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[4] Slater, L. J.; An integral of hypergeometric type, Proc. Cambridge Philos.
Soc. 48 (1952), 578–582.

[5] Slater, L. J.; Generalized Hypergeometric Functions, Cambridge Univer-
sity Press, Cambridge (1966).
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Abstract

Consider the Cauchy problem for the non-degenerate Kirchhoff
type dissipative wave equations with the initial data belonging to
H2(RN ) × H1(RN ) in unbounded domains. When the coefficient
ρ or the initial energy E(0) is small at least, we show the global
existence theorem and derive decay estimates of energies in the L2-
frame. Moreover, when the initial data belong to L1(RN )×L1(RN )
in addition, we improve the decay rates of the solutions.
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1 Introduction

In this paper we consider the Cauchy problem for the non-degenerate Kirch-
hoff type dissipative wave equations :




ρu′′ +

(
1 +

∫

RN

|A1/2u(·, t)|2dx
)γ

Au+ u′ = 0 in RN × [0,∞) ,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in RN ,

(1.1)

where u = u(x, t) is an unknown real value function, ′ = ∂/∂t, A = −∆ =

−
∑N

j=1 ∂
2/∂x2j is the Laplace operator with domain D(A) = H2(RN ), ρ > 0

and γ > 0 are positive constants.
Equations (1.1) describes small amplitude vibrations of an elastic string

when the dimension N is one (see Kirchhoff [9] for the original equation, and
also see Carrier [5], Dickey [6]). Equations including non-local terms like (1.1)
are called Kirchhoff type.
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When the initial data belong to Sobolev spaces, Arosio and Garavaldi [1]
have carried out detailed analysis about the existence of local solutions for the
Kirchhoff type equations (also see [2], [4], [6], [22], and the references cited
therein).
Yamada [21] and Brito [3] studied on the global solvability in suitable

Sobolev spaces using the energy method. Moreover, Yamada [21] derived some
decay estimates of the solutions like (1.10) in the L2-frame when γ ≥ 1 (see
Hashimoto and Yamazaki [7] for abstract cases). In previous paper [15], we
improved the decay rates in [21] and also derived the decay estimates (1.10)–
(1.11) when γ ≥ 1 and the initial data [u0, u1] ∈ H2(RN )×H1(RN ) are small
(see [17] for bounded domain cases).
On the other hand, in addition to the energy method in the L2-frame,

using the Fourier transform method in the L1 ∩ L2-frame, we can improve
the decay rates in (1.10)–(1.11) and in this paper we obtain the better decay
estimates (1.12)–(1.14) when any γ > 0. Moreover, under the assumption that
the coefficient ρ > 0 or the initial energy E(0) is small at least, we will show
the global solvability for (1.1).
We define the energies E(t) and H(t) by

E(t) ≡ ρ∥u′(t)∥2 + PM (t) (1.2)

and

H(t) ≡ ρ
∥A1/2u′(t)∥2

(1 +M(t))γ
+ ∥Au(t)∥2 (1.3)

where ∥ · ∥ is the usual norm in L2 = L2(RN ) and

M(t) ≡ ∥A1/2u(t)∥2 (1.4)

and

PM (t) ≡
∫ M(t)

0

(1 + µ)γ dµ =
1

γ + 1

(
(1 +M(t))

γ+1 − 1
)
. (1.5)

Then, it is easy to see that

M(t) ≤ PM (t) ≤ (1 +M(t))
γ
M(t) , (1.6)

and in particular, when t = 0 we have

E(0) ≤ ρ∥u1∥2 +
(
1 + ∥A1/2u0∥2

)γ

∥A1/2u0∥2 (1.7)

and

H(0) ≤ ρ∥A1/2u1∥2 + ∥Au0∥2 . (1.8)

Our main result is as follows.

Theorem 1.1 Let the initial data [u0, u1] belong to H2(RN )×H1(RN ). Sup-
pose that the coefficient ρ > 0 and the initial data [u0, u1] satisfy

ρE(0)
(
γ2H(0)

)
< 1 . (1.9)

Then the problem (1.1) admits a unique global solution u(t) in the class
C0([0,∞);H2(RN )) ∩ C1([0,∞);H1(RN )) ∩ C2([0,∞);L2(RN )) satisfying

∥A1/2u(t)∥2 ≤ C(1 + t)−1 , ∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2 , (1.10)

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3 for t ≥ 0 . (1.11)

Moreover, if the initial data [u0, u1] belong to L1(RN )×L1(RN ) in addition,
the solution u(t) satisfies

∥u(t)∥2 ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
, (1.12)

∥A1/2u(t)∥2 ≤ C(1 + t)−1−η, ∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2−η, (1.13)

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3−η for t ≥ 0 , (1.14)

where C is some positive constant.

Theorem 1.1 follows from Theorem 2.3, Theorem 3.6, and Theorem 4.5 in
the continuing sections.

The notations we use in this paper are standard. The symbol (·, ·) means
the inner product in L2 = L2(RN ) or sometimes duality between the space X
and its deal X ′. The symbol ∥ · ∥Lp means the norm in Lp = Lp(RN ) (we often
denote ∥ · ∥ = ∥ · ∥L2). Positive constants will be denoted by C and will change
from line to line.

2 Existence

We obtain the following local existence theorem by standard arguments and
we omit the proof here (see [1], [14], [18], [19], [20], and the references cited
therein).

Proposition 2.1 Suppose that the initial data [u0, u1] belong to H2(RN ) ×
H1(RN ). Then the problem (1.1) admits a unique local solution u(t) in the
class C0([0, T );H2(RN )) ∩ C1([0, T );H1(RN )) ∩ C2([0, T );L2(RN )) for some
T = T (∥u0∥H2 , ∥u1∥H1) > 0. Moreover, ∥u0∥H2 + ∥u1∥H1 <∞ for t ≥ 0, then
we can take that T =∞.

