into the left pockets, and three mβ-TCP (P/L: 2.5) 

cement specimens, again in their molds, were installed into the right pockets. We were 

obliged to insert the samples complete with the mold because, 5 min after filling, the cement 

samples did not appear to be strong enough to be extracted from the mold. After specimen 

insertion, each pocket was closed using Vicryl needles (Johnson & Johnson Co., Ltd., Tokyo, 

Japan), and the fascia and skin were sutured. The rats were sacrificed by an over-

administration of pentobarbital sodium salt, 1 week, 2 weeks, and 4 weeks after the insertion 

of the samples. The cement specimens, still in their molds, were removed carefully, and then 

dried in a convection oven at 60°C for 1 h. Then, the specimens were gently extracted from 

their molds. The dimensions of those specimens exhibiting sufficient toughness were 

measured using a digital caliper, and then a CS evaluation was performed. After the CS 

evaluation, the fractured specimen was ground into a fine powder, and the phase constitution 

was analyzed using X-ray diffractometry (XRD) with a Cu Kα source at 30 kV and 15 mA. 

To clarify the effect of the cement setting conditions on the crystallization of 

hydroxyapatite (HAp), β-TCP cement which had been set in a simulated body fluid (SBF , 

ISO23317: 2014) was also evaluated. Specimens of cβ-TCP cement and mβ-TCP (2.5) cement 

with the same dimensions as the CS mold were prepared. After placing the cement paste in 
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the molds, we allowed 5 min to elapse and then placed three of the cement specimens in 30 

cm
3
 SBF in a 160-cm

3
 Teflon bottle for 1 week, 2 weeks, and 4 weeks in an incubator at 37°C. 

After soaking, a CS evaluation and XRD analysis were performed using the same procedures 

as those used to examine the samples inserted into the rats. 

 

2.7. Statistical evaluation 

All of the data were statistically analyzed by Steel–Dwass Test using EZR software (Saitama 

Medical Center, Jichi Medical University, Japan)
18)

 to compare the means of the different 

groups. The statistical significance was accepted at the 0.05 (number of specimen, n = 5 or 6) 

or 0.01 (n = 20) confidence level. 

 

3. Results 

3.1. Injectability of β-TCP cement paste 

Figure 1 shows the injectability of the β-TCP cement paste. The injectability was found to 

decrease as the P/L ratio increased. The paste of mβ-TCP (2.78) cement was not injectable 5 

min after mixing, while that of mβ-TCP (2.5) cement could be injected up until 20 min after 

mixing. Solid-liquid phase separation during injection was not observed in each paste. 

 

3.2. Mechanical properties of β-TCP specimen 

Figures 2 and 3 show the initial CS and DTS up until 5 h after mixing. The CS and DTS of 

the cβ-TCP cement specimens 5 h after mixing were 1.0±0.4 MPa and near zero, respectively. 

The initial strength of the mβ-TCP cement specimens increased with the P/L ratio. The CS 

and DTS values of the mβ-TCP (2.0) cement samples increased from 3 h to 4 h and from 2 h 

to 3 h after mixing, respectively. The CS values of the mβ-TCP (2.78) cement specimens up 

until 3 h after mixing were higher than those of the mβ-TCP (2.5) cement specimens.However, 

4 h and 5 h after mixing, the two cement specimens exhibited similar strengths. The DTS 

values of the mβ-TCP (2.78) cement specimens exhibited values that were lower than or 

similar to those of the mβ-TCP (2.5) cement specimens. Figure 4 shows the change in the CS 

of the cβ-TCP and mβ-TCP specimens with time after mixing. Although the mean value of the 
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CS of the mβ-TCP (2.0) cement samples exhibited a slow increase from 1 day to 2 weeks, 

there was no significant difference. The CS of the mβ-TCP (2.5 and 2.78) cement specimens 3 

days after mixing was higher than that at 1 day. However, there were no significant changes 

between 3 days and 2 weeks after mixing. Figure 5 shows the DTS of the cβ-TCP and mβ-

TCP specimens according to the time after mixing. The mean DTS value for the mβ-TCP (2.0 

and 2.5) cement specimens exhibited a gradual increase from 3 days to 2 weeks. The DTS of 

the mβ-TCP (2.78) cement specimens were not significantly different from those of the mβ-

TCP (2.5) cement specimens. 

