Supporting Information for

Development of Thiol-Responsive Amide Bond Cleavage Device and Its Application for Peptide Nucleic Acid-Based DNA Releasing System

Akira Shigenaga*, Jun Yamamoto, Hiroko Hirakawa, Kenji Ogura, Nami Maeda, Ko Morishita, and Akira Otaka*

Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan

ashige@ph.tokushima-u.ac.jp (AS), aotaka@ph.tokushima-u.ac.jp (AO)

Table of Contents

General Methods	.S1
Preparation of Thiol-Responsive Amino Acid	.S2
Preparation and Processing Reaction of Thiol-Responsive Model Peptide	. S4
Preparation and Processing Reaction of Thiol-Responsive PNA	.S5
Melting Temperature Experiments	. S6
References	. S 8

Supplemental Figures

Figure S1	S7
Figure S2	

General Methods: All reactions were carried out under argon. For column chromatography, silica gel (KANTO KAGAKU N-60) was employed. Exact mass spectra were recorded on Waters MICROMASS[®] LCT PREMIERTM or Bruker Esquire200T. NMR spectra were recorded using JEOL GSX400 spectrometer at 400 MHz frequency for ¹H and 100 MHz frequency for ¹³C in CDCl₃. Chemical shifts are calibrated to the solvent signal. For HPLC separations, a Cosmosil 5C₁₈-AR-II analytical column (Nacalai Tesque, 4.6×250 mm, flow rate 1 mL/min) or a 5C₁₈-AR-II semi-preparative column (Nacalai Tesque, 10×250 mm, flow rate 2.5 mL/min) was employed, and eluting products were detected by UV at 220 nm. A solvent system consisting of 0.1% TFA in H₂O (*v*/*v*, soluvent A) and 0.1% TFA in MeCN (*v*/*v*, solvent B) was used for HPLC elution. Fluorescent spectra were recorded on Hitachi F-4500. Oligodeoxynucleotides were purchased form Nippon EGT Co., Ltd.

Preparation of Thiol-Responsive Amino Acid

Reagents and conditions. (i) *p*-nitrobenzenesulfonyl chloride (*p*NsCl), K₂CO₃, acetone, reflux, quant.; (ii) AcOH, H₂O, THF, quant.; (iii) PCC, CH₂Cl₂, 91%; (iv) NaClO₂, NaH₂PO₄, *tert*-BuOH, H₂O, acetone, 2-methyl-2-butene; (v) HCl, AcOEt; (vi) FmocOSu, Na₂CO₃, H₂O, MeCN, 70% (3 steps); (vii) Fmoc SPPS; (viii) TFA/Triethylsilane/H₂O=95/2.5/2.5.

2-*tert*-Butoxycarbonylamino-3,3-dimethyl-3-[2,4-dimethyl-6-(nitrobenzene-4-sulfonyloxy)-phenyl] propanol *tert*-butyldimethylsilyl ether (4).

To a stirred solution of phenol **3** (25.0 mg, 57.1 µmol) in acetone were added K₂CO₃ (81.0 mg, 818 µmol) and *p*-nitrobenzenesulfonyl chloride (33.8 mg, 90% purity, 137 µmol), and the resulting suspension was refluxed for 5.5 h. The resulting mixture was quenched by the addition of water and was extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, hexane/AcOEt=10/1) and 35.6 mg of sulfonate **2** (57.1 µmol, quant) was obtained as a colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ =-0.07 (6H, s), 0.83 (9H, s), 1.31 (3H, s), 1.37 (9H, s), 1.44 (3H, s), 2.22 (3H, s), 2.62 (3H, s), 3.38 (1H, dd, *J*=11.3 and 4.7 Hz), 3.43 (1H, dd, *J*=11.3 and 4.7 Hz), 4.27 (1H, dt, *J*=9.8 and 4.7 Hz), 4.73 (1H, d, *J*=9.8 Hz), 6.89 (1H, s), 6.94 (1H, s), 8.24 (2H, d, *J*=8.7 Hz), 8.42 (2H, d, *J*=8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ =-5.5 (CH₃), -5.4 (CH₃), 18.2 (C), 20.3 (CH₃), 25.7 (CH₃), 25.8 (CH₃×3), 26.7 (CH₃), 28.3 (CH₃×3), 28.5 (CH₃), 44.3 (CH₃), 56.5 (CH), 63.3 (CH₂), 78.8 (C), 120.6 (CH), 124.3 (CH×2), 129.8 (CH×2), 133.4 (CH), 133.9 (C), 136.7 (C), 140.0 (C), 142. (C)4, 149.2 (C), 150.8 (C), 155.9 (C); HRMS (ESI-TOF) calc. for C₃₀H₄₇N₂O₈SSi ([*M*+H]⁺): 623.2822, found; 623.2827.