Proposition 2.2 The solution u(t) of (1.1) satisfies

E(t) + 2

∫ t

0

∥u′(s)∥2 ds = E(0) (2.1)
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and

∥u(t)∥2 ≤ J(0) with J(0) ≡ 2(2∥u0∥2 + 3ρE(0)) . (2.2)

Proof. Multiplying (1.1) by 2u′(t) and integrating it over RN , we have

d

dt
E(t) + 2∥u′(t)∥2 = 0 , (2.3)

and integrating (2.3) in time t, we obtain the energy identity (2.1).
Multiplying (1.1) by 2u(t) and integrating it over RN , we have

d

dt
∥u(t)∥2 + 2(1 +M(t))γM(t) = 2ρ

(
∥u′(t)∥2 − d

dt
(u′(t), u(t))

)
, (2.4)

and integrating (2.4) in time t, we observe from the Young inequality that

∥u(t)∥2 + 2
∫ t

0

(1 +M(s))γM(s) ds

= ∥u0∥2 + 2ρ
(
(u0, u1)− (u(t), u′(t)) +

∫ t

0

∥u′(s)∥2 ds
)

≤ ∥u0∥2 +
(
∥u0∥2 + ρ2∥u1∥2

)
+

(
1

2
∥u(t)∥2 + 2ρ2∥u′(t)∥2

)
+ 2ρ

∫ t

0

∥u′(s)∥2ds

and from (2.1) that

1

2
∥u(t)∥2 ≤ 2∥u0∥2 + 3ρE(0)

which implies the desired estimate (2.2). □

Theorem 2.3 Let the initial data [u0, u1] belong to H2(RN )×H1(RN ). Sup-
pose that the coefficient ρ > 0 and the initial data [u0, u1] satisfy

γ2ρE(0)H(0) < 1 . (2.5)

Then, the problem (1.1) admits a unique global solution u(t) in the class
C0([0,∞);H2(RN )) ∩ C1([0,∞);H1(RN )) ∩ C2([0,∞);L2(RN )) satisfying

∥u(t)∥2 ≤ J(0) and M(t) ≤ E(t) ≤ E(0) and H(t) ≤ H(0) (2.6)

(see (2.2), (1.7), (1.8) for J(0), E(0), H(0), respectively).

Proof. Let u(t) be a solution of (1.1) on [0, T ]. Since δH(0) < 1 with
δ = γ2ρE(0) by (2.5), putting

T1 ≡ sup
{
t ∈ [0,∞)

�� δH(s) < 1 for 0 ≤ s < t
}
,

we see that T1 > 0. If T1 < T , then

δH(t) < 1 for 0 ≤ t < T1 and δH(T1) = 1 . (2.7)

Multiplying (1.1) by 2(1 +M(t))−γAu′(t) and integrating it over RN , we
have

d

dt
H(t) + 2

(
1 +

γ

2
ρ

M ′(t)

1 +M(t)

)
∥A1/2u′(t)∥2

(1 +M(t))γ
= 0 .

Since it follows from (2.1) and (2.7) that

1 +
γ

2
ρ

M ′(t)

1 +M(t)
≥ 1− γρ∥u′(t)∥∥Au(t)∥

≥ 1− γ(ρE(0))
1
2H(t)

1
2 = 1− (δH(t)) 1

2 ≥ 0

for 0 ≤ t ≤ T1, we have

d

dt
H(t) ≤ 0 or H(t) ≤ H(0) (2.8)

for 0 ≤ t ≤ T1. Then, we observe from (2.5) and (2.8) that

δH(t) ≤ δH(0) < 1

for 0 ≤ t ≤ T1 which is a contradiction to (2.7), and hence, we have that
T1 ≥ T .
Thus, from (2.1), (2.2), and (2.8) we obtain that ∥u(t)∥H2 + ∥u′(t)∥H1 ≤ C

for 0 ≤ t ≤ T . Therefore, by the second statement of Proposition 2.1, we
conclude that the problem (1.1) admits a unique global solution, and also we
obtain (2.6). □

3 Decay

In this section we will derive some decay estimates of the solution u(t) of
(1.1) given by Theorem 2.3. The following generalized Nakao type inequality
is useful to derive decay estimates of energies (see [8], [12], [16] for the proof,
and also [11], [13]).

Lemma 3.1 Let ϕ(t) be a non-negative function on [0,∞) and satisfy

sup
t≤s≤t+1

ϕ(s)1+α ≤
(
k0ϕ(t)

α + k1(1 + t)−β
)(
ϕ(t)− ϕ(t+ 1)

)
+ k2(1 + t)−γ

with certain constants k0, k1, k2 ≥ 0, α > 0, β > −1, and γ > 0. Then, the
function ϕ(t) satisfies

ϕ(t) ≤ C0(1 + t)−θ , θ = min

{
1 + β

α
,

γ

1 + α

}

for t ≥ 0 with some constant C0 depending on ϕ(0).
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and
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dt
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∥u(t)∥2 + 2
∫ t

0

(1 +M(s))γM(s) ds

= ∥u0∥2 + 2ρ
(
(u0, u1)− (u(t), u′(t)) +

∫ t

0

∥u′(s)∥2 ds
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≤ ∥u0∥2 +
(
∥u0∥2 + ρ2∥u1∥2
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+
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1

2
∥u(t)∥2 + 2ρ2∥u′(t)∥2

)
+ 2ρ

∫ t
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ρ
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= 0 .
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Proposition 3.2 Under the assumption of Theorem 2.3, it holds that

M(t) ≤ E(t) ≤ C(1 + t)−1 . (3.1)

Proof. Integrating (2.3) over [t, t+ 1], we have

2

∫ t+1

t

∥u′(s)∥2 ds = E(t)− E(t+ 1) (≡ 2D(t)2 ) . (3.2)

Then there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.3)

On the other hand, since it follows from (1.2) and (2.4) that

E(t) + (1 +M(t)γ)M(t)− PM (t)

= 2ρ∥u′(t)∥2 − ρ
d

dt
(u′(t), u(t))− (u′(t), u(t)) , (3.4)

integrating (3.4) over [t1, t2], we observe from (1.6), (3.2), and (3.3) that

∫ t2

t1

E(s) ds

≤
∫ t2

t1

(
2ρ∥u′(s)∥2 − ρ

d

dt
(u′(s), u(s))− (u′(s), u(s))

)
ds

≤ 2ρ
∫ t+1

t

∥u′(s)∥2 ds+ ρ

2∑
j=1

∥u′(tj)∥∥u(tj)∥+
∫ t+1

t

∥u′(s)∥∥u(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡ ∥u(t)∥2 . (3.5)

Integrating (2.3) over [t, t2], we have from (3.2) and (3.5) that

E(t) ≤ E(t2) + 2

∫ t2

t

∥u′(s)∥2 ds

≤ 2
∫ t2

t1

E(s) ds+ 2

∫ t+1

t

∥u′(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) .