 

3.3. SEM observations of β-TCP cement specimens 

Figure 6 shows the fracture surfaces of the DTS specimen of the β-TCP cement specimen, 2 

weeks after mixing. It was possible to observe long needle-like crystals and many pores in the 

granule structure on the fracture surface of the cβ-TCP cement specimens. On the fracture 

surfaces of the mβ-TCP (2.0) cement specimens, agglomerated plate-like crystals could be 

observed as indicated by the black arrows in Figure 6, and the number and size of the pores in 

the granule structure was smaller than those in the cβ-TCP cement specimen were. On the 

fracture surface of the mβ-TCP (2.5) cement specimen, the growth of numerous agglomerate 

grains was observed, and the crystal growth among the agglomerate grains was more distinct 

than that of the mβ-TCP (2.0) cement specimen. Conversely, the fracture surface of the mβ-

TCP (2.78) cement specimen exhibited more and larger pores among the agglomerate grains 

compared with those of the mβ-TCP (2.5) cement specimens (as indicated by the arrow in 

Figure 6). 

 

3.4. Porosity of β-TCP cement specimen 

Table 2 lists the porosities of the mβ-TCP specimens 1 week after mixing, according to the 

P/L ratio. The mβ-TCP (2.5) specimens, 1 week after mixing, exhibited the lowest porosity 

while the mβ-TCP (2.78) specimens, 1 week after mixing, exhibited the highest porosity. 

 

3.5. Crystallization and degradation of β-TCP cement specimens in vivo 
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The typical appearance of the cement specimens, 2 weeks after implantation in the backs of 

the rats, is shown in Figure 7. Many connective adhesions were observed between the cβ-TCP 

cement specimen and muscle fascia, and the surfaces of some the cβ-TCP specimens were 

peeled off and bonded to the muscle fascia (as indicated by the arrow in Figure 7). Therefore, 

the shapes of some of the cβ-TCP specimens after being extracted from their molds differed 

from those used for CS evaluation, resulting in the number of cβ-TCP specimens for CS 

evaluation being less than that of the mβ-TCP specimens. In contrast, few of the mβ-TCP 

specimens exhibited a change in shape after being extracted from their molds, because there 

were very few connective adhesions, and therefore little damage to the specimen. The 

condition of the specimens extracted from the molds, 1 week and 4 weeks after being inserted, 

was similar. 

Figure 8 shows the CS test results for the β-TCP specimens set in SBF and in vivo. 

The cβ-TCP specimens set in vivo produced CS values similar to those of the cβ-TCP 

specimens set in air, as shown in Figure 4. The CS values of the cβ-TCP specimens set for 4 

weeks in vivo were not evaluated, because the shape of the specimens after retrieval was not 

appropriate for testing. The mβ-TCP specimens set in vivo produced higher CS values than 

those of the cβ-TCP specimens, specifically, 17.9 MPa after being implanted for 2 weeks. The 

mβ-TCP specimens set in SBF also showed higher CS values than those of the cβ-TCP 

specimens, that is, 26.1 MPa after soaking for 2 weeks. Because of the large deviation in the 

CS values, the CS values of the mβ-TCP specimens set in SBF and in vivo were not 

significantly different after each implantation or soaking period, resulting in the implantation 

period having no significant effect on the CS values of the mβ-TCP specimens set in vivo. 

Meanwhile, there was a significant difference between the CS values of the mβ-TCP 

specimens set in SBF for 1 week and 2 weeks. 

 Figure 9 shows the XRD profiles of the mβ-TCP cement specimens set in SBF and in 

vivo for 1 week, 2 weeks, and 4 weeks, and those of the cement specimens set in air for 1 

week. We can see HAp peaks in each profile, indicating that large amounts of HAp 

precipitates formed regardless of the setting conditions. We can also see β-TCP peaks in each 

profile of the mβ-TCP cement specimens set in vivo, and set in SBF. However, β-TCP peaks 
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in profile of the specimens set in SBF were broader and smaller than those set in vivo. While 

β-TCP peaks could not be observed in those of mβ-TCP cement specimens set in air. These 

results suggest that most of the β-TCP in the mβ-TCP cement paste set in SBF and that in the 

control cement paste, dissolved and was converted to HAp precipitate. However, the β-TCP in 

the mβ-TCP cement paste set in vivo partially dissolved, with the β-TCP crystals remaining 

the cement specimen. 