2-*tert*-Butoxycarbonylamino-3,3-dimethyl-3-[2,4-dimethyl-6-(nitrobenzene-4-sulfonyloxy)-phenyl]propanol (5).

Glacial acetic acid (450 μ L) and water (153 μ L) were added to a solution of silyl ether **4** (37.0 mg, 59.4 μ mol) in THF (153 μ L). The reaction mixture was stirred overnight. After extraction with AcOEt, the organic phase was washed with saturated aqueous solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, hexane/AcOEt=4/1 then 1/1) and 30.2 mg of alcohol **5** (59.4 μ mol, quant.) was obtained as a

pale yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ =1.25 (3H, s), 1.39 (9H, s), 1.44 (3H, s), 2.19 (3H, s), 2.62 (3H, s), 3.44 (1H, dd, *J*=11.6 and 8.1 Hz), 3.52 (1H, dd, *J*=11.6 and 2.6 Hz), 4.42 (1H, m), 4.78 (1H, d, *J*=9.3 Hz), 6.81 (1H, s), 6.91 (1H, s), 8.23 (2H, d, *J*=8.2 Hz), 8.44 (2H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ =20.3 (CH₃), 25.7 (CH₃), 26.6 (CH₃), 28.1 (CH₃), 28.3 (CH₃×3), 43.7 (C), 58.0 (CH), 63.5 (CH₂), 79.5 (C), 120.9 (CH), 124.4 (CH×2), 129.7 (CH×2), 133.5 (C), 133.6 (CH), 137.0 (C), 139.8 (C), 142.3 (C), 149.0 (C), 150.9 (C), 156.6 (C); HRMS (ESI-TOF) calc. for C₂₄H₃₃N₂O₈S ([*M*+H]⁺): 509.1958, found; 509.1950.

2-*tert*-Butoxycarbonylamino-3,3-dimethyl-3-[2,4-dimethyl-6-(nitrobenzene-4-sulfonyloxy)-phenyl] propanal (6).

To a stirred solution of alcohol **5** (30.2 mg, 59.4 µmol) in dichloromethane (887 µL) was added PCC (131 mg, 475 µmol), and the resulting suspension was stirred overnight. To the reaction mixture was added the Celite and the obtained mixture was filtrated through the Celite pad. The resulting solution was concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, hexane/AcOEt=1/0 then 4/1) and 27.3 mg of aldehyde **6** (53.9 µmol, 91%) was obtained as a colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ =1.31 (3H, s), 1.39 (9H, s), 1.42 (3H, s), 2.24 (3H, s), 2.69 (3H, s), 5.09 (1H, d, *J*=8.3 Hz), 5.22 (1H, d, *J*=8.3 Hz), 6.95 (1H, s), 6.98 (1H, s), 8.21 (2H, d, *J*=8.7 Hz), 8.43 (2H, d, *J*=8.7 Hz), 9.27 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ =20.4 (CH₃), 25.4 (CH₃), 26.5 (CH₃), 27.7 (CH₃), 28.2 (CH₃×3), 43.2 (C), 65.2 (CH), 79.9 (C), 121.2 (CH), 124.4 (CH×2), 129.8 (CH×2), 131.5 (C), 133.8 (CH), 137.8 (C), 139.7 (C), 142.1 (C), 148.8 (C), 150.9 (C), 155.9 (C), 200.1 (C); HRMS (ESI-TOF) calc. for C₂₄H₃₁N₂O₈S ([*M*+H]⁺): 507.1801, found; 507.1801.

3,3-Dimethyl-3-[2,4-dimethyl-6-(nitrobenzene-4-sulfonyloxy)phenyl]-2-(9-fluorenylmethylcarbonylamino)propionic acid (7).

To a solution of aldehyde **6** (27.3 mg, 53.9 µmol) in acetone/*tert*-BuOH/H₂O (55/35/10 $\nu/\nu/\nu$, 1.17 mL) were added 2-methyl-2-butene (42.6 µL, 377 µmol), NaH₂PO₄ (10.3 mg, 85.8 µmol) and NaClO₂ (29.3 mg, 324 µmol), and the resulting mixture was stirred overnight. The reaction mixture was poured into saturated aqueous solution of NH₄Cl and it was extracted with diethyl ether. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. Hydrogen chloride in AcOEt (4 M, 432 µL) was added to the crude product, and the resulting mixture was stirred for 1 h. After concentration in vacuo, the obtained residue was dissolved in acetonitrile/10% w/ν aqueous solution of Na₂CO₃ (1/1, 486 µL). To the resulting solution was added FmocOSu (19.1 mg, 56.6 µmol), and the reaction mixture was stirred overnight. After acidification with 5% w/ν aqueous solution of KHSO₄, the obtained mixture was extracted with diethyl ether. The organic phase was washed with brine and concentrated in vacuo. The obtained crude product was purified by a preparative TLC