Since 2D(t)2 = E(t)− E(t+ 1) ≤ E(t) by (3.2), we observe

E(t)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2

≤ C

(
E(t) + sup

t≤s≤t+1
g(s)2

)
(E(t)− E(t+ 1)) . (3.6)

Thus, since E(t) ≤ E(0) and g(t) ≡ ∥u(t)∥2 ≤ J(0) by (2.1) and (2.2), we
observe

E(t)2 ≤ C (E(t)− E(t+ 1)) , (3.7)

and hence, applying Lemma 3.1 to (3.7), we obtain the desired estimate (3.1).
□

Proposition 3.3 Under the assumption of Theorem 2.3, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + (1 +M(t))
γ ∥Au(t)∥2 ≤ C(1 + t)−2 . (3.8)

Proof. Multiplying (1.1) by 2Au′(t) and integrating it over RN , we have from
(2.6) that

d

dt
F (t) + 2∥A1/2u′(t)∥2 = γ(1 +M(t))γ−1M ′(t)∥Au(t)∥2 (3.9)

≤ C∥A1/2u(t)∥∥A1/2u′(t)∥∥Au(t)∥2 ,

and the Young inequality yields

d

dt
F (t) + ∥A1/2u′(t)∥2 ≤ Cf(t)2 with f(t)2 ≡M(t)∥Au(t)∥4 . (3.10)

Integrating (3.10) over [t, t+ 1], we have

∫ t+1

t

∥A1/2u′(s)∥2 ds = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ D(t)2 ) .

(3.11)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥A1/2u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.12)

On the other hand, multiplying (1.1) by Au(t) and integrating it over RN ,
we have

(1 +M(t))γ∥Au(t)∥2

= ρ

(
∥A1/2u′(t)∥2 − d

dt
(A1/2u′(t), A1/2u(t))

)
− (A1/2u′(t), A1/2u(t))

or

F (t) = 2ρ∥A1/2u′(t)∥2 − ρ
d

dt
(A1/2u′(t), A1/2u(t))− (A1/2u′(t), A1/2u(t)) ,

(3.13)
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Proposition 3.2 Under the assumption of Theorem 2.3, it holds that

M(t) ≤ E(t) ≤ C(1 + t)−1 . (3.1)

Proof. Integrating (2.3) over [t, t+ 1], we have

2

∫ t+1

t

∥u′(s)∥2 ds = E(t)− E(t+ 1) (≡ 2D(t)2 ) . (3.2)

Then there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.3)

On the other hand, since it follows from (1.2) and (2.4) that

E(t) + (1 +M(t)γ)M(t)− PM (t)

= 2ρ∥u′(t)∥2 − ρ
d

dt
(u′(t), u(t))− (u′(t), u(t)) , (3.4)

integrating (3.4) over [t1, t2], we observe from (1.6), (3.2), and (3.3) that

∫ t2

t1

E(s) ds

≤
∫ t2

t1

(
2ρ∥u′(s)∥2 − ρ

d

dt
(u′(s), u(s))− (u′(s), u(s))

)
ds

≤ 2ρ
∫ t+1

t

∥u′(s)∥2 ds+ ρ

2∑
j=1

∥u′(tj)∥∥u(tj)∥+
∫ t+1

t

∥u′(s)∥∥u(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡ ∥u(t)∥2 . (3.5)

Integrating (2.3) over [t, t2], we have from (3.2) and (3.5) that

E(t) ≤ E(t2) + 2

∫ t2

t

∥u′(s)∥2 ds

≤ 2
∫ t2

t1

E(s) ds+ 2

∫ t+1

t

∥u′(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) .

Since 2D(t)2 = E(t)− E(t+ 1) ≤ E(t) by (3.2), we observe

E(t)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2

≤ C

(
E(t) + sup

t≤s≤t+1
g(s)2

)
(E(t)− E(t+ 1)) . (3.6)

Thus, since E(t) ≤ E(0) and g(t) ≡ ∥u(t)∥2 ≤ J(0) by (2.1) and (2.2), we
observe

E(t)2 ≤ C (E(t)− E(t+ 1)) , (3.7)

and hence, applying Lemma 3.1 to (3.7), we obtain the desired estimate (3.1).
□

Proposition 3.3 Under the assumption of Theorem 2.3, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + (1 +M(t))
γ ∥Au(t)∥2 ≤ C(1 + t)−2 . (3.8)

Proof. Multiplying (1.1) by 2Au′(t) and integrating it over RN , we have from
(2.6) that

d

dt
F (t) + 2∥A1/2u′(t)∥2 = γ(1 +M(t))γ−1M ′(t)∥Au(t)∥2 (3.9)

≤ C∥A1/2u(t)∥∥A1/2u′(t)∥∥Au(t)∥2 ,

and the Young inequality yields

d

dt
F (t) + ∥A1/2u′(t)∥2 ≤ Cf(t)2 with f(t)2 ≡M(t)∥Au(t)∥4 . (3.10)

Integrating (3.10) over [t, t+ 1], we have

∫ t+1

t

∥A1/2u′(s)∥2 ds = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ D(t)2 ) .