 

4. Discussion 

4.1. Injectability of β-TCP cement paste 

The injectability of CPC is generally evaluated by ejecting a mass of CPC paste from a 

syringe subjected to a load. However, there are no standard test conditions governing the 

loading force, loading speed, size of syringe, and size of opening. Therefore, it is difficult to 

make comparisons with the values obtained for injectability in other studies. The mβ-TCP 

(2.5) remained injectable for more than 20 min, much longer than the generally required value 

of 12 min
14)

. Moreover, it is not clear that the injectability of mβ-TCP (2.5) 10 min after 

mixing, approximately 20% was sufficient. However, these values can be optimized by 

changing the test conditions. Therefore, the injectability of mβ-TCP (2.5) would appear to be 

well-suited to clinical applications. 

 

4.2. Strength of β-TCP specimens 

The initial CS values of the mβ-TCP (2.0) and mβ-TCP (2.5) specimens exhibited a steep 

increase between 3 h and 4 h after mixing, while the initial CS values of the mβ-TCP (2.78) 

did not exhibit such an increase between 1 h and 5 h after mixing. The steep increase in the 

CS values pointed to the rapid growth of the HAp crystals during the period, with the rapid 

HAp crystal growth of the CS of the mβ-TCP (2.78) specimens starting within 1 h of mixing. 

The initial DTS values of the mβ-TCP (2.0) specimen exhibited a steep increase between 2 h 

and 3 h after mixing, while those of the mβ-TCP (2.5) and mβ-TCP (2.78) specimens did not 

exhibit such an increase between 1 h and 5 h after mixing. The steep increase in the DTS 

values also suggests the rapid growth of the HAp crystals during this period. However, there 
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were some differences between the dependence of the CS and DTS values on time after 

mixing, as well as in the P/L ratio. One difference was that the period in which the steep 

increase occurred was not consistent, while another was that the CS value increased or 

saturated with the P/L ratio while some DTS values of the mβ-TCP (2.78) specimens were 

smaller than those of the mβ-TCP (2.5) specimens. The dominant factors affecting the CS and 

DTS values of brittle materials are different; the tensile strength is sensitive to the maximum 

size of defects in the specimen, while the compressive strength is not. With the progress of 

HAp crystal growth, the defects in the specimen, mainly pores in this study, possibly 

decreased in number and size, while the CS and DTS values simultaneously increased. 

However, the effect of reducing the number and size of the defects on the CS value was 

different from that on the DTS value, resulting in the difference in the duration of the steep 

increase. Although porosity data was not obtained for the specimens during the initial setting, 

the fracture surfaces of the CPC after the DTS test, as shown in Fig. 6, suggested that 

relatively larger pores could be observed in the mβ-TCP (2.0) and mβ-TCP (2.78) specimens. 

However, the size of the pores observed in the mβ-TCP (2.5) specimens was smaller. This 

smaller maximum pore size was one possible reason for the larger DTS of the mβ-TCP (2.5) 

specimens. 

 Because it was difficult to mix the mβ-TCP (2.78) paste, therefore limiting the time 

available for handling, there was not sufficient time to force the CPC paste into the corners of 

the molds. This insufficient filling of the CPC paste led to there being pores in the CS 

specimen that were so large that it is likely that the HAp crystals could not fill them. This is 

one possible reason for the CS values for mβ-TCP (2.78) being lower than those for mβ-TCP 

(2.5) from 1 day to 2 weeks after CPC mixing. In contrast, because the DTS specimen is 

larger than the CS specimen, it was not difficult to force the CPC paste into the corners of the 

molds. It suggested that the pore sizes in the mβ-TCP (2.78) DTS specimens were smaller 

than those in the CS specimens. This is one reason for the DTS values of mβ-TCP (2.78) 

being similar to those of mβ-TCP (2.5). 

 Figure 10 shows the correlation between the DTS and porosity of the mβ-TCP 

specimens 1 week after mixing. The mβ-TCP (2.5) appears to have a lower porosity than the 
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mβ-TCP (2.0), resulting in a higher DTS value than the mβ-TCP (2.0). Meanwhile, the mβ-

TCP (2.78) had a higher porosity than the mβ-TCP (2.5), resulting in the lower DTS value 

than that of mβ-TCP (2.5). However, the increase in the DTS value from mβ-TCP (2.0) to mβ-

TCP (2.78) with the porosity indicated that the porosity is not the only dominant factor 

affecting the DTS value. Another potential factor is the density of the HAp precipitations. 