(SiO₂, chloroform/MeOH=10/1) and 24.2 mg of Fmoc derivative **7** (37.5 µmol, 70% (3 steps)) was obtained as a pale yellow amorphousness: ¹H NMR (CDCl₃, 400 MHz) δ =1.52 (3H, s), 1.55 (3H, s), 2.15 (3H, s), 2.63 (3H, s), 4.15 (1H, t, *J*=7.2 Hz), 4.27 (1H, dd, *J*=10.4 and 7.2 Hz), 4.35 (1H, dd, *J*=10.4 and 7.2 Hz), 4.44 (1H, br s), 5.19 (1H, d, *J*=9.0 Hz), 5.70 (1H, d, *J*=9.0 Hz), 6.70 (1H, s), 6.90 (1H, s), 7.22-7.30 (2H, m), 7.38 (2H, t, *J*=7.4 Hz), 7.49 (1H, d, *J*=7.4 Hz), 7.55 (1H, d, *J*=7.4 Hz), 7.75 (2H, d, *J*=7.4 Hz), 8.19 (2H, d, *J*=8.5 Hz), 8.39 (2H, d, *J*=8.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ =20.3 (CH₃), 25.0 (CH₃), 27.5 (CH₃), 27.9 (CH₃), 43.4 (C), 47.1 (CH), 59.6 (CH), 67.1 (CH₂), 119.9 (CH), 121.0 (CH), 121.0 (CH), 124.4 (CH×2), 125.0 (CH×2), 126.9 (CH×2), 127.6 (CH×2), 129.6 (CH×2), 132.1 (C), 133.6 (CH), 137.3 (C), 139.9 (C), 141.2 (C), 142.2 (C×2), 143.6 (C), 143.6 (C), 148.7 (C), 150.9 (C), 156.1 (C), 175.4 (C); HRMS (ESI-TOF) calc. for C₃₄H₃₃N₂O₉S ([*M*+H]⁺): 645.1907, found; 645.1919.

Preparation and Processing Reaction of Thiol Responsive Model Peptide

Preparation of thiol-responsive model peptide 2

Peptide **2** was synthesized by Fmoc SPPS according to a previous report.^{S1} Analytical HPLC condition: linear gradient of solvent B in solvent A, 10 to 80% over 30 min. Retention time=22.6 and 23.2 min, respectively for each diastereomer of peptide **2**. Semi-preparative HPLC condition: linear gradient of solvent B in solvent A, 30 to 70% over 30 min. MS (ESI-IT) calc. for $C_{68}H_{88}N_{13}O_{17}S$ ([*M*+H]⁺): 1390.6, found; 1390.7 and 1390.7.

Processing reaction of model peptide 2

Typical procedure: A stock solution of peptide **2** (0.5% *w/v* in MeCN/H₂O=1/1, 4.2 μ L; final concentration=0.02% *w/v*) was added to a mixture of phosphate buffer (pH 9.0, 100 mM, 21.0 μ L; final concentration=20 mM), MeCN (31.5 μ L; final concentration=30% *v/v*) and H₂O (38.9 μ L). To reaction mixture was added an aqueous solution of sodium 2-mercaptoethanesulfonate (1% *w/v*, 10.5 μ L; final concentration=0.1% *w/v*) and the obtained solution was incubated at 37 °C. Reaction progress was monitored by analytical HPLC and products were characterized by ESI-MS. Spectral data were identical with those reported previously.^{S1}

Analytical HPLC condition: linear gradient of solvent B in solvent A, 10 to 80% over 30 min. Retention time=10.9, 21.3 and 21.6 min, respectively for **9**, **8** and **8'** (an epimer of **8** at the carbon designated by an asterisk). Yields were calculated by following equation.

yield (%)=100×[*A*(**8**)+*A*(**8**')+*A*(**9**)]/[*A*(**2**)+*A*(**8**)+*A*(**8**')+*A*(**9**)] *A*(**n**): peak area of compound **n** in HPLC chart.

Preparation and Processing Reaction of Thiol-Responsive PNA

Preparation of thiol-responsive PNA 12

PNA **12** was synthesized by using Fmoc SPPS. Reagents and conditions are summarized in Table S1. Fmoc-**t**-OH was synthesized according to a literature.^{S2} Analytical HPLC condition: linear gradient of solvent B in solvent A, 1 to 50% over 30 min. Retention time=22.0 min. MS (ESI-IT) calc. for $C_{115}H_{152}N_{38}O_{40}S$ ([*M*+2H]²⁺): 1369.1, found; 1369.1.