(3.11)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥A1/2u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.12)

On the other hand, multiplying (1.1) by Au(t) and integrating it over RN ,
we have

(1 +M(t))γ∥Au(t)∥2

= ρ

(
∥A1/2u′(t)∥2 − d

dt
(A1/2u′(t), A1/2u(t))

)
− (A1/2u′(t), A1/2u(t))

or

F (t) = 2ρ∥A1/2u′(t)∥2 − ρ
d

dt
(A1/2u′(t), A1/2u(t))− (A1/2u′(t), A1/2u(t)) ,

(3.13)
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and integrating (3.13) over [t1, t2], we have from (3.11) and (3.12) that
∫ t2

t1

F (s) ds

≤ 2ρ
∫ t+1

t

∥A1/2u′(s)∥2 ds+ ρ

2∑
j=1

∥A1/2u′(tj)∥∥A1/2u(tj)∥

+

∫ t+1

t

∥A1/2u′(s)∥∥A1/2u(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡M(t) . (3.14)

Moreover, there exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2
∫ t2

t1

F (s) ds . (3.15)

For τ ∈ [t, t+1], integrating (3.9) over [τ, t∗] (or [t∗, τ ]), we have from (3.10)
and (3.15) that

F (τ) = F (t∗) +

∫ t∗

τ

(
2∥A1/2u′(s)∥2 − γ(1 +M(s))γ−1M ′(s)∥Au(s)∥2

)
ds

≤ 2
∫ t2

t1

F (s) ds+

∫ t+1

t

(
C∥A1/2u′(s)∥2 + Cf(s)2

)
ds

and from (3.11) and (3.14) that

sup
t≤s≤t+1

F (s) ≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .

Since D(t)2 = F (t) − F (t + 1) + C sup
t≤s≤t+1

f(s)2 ≤ F (t) + C sup
t≤s≤t+1

f(s)2 by

(3.11), we observe

sup
t≤s≤t+1

F (s)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
F (t)2 + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ CF (t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

or

sup
t≤s≤t+1

F (s)2 ≤ C

(
F (t)2 + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (3.16)

Since it follows from (3.10), (2.6), and (3.1) that

f(t)2 ≡M(t)∥Au(t)∥2 ≤

{
C(1 + t)−1 ,

C(1 + t)−1F (t) ,
(3.17)

and from (3.13) and (3.1) that

g(t)2 ≡M(t) ≤ C(1 + t)−1 , (3.18)

we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1)) + C(1 + t)−2 sup

t≤s≤t+1
F (s)

or

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1)) + C(1 + t)−4 . (3.19)

Thus, applying Lemma 3.1 to (3.19), we obtain the desired estimate (3.8). □

Proposition 3.4 Under the assumption of Theorem 2.3, it holds that

∥u′(t)∥2 ≤ C(1 + t)−2 . (3.20)

Proof. Multiplying (1.1) by 2u′(t) and integrating it over RN , we have

ρ
d

dt
∥u′(t)∥2 + 2∥u′(t)∥2 = −2(1 +M(t))γ(Au(t), u′(t)) ,

and using the Young inequality we observe from (2.6) and (3.8) that

ρ
d

dt
∥u′(t)∥2 + ∥u′(t)∥2 ≤ h(t)2 (3.21)

with

h(t)2 ≡ (1 +M(t))2γ∥Au(t)∥2 ≤ C(1 + t)−2 (3.22)

which gives the desired estimate (3.20). □

Proposition 3.5 Under the assumption of Theorem 2.3, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + (1 +M(t))
γ ∥A1/2u′(t)∥2 + γ

2
(1 +M(t))

γ−1 |M ′(t)|2

≤ C(1 + t)−3 . (3.23)
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and integrating (3.13) over [t1, t2], we have from (3.11) and (3.12) that
∫ t2

t1

F (s) ds

≤ 2ρ
∫ t+1

t

∥A1/2u′(s)∥2 ds+ ρ

2∑
j=1

∥A1/2u′(tj)∥∥A1/2u(tj)∥

+

∫ t+1

t

∥A1/2u′(s)∥∥A1/2u(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡M(t) . (3.14)

Moreover, there exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2
∫ t2

t1

F (s) ds . (3.15)

For τ ∈ [t, t+1], integrating (3.9) over [τ, t∗] (or [t∗, τ ]), we have from (3.10)
and (3.15) that

F (τ) = F (t∗) +

∫ t∗

τ

(
2∥A1/2u′(s)∥2 − γ(1 +M(s))γ−1M ′(s)∥Au(s)∥2

)
ds

≤ 2
∫ t2

t1

F (s) ds+

∫ t+1

t

(
C∥A1/2u′(s)∥2 + Cf(s)2

)
ds

and from (3.11) and (3.14) that

sup
t≤s≤t+1

F (s) ≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .

Since D(t)2 = F (t) − F (t + 1) + C sup
t≤s≤t+1

f(s)2 ≤ F (t) + C sup
t≤s≤t+1

f(s)2 by

(3.11), we observe

sup
t≤s≤t+1

F (s)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
F (t)2 + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ CF (t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

or

sup
t≤s≤t+1

F (s)2 ≤ C

(
F (t)2 + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (3.16)

Since it follows from (3.10), (2.6), and (3.1) that

f(t)2 ≡M(t)∥Au(t)∥2 ≤

{
C(1 + t)−1 ,

C(1 + t)−1F (t) ,
(3.17)

and from (3.13) and (3.1) that

g(t)2 ≡M(t) ≤ C(1 + t)−1 , (3.18)

we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1)) + C(1 + t)−2 sup

t≤s≤t+1
F (s)

or

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1)) + C(1 + t)−4 . (3.19)

Thus, applying Lemma 3.1 to (3.19), we obtain the desired estimate (3.8). □

Proposition 3.4 Under the assumption of Theorem 2.3, it holds that

∥u′(t)∥2 ≤ C(1 + t)−2 . (3.20)