Because the dense HAp precipitations in the agglomerate grains of the CPC specimen 

possibly contribute to the high strength of the grain, the DTS value of a CPC specimen with a 

high P/L ratio could be higher. The above two factors simultaneously affected the DTS value 

of the mβ-TCP (2.78) cement in this study, resulting in a DTS value higher than that of the 

mβ-TCP (2.0) but lower than that of the mβ-TCP (2.5). 

 

4.3. Microstructure of β-TCP specimen 

The precipitated needle-like HAp crystals of cβ-TCP cement did not form a network, resulting 

in the low strength of the cβ-TCP. As the P/L ratio increased, the granular structure became 

very difficult to observe, and a dense HAp precipitation network was formed. This dense 

network gives rise to a higher strength and faster setting. 

 

4.4. Crystallization and degradation of β-TCP cement specimens in vivo 

In this study, β-TCP cement specimens, still in their molds, were inserted into pockets formed 

in the backs of rats. The molds were used to maintain the shape of the specimen while the 

cement was setting. This procedure was required for CS evaluation; however, the specimens 

differed from the CPC injected into bone defects. The side surfaces of the cylindrical 

specimens were covered by the mold and therefore were not in direct contact with their 

surroundings, that is, hard and/or soft tissue, and body fluids. Therefore, the effects of the in 

vivo setting of the cement as observed in this study were quantitatively limited. However, they 

could suggest a qualitative effect. 

Only the cβ-TCP specimens proved difficult to retrieve without damage, due to the 

formation of connective tissue between the muscle fascia and the specimen. A major reason 

for this was the slow setting of the cβ-TCP cement; the slow growth of the HAp precipitates 
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allowed the growth of connective tissue into the specimen. Another major reason was the 

large number and size of the pores in the specimen; the space enhanced body fluid flow into 

the specimen, and thus supported the growth of connective tissue. With the increase in the 

time after cement mixing, both the growth of the HAp precipitates and that of the connective 

tissue progressed, thus enhancing the interaction between them. This was one possible reason 

why the damage to the specimen retrieved after being implanted for 4 weeks was conspicuous, 

such that CS evaluation could not be performed. 

The CS value of mβ-TCP cement set in SBF and that set in vivo were significantly 

smaller than that set in air. One potential reason for this is the reduction in the liquid 

concentration; because the cement paste is in direct contact with the SBF or body fluid, Ca
2+

 

and PO4
2-

 in the liquid could diffuse into the surrounding liquid. The Ca
2+

 and PO4
2-

 

concentrations in the cement paste were difficult to evaluate. However, it was high enough to 

precipitate HAp. In contrast, the concentrations of SBF and body fluid are not sufficient to 

precipitate HAp. Therefore, the concentrations of the cement paste are potentially higher than 

those of the SBF and body fluid. Thus, the Ca
2+

 and PO4
2-

 in the cement paste will diffuse into 

the SBF or body fluid, resulting in the reduction of the Ca
2+

 and PO4
2-

 concentrations of the 

cement paste. This reduction suppressed HAp precipitation, and either reduced the CS value 

of the cement or delayed the CS increase. 

Another reason for the mβ-TCP cement set in vivo having lower CS than that set in 

air was the body fluid contamination of the cement paste. Blood contamination of the liquid in 

the cement has been was reported to reduce the strength of a cement specimen
16)

. In this study, 

the source of the contamination was not blood, but the organic content of the body fluids 

could reduce the strength of the cement in a similar manner. Therefore, the cement could 

deform as it was setting, thus damaging the HAp crystal precipitates, and suppressing the 

growth of the HAp crystal network. Nevertheless, there was no significant difference between 

the CS value of cement set in vivo and in SBF 4 weeks after mixing. Therefore, the above 

mechanism whereby the CS value of a cement specimen is reduced did not have a significant 

effect in this study. A potential reason for this diminished effect on the CS value of a cement 

specimen was the quick setting in vivo and in SBF. 
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On the other hand, it is possible to observe a difference in the increase in the CS 

value according to the time that has elapsed since mixing. Although there was no significant 

difference between the CS value of mβ-TCP cement set in vivo, the average value increased 

according to the time after mixing. In contrast, the CS value of the mβ-TCP cement set in SBF 

increased up until 2 weeks after mixing and then exhibited saturation, while that of the mβ-

TCP cement set in air increased until 3 days after mixing, at which point it exhibited 

saturation. These results suggest that the time at which the CS value reaches saturation 

increases in the order of setting in air, setting in SBF, and setting in vivo. This order suggests 

the order in which the setting of the cement is delayed. However, the setting time of the mβ-

TCP cement in vivo was much shorter than that of the cβ-TCP cement, and is responsible for 

the washing-out of the cement in vivo. This is the main clinical advantage of the mβ-TCP 

cement developed as part of this research. 