Table S	51
---------	----

residue No.	reagents (eq.) ^a	reaction time
1	Fmoc-t-OH (5), PyBOP (5), NEM (10)	1 h
2	Fmoc-t-OH (5), PyBOP (5), NEM (10)	1 h
3	Fmoc-t-OH (5), PyBOP (5), NEM (10)	1 h
4	Fmoc-t-OH (5), PyBOP (5), NEM (10)	1 h
5	7 (2), PyBOP (2), NEM (4)	overnight
6	Fmoc-Gly-OH (5), PyBOP (5), NEM (10)	1 h
7	Fmoc-t-OH (4), HCTU (3.8), DIEA (4)	2 h
8	Fmoc-t-OH (4), HCTU (3.8), DIEA (4)	2 h
9	Fmoc-t-OH (4), HATU (3.8), DIEA (4)	2 h
10	Fmoc-t-OH (4), HATU (3.8), DIEA (4)	12 h (twice)
11	Fmoc-Lys(Boc)-OH (4), HATU (3.8), DIEA (4)	12 h (twice)

(a) DMF/DMSO=3/1 was used as a solvent.

 $\label{eq:HATU: 2-(1H-7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate HCTU: 5-chloro2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate NEM: N-ethylmorpholine$

PyBOP: (1H-1,2,3-benzotriazolyloxy)tris(pyrrolidino)phosphonium hexafuluorophosphate

Processing reaction of PNA 12

A stock solution of PNA **12** (0.5% *w*/*v* in H₂O, 5.6 µL; final concentration=0.02% *w*/*v*) was added to a mixture of phosphate buffer (pH 9.0, 100 mM, 28.0 µL; final concentration=20 mM) and H₂O (105 µL). To reaction mixture was added an aqueous solution of sodium 2-mercaptoethanesulfonate **11** (10% *w*/*v*, 1.4 µL; final concentration=0.1% *w*/*v*) and the obtained solution was incubated at 37 °C for 24 h, which was followed by the second addition of thiol **11** (10% *w*/*v*, 1.4 µL; final concentration=0.1% *w*/*v*), and the reaction mixture was incubated at 37 °C for additional 24 h. Reaction progress was monitored by analytical HPLC and products were characterized by ESI-MS. Analytical HPLC condition: linear gradient of solvent B in solvent A, 1 to 50% over 30 min. Retention time=10.8 and 20.7 min, respectively for **14** and **13**. MS (ESI-IT) calc. for **14**: C₄₄H₆₀N₁₇O₁₆ ([*M*+H]⁺): 1082.4, found; 1082.4. **13**: C₆₅H₈₉N₂₀O₂₀ ([*M*+H]⁺): 1469.7, found; 1469.5.

Melting Temperature Experiments

The melting temperature experiments were performed according to the literature with slight modification.^{S3} Melting curves were recorded by a fluorescence spectrometer (λ_{ex} =525 nm, λ_{em} =600 nm) after addition of an ethidium bromide (5.0 µM). Conditions: 4.0 µM concentration for each strand, 10 mM phosphate buffer (pH 9.0), 100 mM NaCl. thiol +: The sample was first treated

with thiol **11** (0.1% w/v) at 37 °C for 24 h, and then it was treated with additional thiol **11** (0.1% w/v) at 37 °C for 24 h.

Supplemental Figures

Figure S1. Yield of processing products relative to reaction time. Reaction conditions: Peptide **2** (0.02% w/v and thiol **11** (0.1% w/v) in 30% v/v MeCN/phosphate buffer (pH 9.0, 20 mM) were incubated at 37 °C.

Figure S2. HPLC profiles (a) before treatment with thiol **11** and (b) after 24 h incubation with 0.1% w/v thiol **11** at 37 °C under Ar, followed by subsequent incubation with additional thiol 0.1% w/v thiol **11** at 37 °C for 24 h. Peptides were detected by UV absorbance at 220 nm. Asterisked peak is not a peptidic compound.

References

- S1 Shigenaga, A.; Tsuji, D.; Nishioka, N.; Tsuda, S.; Itoh, K.; Otaka, A. ChemBioChem 2007, 8, 1929-1931.
- S2 Thomson, S. A.; Josey, J. A.; Cadilla, R.; Gaul, M. D.; Hassman, C. F.; Luzzio, M. J.; Pipe,
 A. J.; Reed, K. L.; Ricca, D. J.; Wiethe, R. W.; Noble, S. A. *Tetrahedron* 1995, *51*, 6179-6194.
- S3 Rahman, S. M. A.; Seki, S.; Obika, S.; Yoshikawa, H.; Miyashita, K.; Imanishi, T. J. Am. Chem. Soc. 2008, 130, 4886-4896.