Proof. Multiplying (1.1) by 2u′(t) and integrating it over RN , we have

ρ
d

dt
∥u′(t)∥2 + 2∥u′(t)∥2 = −2(1 +M(t))γ(Au(t), u′(t)) ,

and using the Young inequality we observe from (2.6) and (3.8) that

ρ
d

dt
∥u′(t)∥2 + ∥u′(t)∥2 ≤ h(t)2 (3.21)

with

h(t)2 ≡ (1 +M(t))2γ∥Au(t)∥2 ≤ C(1 + t)−2 (3.22)

which gives the desired estimate (3.20). □

Proposition 3.5 Under the assumption of Theorem 2.3, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + (1 +M(t))
γ ∥A1/2u′(t)∥2 + γ

2
(1 +M(t))

γ−1 |M ′(t)|2

≤ C(1 + t)−3 . (3.23)
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Proof. Multiplying (1.1) differentiated with respect to t by 2u′′(t) and inte-
grating it over RN , we have

d

dt
L(t) + 2∥u′′(t)∥2 (3.24)

= 3γ(1 +M(t))γ−1M ′(t)∥A1/2u′(t)∥2 + γ(γ − 1)
2

(1 +M(t))γ−2(M ′(t))3

≤ Cf(t)2 with f(t)2 ≡ ∥u′(t)∥∥Au(t)∥∥A1/2u′(t)∥2 . (3.25)

Integrating (3.25) over [t, t+ 1], we have

2

∫ t+1

t

∥u′′(s)∥2 ds ≤ L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ 2D(t)2). (3.26)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.27)

On the other hand, multiplying (1.1) differentiated with respect to t by
u′(t) and integrating it over RN , we have

(1 +M(t))γ∥A1/2u′(t)∥2 + γ

2
(1 +M(t))γ−1|M ′(t)|2

= ρ

(
∥u′′(t)∥2 − d

dt
(u′′(t), u′(t))

)
− (u′′(t), u′(t))

or

L(t) = 2ρ∥u′′(t)∥2 − ρ
d

dt
(u′′(t), u′(t))− (u′′(t), u′(t)) , (3.28)

and integrating (3.28) over [t1, t2], we observe from (3.26) and (3.27) that

∫ t2

t1

L(s) ds

≤ 2ρ
∫ t+1

t

∥u′′(s)∥2 ds+ ρ

2∑
j=1

∥u′′(tj)∥∥u′(tj)∥+
∫ t+1

t

∥u′′(s)∥∥u′(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡ ∥u′(t)∥2 . (3.29)

Moreover, there exists t∗ ∈ [t1, t2] such that

L(t∗) ≤ 2
∫ t2

t1

L(s) ds . (3.30)

For τ ∈ [t, t + 1], integrating (3.24) over [τ, t∗] (or [t∗, τ ]), we have from
(3.25) and (3.30) that

L(τ) = L(t∗) +

∫ t∗

τ

(
2∥u′′(s)∥2 − 3γ(1 +M(s))γ−1M ′(s)∥A1/2u′(s)∥2

+
γ(γ − 1)

2
(1 +M(s))γ−2(M ′(s))3

)
ds

≤ 2
∫ t2

t1

L(s) ds+

∫ t+1

t

(
C∥u′′(s)∥2 + Cf(s)2

)
ds

and from (3.26) and (3.29) that

sup
t≤s≤t+1

L(s) ≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2

or

sup
t≤s≤t+1

L(s)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4 .

Since 2D(t)2 = L(t) − L(t + 1) + C sup
t≤s≤t+1

f(s)2 ≤ L(t) + C sup
t≤s≤t+1

f(s)2 by

(3.26), we observe

sup
t≤s≤t+1

L(s)2 ≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ CL(t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

or

sup
t≤s≤t+1

L(s)2 ≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (3.31)

Since it follows from (3.25), (3.8), and (3.20) that

f(t)2 ≡ ∥u′(t)∥∥Au(t)∥∥A1/2u′(t)∥2 ≤

{
C(1 + t)−4 ,

C(1 + t)−2L(t) ,
(3.32)

and from (3.28) and (3.20) that

g(t)2 ≡ ∥u′(t)∥2 ≤ C(1 + t)−2 , (3.33)

we have

sup
t≤s≤t+1

L(s)2 ≤ C
(
L(t) + (1 + t)−2

)
(L(t)− L(t+ 1)) + C(1 + t)−4 sup

t≤s≤t+1
L(s)
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Proof. Multiplying (1.1) differentiated with respect to t by 2u′′(t) and inte-
grating it over RN , we have

d

dt
L(t) + 2∥u′′(t)∥2 (3.24)

= 3γ(1 +M(t))γ−1M ′(t)∥A1/2u′(t)∥2 + γ(γ − 1)
2

(1 +M(t))γ−2(M ′(t))3

≤ Cf(t)2 with f(t)2 ≡ ∥u′(t)∥∥Au(t)∥∥A1/2u′(t)∥2 . (3.25)

Integrating (3.25) over [t, t+ 1], we have

2

∫ t+1

t

∥u′′(s)∥2 ds ≤ L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ 2D(t)2). (3.26)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (3.27)

On the other hand, multiplying (1.1) differentiated with respect to t by
u′(t) and integrating it over RN , we have

(1 +M(t))γ∥A1/2u′(t)∥2 + γ

2
(1 +M(t))γ−1|M ′(t)|2

= ρ

(
∥u′′(t)∥2 − d

dt
(u′′(t), u′(t))

)
− (u′′(t), u′(t))

or

L(t) = 2ρ∥u′′(t)∥2 − ρ
d

dt
(u′′(t), u′(t))− (u′′(t), u′(t)) , (3.28)

and integrating (3.28) over [t1, t2], we observe from (3.26) and (3.27) that

∫ t2

t1

L(s) ds

≤ 2ρ
∫ t+1

t

∥u′′(s)∥2 ds+ ρ

2∑
j=1

∥u′′(tj)∥∥u′(tj)∥+
∫ t+1

t

∥u′′(s)∥∥u′(s)∥ ds

≤ 2ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 ≡ ∥u′(t)∥2 . (3.29)