 

5. Conclusions 

In a previous study, mβ-TCP (2.0) cement exhibited excellent injectability even 1 h after 

mixing. Therefore, the P/L ratio of β-TCP cement can be reduced to increase the strength of 

the cement while maintaining a sufficient degree of injectability. The mβ-TCP (2.5) cement 

paste remained sufficiently injectable up until 20 min after mixing. The initial CS and DTS 

values of the mβ-TCP (2.5) cement specimens, set in air, 4 h and 5 h after mixing were similar 

to or higher than those of mβ-TCP (2.78). The maximum CS and DTS values of the mβ-TCP 

(2.5) cement specimens set in air were 44.6 MPa and 7.4 MPa, respectively. These values 

were similar to those of mβ-TCP (2.78). The CS values of mβ-TCP (2.5) cement set in SBF 

and in vivo were significantly smaller than those of the specimens set in air. However, the 

values obtained demonstrated that the mβ-TCP cement used in this study is a promising 

candidate for application to many clinical scenarios. 
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Figure and Table captions 

 

Table 1 Concentration of mixing liquids
10, 17)

. 

Table 2 Porosity of β-TCP specimens, 1 week after mixing, according to the P/L ratio. 

Figure 1 Effect of P/L ratio and time after mixing on injectability of β-TCP cement paste. 

The data for cement (P/L=2.0) are shown in the previous study 
10)

. 

Figure 2 Initial compressive strength of β-TCP cements. The same letter indicates not 

significant differences among time after mixing within the same P/L ratio. The 

same number indicates not significant differences among P/L ratio within the 

same time after mixing (P < 0.05). Data of cβ-TCP cement 1 h and 2 h after 

mixing were excluded from statistical analysis, because the number of specimen 

was less than 3. 

Figure 3 Initial diametral tensile strength of β-TCP cements. The same letter indicates not 

significant differences among time after mixing within the same P/L ratio. The 

same number indicates not significant differences among P/L ratio within the 

same time after mixing (P < 0.05). Data of cβ-TCP cement 1 h and 2 h after 

mixing were excluded from statistical analysis, because the number of specimen 

was less than 3. 

Figure 4 Compressive strength of β-TCP cement specimens. The same letter indicates not 

significant differences among storage time within the same P/L ratio. The same 

number indicates not significant differences among P/L ratio within the same 

storage time (P < 0.01). 

Figure 5 Diametral tensile strength of β-TCP specimens. The same letter indicates not 

significant differences among storage time within the same P/L ratio. The same 

number indicates not significant differences among P/L ratio within the same 

storage time (P < 0.01). 

Figure 6 SEM images of fracture surface of diametral tensile strength specimen of β-TCP, 

2 weeks after mixing. White arrow indicates porosity and black arrows indicates 

plate-like crystals. 
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Figure 7 Specimens implanted in the backs rats for 2 weeks. Those implanted on the left 

were cβ-TCP cement and those implanted on the right were mβ-TCP cement. 

Figure 8 Compressive strength of β-TCP specimens set in SBF and set in rats. 

Figure 9 X-ray diffraction patterns of cβ-TCP and mβ-TCP specimens set in air, set in 

SBF, and set in vivo. Zirconia peaks originated from contamination from zirconia 

ball and jar
10)

. 

Figure 10 Dependence of compressive strength, diametral tensile strength, and porosity of 

β-TCP specimens 1 week after mixing. 
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Liquid P/L (2.0) P/L (2.5) P/L (2.78) 

First : CaCl2 solution 1.0 mol/l 1.25 mol/l 1.39 mol/l 

Second : NaH2PO4 solution 0.6 mol/l 0.75 mol/l 0.83 mol/l 

* Ca/P ratio of whole mixing liquid=1.67 
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     Porosity (%) 

cβ-TCP P/L (2.0)    53.2 ± 0.74 

mβ-TCP 

P/L (2.0)    41.9 ± 1.97 

P/L (2.5)    38.4 ± 0.89 

P/L (2.78)    47.4 ± 1.03 
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