Moreover, there exists t∗ ∈ [t1, t2] such that

L(t∗) ≤ 2
∫ t2

t1

L(s) ds . (3.30)

For τ ∈ [t, t + 1], integrating (3.24) over [τ, t∗] (or [t∗, τ ]), we have from
(3.25) and (3.30) that

L(τ) = L(t∗) +

∫ t∗

τ

(
2∥u′′(s)∥2 − 3γ(1 +M(s))γ−1M ′(s)∥A1/2u′(s)∥2

+
γ(γ − 1)

2
(1 +M(s))γ−2(M ′(s))3

)
ds

≤ 2
∫ t2

t1

L(s) ds+

∫ t+1

t

(
C∥u′′(s)∥2 + Cf(s)2

)
ds

and from (3.26) and (3.29) that

sup
t≤s≤t+1

L(s) ≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2

or

sup
t≤s≤t+1

L(s)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4 .

Since 2D(t)2 = L(t) − L(t + 1) + C sup
t≤s≤t+1

f(s)2 ≤ L(t) + C sup
t≤s≤t+1

f(s)2 by

(3.26), we observe

sup
t≤s≤t+1

L(s)2 ≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ CL(t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

or

sup
t≤s≤t+1

L(s)2 ≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (3.31)

Since it follows from (3.25), (3.8), and (3.20) that

f(t)2 ≡ ∥u′(t)∥∥Au(t)∥∥A1/2u′(t)∥2 ≤

{
C(1 + t)−4 ,

C(1 + t)−2L(t) ,
(3.32)

and from (3.28) and (3.20) that

g(t)2 ≡ ∥u′(t)∥2 ≤ C(1 + t)−2 , (3.33)

we have

sup
t≤s≤t+1

L(s)2 ≤ C
(
L(t) + (1 + t)−2

)
(L(t)− L(t+ 1)) + C(1 + t)−4 sup

t≤s≤t+1
L(s)
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or

sup
t≤s≤t+1

L(s)2 ≤ C
(
L(t) + (1 + t)−2

)
(L(t)− L(t+ 1)) + C(1 + t)−8 . (3.34)

Thus, applying Lemma 3.1 to (3.34), we obtain the desired estimate (3.23). □

Gathering Propositions 3.2–3.5, we conclude the following theorem.

Theorem 3.6 Suppose that the assumption of Theorem 2.3 is fulfilled. Then,
the solution u(t) of (1.1) satisfies

∥A1/2u(t)∥2 ≤ C(1 + t)−1 , (3.35)

∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2 , (3.36)

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3 for t ≥ 0 , (3.37)

where C is some positive constant.

Proof. (3.35) follows from (3.1). (3.36) follows from (3.8) and (3.20). (3.37)
follows from (3.23). □

4 Improved Decay

Under the additional condition that the initial data [u0, u1] belong to L
1(RN )

×L1(RN ), we will improve the decay rates (3.35)–(3.37) given by Theorem 3.6.
In order to achieve our purpose, first we need to derive the decay estimate of
L2-norm of the solution u(t).
We denote the Fourier transform of g(x) by

F(g(x))(ξ) ≡ ĝ(ξ) ≡ (2π)−N
2

∫

RN

e−iξ·xg(x) dx ,

where ξ · x =
∑N

j=1 ξjxj .
Through the Fourier transform, we can rewrite (1.1) to the following equa-

tion : {
ρû′′ + û′ + |ξ|2û = f(M(t))�Au in RN

ξ × [0,∞) ,
û(ξ, 0) =�u0(ξ) and û′(ξ, 0) =�u1(ξ) in RN

ξ ,
(4.1)

where f(M) = 1− (1 +M)γ . Then, we obtain the integral form for (4.1) :

û(ξ, t) = �uL(ξ, t) + �uN (ξ, t) (4.2)

where

�uL(ξ, t) = 1

2
(ϕ1(ξ, t) + ϕ2(ξ, t))�u0(ξ) + ϕ2(ξ, t)�u1(ξ) , (4.3)

�uN (ξ, t) =
∫ t

0

ϕ2(ξ, t− s)f(M(s))�Au(ξ, s) ds , (4.4)

and we set

ϕ1(ξ, t) =

{
2e−

t
2ρ cosh λt

2ρ if |ξ| < 1/(2√ρ) ,
2e−

t
2ρ cos σt

2ρ if |ξ| ≥ 1/(2√ρ) ,

ϕ2(ξ, t) =

{
2e−

t
2ρ 1

λ sinh
λt
2ρ if |ξ| < 1/(2√ρ) ,

2e−
t
2ρ 1

σ sin
σt
2ρ if |ξ| ≥ 1/(2√ρ) ,

and λ =
√
1− 4ρ|ξ|2 and σ =

√
4ρ|ξ|2 − 1.

Proposition 4.1 Under the assumption of Theorem 2.3, if the initial data
[u0, u1] belong to L1(RN )× L1(RN ), it holds that

∥u(t)∥2 ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
. (4.5)

Proof. By the standard argument for the linear dissipative wave equation (see
Matsumura [10] and Kawashima et al. [8] for the proof), concerning the linear
part (4.3) in the integral form (4.2), we have

∥uL(t)∥2 ≤ C(1 + t)−
N
4 (∥u0∥+ ∥u1∥+ ∥u0∥L1 + ∥u1∥L1) . (4.6)

Next, in order to estimate the nonlinear part (4.4) in the integral form (4.2),
we set that for j = 1, 2, 3, 4,

χj(ξ) =

{
1 if ξ ∈ Xj ,

0 if ξ ̸∈ Xj ,

where

X1 ≡
{
ξ
�� |ξ| < 1/(4√ρ)} , X2 ≡

{
ξ
�� 1/(4√ρ) ≤ |ξ| < 1/(2√ρ)

}
,

X3 ≡
{
ξ
�� 1/(2√ρ) ≤ |ξ| < 1/√ρ

}
, X4 ≡

{
ξ
�� 1/√ρ ≤ |ξ|

}
.

Using the Parseval identity together with (4.4), we observe

∥uN (t)∥ ≤
∫ t

0

∥ϕ2(ξ, t− s)�Au(ξ, s)∥|f(M(s))| ds

and

∥ϕ2(ξ, t− s)�Au(ξ, s)∥

≤ ∥χ1(ξ)ϕ2(ξ, t− s)|ξ|2û(ξ, s)∥+
4∑

j=2

∥χj(ξ)ϕ2(ξ, t− s)�Au(ξ, s)∥

≤ C sup
ξ∈X1

|ξ|2|ϕ2(ξ, t− s)|∥u(s)∥+ C

4∑
j=2

sup
ξ∈Xj

|ϕ2(ξ, t− s)|∥Au(s)∥ .
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or

sup
t≤s≤t+1

L(s)2 ≤ C
(
L(t) + (1 + t)−2

)
(L(t)− L(t+ 1)) + C(1 + t)−8 . (3.34)

Thus, applying Lemma 3.1 to (3.34), we obtain the desired estimate (3.23). □

Gathering Propositions 3.2–3.5, we conclude the following theorem.

Theorem 3.6 Suppose that the assumption of Theorem 2.3 is fulfilled. Then,
the solution u(t) of (1.1) satisfies

∥A1/2u(t)∥2 ≤ C(1 + t)−1 , (3.35)

∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2 , (3.36)

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3 for t ≥ 0 , (3.37)

where C is some positive constant.

Proof. (3.35) follows from (3.1). (3.36) follows from (3.8) and (3.20). (3.37)
follows from (3.23). □

4 Improved Decay

Under the additional condition that the initial data [u0, u1] belong to L
1(RN )

×L1(RN ), we will improve the decay rates (3.35)–(3.37) given by Theorem 3.6.
In order to achieve our purpose, first we need to derive the decay estimate of
L2-norm of the solution u(t).
We denote the Fourier transform of g(x) by

F(g(x))(ξ) ≡ ĝ(ξ) ≡ (2π)−N
2

∫

RN

e−iξ·xg(x) dx ,

where ξ · x =
∑N

j=1 ξjxj .
Through the Fourier transform, we can rewrite (1.1) to the following equa-

tion : {
ρû′′ + û′ + |ξ|2û = f(M(t))�Au in RN

ξ × [0,∞) ,
û(ξ, 0) =�u0(ξ) and û′(ξ, 0) =�u1(ξ) in RN

ξ ,
(4.1)

where f(M) = 1− (1 +M)γ . Then, we obtain the integral form for (4.1) :

û(ξ, t) = �uL(ξ, t) + �uN (ξ, t) (4.2)

where

�uL(ξ, t) = 1

2
(ϕ1(ξ, t) + ϕ2(ξ, t))�u0(ξ) + ϕ2(ξ, t)�u1(ξ) , (4.3)

�uN (ξ, t) =
∫ t

0

ϕ2(ξ, t− s)f(M(s))�Au(ξ, s) ds , (4.4)

and we set

ϕ1(ξ, t) =

{
2e−

t
2ρ cosh λt

2ρ if |ξ| < 1/(2√ρ) ,
2e−

t
2ρ cos σt

2ρ if |ξ| ≥ 1/(2√ρ) ,

ϕ2(ξ, t) =

{
2e−

t
2ρ 1

λ sinh
λt
2ρ if |ξ| < 1/(2√ρ) ,

2e−
t
2ρ 1

σ sin
σt
2ρ if |ξ| ≥ 1/(2√ρ) ,

and λ =
√
1− 4ρ|ξ|2 and σ =

√
4ρ|ξ|2 − 1.

Proposition 4.1 Under the assumption of Theorem 2.3, if the initial data
[u0, u1] belong to L1(RN )× L1(RN ), it holds that

∥u(t)∥2 ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
. (4.5)

Proof. By the standard argument for the linear dissipative wave equation (see
Matsumura [10] and Kawashima et al. [8] for the proof), concerning the linear
part (4.3) in the integral form (4.2), we have

∥uL(t)∥2 ≤ C(1 + t)−
N
4 (∥u0∥+ ∥u1∥+ ∥u0∥L1 + ∥u1∥L1) . (4.6)

Next, in order to estimate the nonlinear part (4.4) in the integral form (4.2),
we set that for j = 1, 2, 3, 4,

χj(ξ) =

{
1 if ξ ∈ Xj ,

0 if ξ ̸∈ Xj ,

where

X1 ≡
{
ξ
�� |ξ| < 1/(4√ρ)} , X2 ≡

{
ξ
�� 1/(4√ρ) ≤ |ξ| < 1/(2√ρ)

}
,

X3 ≡
{
ξ
�� 1/(2√ρ) ≤ |ξ| < 1/√ρ

}
, X4 ≡

{
ξ
�� 1/√ρ ≤ |ξ|

}
.

Using the Parseval identity together with (4.4), we observe

∥uN (t)∥ ≤
∫ t

0

∥ϕ2(ξ, t− s)�Au(ξ, s)∥|f(M(s))| ds

and

∥ϕ2(ξ, t− s)�Au(ξ, s)∥

≤ ∥χ1(ξ)ϕ2(ξ, t− s)|ξ|2û(ξ, s)∥+
4∑

j=2

∥χj(ξ)ϕ2(ξ, t− s)�Au(ξ, s)∥

≤ C sup
ξ∈X1

|ξ|2|ϕ2(ξ, t− s)|∥u(s)∥+ C

4∑
j=2

sup
ξ∈Xj

|ϕ2(ξ, t− s)|∥Au(s)∥ .
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(a) When ξ ∈ X1, since
√
3/2 < λ ≤ 1 and (−1 + λ)/(2ρ) ≤ −2|ξ|2, we have

sup
ξ∈X1

|ξ|2|ϕ2(ξ, t)| ≤ C sup
ξ∈X1

|ξ|2e−2|ξ|2t ≤ C(1 + t)−1 .

(b) When ξ ∈ X2, since 0 < λ ≤
√
3/2, we have

sup
ξ∈X2

|ϕ2(ξ, t)| ≤ Cte−
t
2ρ sup

ξ∈X2

2ρ

λt

����
∫ 1

0

d

dθ

(
sinh

λt

2ρ
θ

)
dθ

����

≤ Cte−
t
2ρ sup

ξ∈X2

����
∫ 1

0

cosh
λt

2ρ
θ dθ

���� ≤ Cte−(1−
√

3
2 ) t

2ρ .

(c) When ξ ∈ X3, since 0 ≤ σ <
√
3, we have

sup
ξ∈X3

|ϕ2(ξ, t)| ≤ Cte−
t
2ρ sup

ξ∈X3

2ρ

σt

����
∫ 1

0

d

dθ

(
sin

σt

2ρ
θ

)
dθ

����

≤ Cte−
t
2ρ sup

ξ∈X3

����
∫ 1

0

cos
σt

2ρ
θ dθ

���� ≤ Cte−
t
2ρ .

(d) When ξ ∈ X4, since σ ≥
√
2, we have

sup
ξ∈X4

|ϕ2(ξ, t)| ≤ Ce−
t
2ρ sup

ξ∈X4

1

σ

����sin
σt

2ρ

���� ≤ Ce−
t
2ρ .

Thus, we obtain

∥uN (t)∥ ≤ C

∫ t

0

(1 + t− s)−1|f(M(s))|∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)|f(M(s))|∥Au(s)∥ ds (4.7)

with some δ > 0.
Therefore, the estimates (4.2), (4.6), and (4.7) yield

∥u(t)∥ ≤ C(1 + t)−
N
4 + C

∫ t

0

(1 + t− s)−1|f(M(s))|∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)|f(M(s))|∥Au(s)∥ ds .

On the other hand, since it follows from (3.35) that

|f(M(t))| = |(1 +M(t))γ − 1| ≤ CM(t) ≤ C(1 + t)−1 ,

we observe from (3.36) that

∥u(t)∥ ≤ C(1 + t)−
N
4 + C

∫ t

0

(1 + t− s)−1(1 + s)−1∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)(1 + s)−3 ds

≤ C(1 + t)−min{N
4 ,3} + C

∫ t

0

(1 + t− s)−1(1 + s)−1∥u(s)∥ ds

and since ∥u(t)∥ is bounded (see (2.6)) we have

∥u(t)∥ ≤ C(1 + t)−min{N
4 ,1}

which implies the desired estimate (4.5). □

Proposition 4.2 Under the assumption of Proposition 4.1, it holds that

M(t) ≤ E(t) ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
. (4.8)

Proof. We derive (4.8) by the same way as in the proof of Proposition 3.2.
Instead of (2.6), we use

g(t)2 ≡ ∥u(t)∥2 ≤ C(1 + t)−η ,

and we observe from (3.6) that

E(t) ≤ C
(
E(t) + (1 + t)−η

)
(E(t)− E(t+ 1)) . (4.9)

Thus, applying Lemma 3.1 to (4.9), we obtain the desired estimate (4.8). □

Proposition 4.3 Under the assumption of Proposition 4.1, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + (1 +M(t))
γ ∥Au(t)∥2 ≤ C(1 + t)−2−η (4.10)

and

∥u′(t)∥2 ≤ C(1 + t)−2−η with η = min

{
N

2
, 2

}
. (4.11)

Proof. We derive (4.10) by the same way as in the proof of Proposition 3.3.
Instead of (3.17) and (3.18), we use

f(t)2 ≡M(t)∥Au(t)∥4 ≤

{
C(1 + t)−1−η ,

C(1 + t)−1−ηF (t) ,
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(a) When ξ ∈ X1, since
√
3/2 < λ ≤ 1 and (−1 + λ)/(2ρ) ≤ −2|ξ|2, we have

sup
ξ∈X1

|ξ|2|ϕ2(ξ, t)| ≤ C sup
ξ∈X1

|ξ|2e−2|ξ|2t ≤ C(1 + t)−1 .

(b) When ξ ∈ X2, since 0 < λ ≤
√
3/2, we have

sup
ξ∈X2

|ϕ2(ξ, t)| ≤ Cte−
t
2ρ sup

ξ∈X2

2ρ

λt

����
∫ 1

0

d

dθ

(
sinh

λt

2ρ
θ

)
dθ

����

≤ Cte−
t
2ρ sup

ξ∈X2

����
∫ 1

0

cosh
λt

2ρ
θ dθ

���� ≤ Cte−(1−
√

3
2 ) t

2ρ .

(c) When ξ ∈ X3, since 0 ≤ σ <
√
3, we have

sup
ξ∈X3

|ϕ2(ξ, t)| ≤ Cte−
t
2ρ sup

ξ∈X3

2ρ

σt

����
∫ 1

0

d

dθ

(
sin

σt

2ρ
θ

)
dθ

����

≤ Cte−
t
2ρ sup

ξ∈X3

����
∫ 1

0

cos
σt

2ρ
θ dθ

���� ≤ Cte−
t
2ρ .

(d) When ξ ∈ X4, since σ ≥
√
2, we have

sup
ξ∈X4

|ϕ2(ξ, t)| ≤ Ce−
t
2ρ sup

ξ∈X4

1

σ

����sin
σt

2ρ

���� ≤ Ce−
t
2ρ .

Thus, we obtain

∥uN (t)∥ ≤ C

∫ t

0

(1 + t− s)−1|f(M(s))|∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)|f(M(s))|∥Au(s)∥ ds (4.7)

with some δ > 0.
Therefore, the estimates (4.2), (4.6), and (4.7) yield

∥u(t)∥ ≤ C(1 + t)−
N
4 + C

∫ t

0

(1 + t− s)−1|f(M(s))|∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)|f(M(s))|∥Au(s)∥ ds .

On the other hand, since it follows from (3.35) that

|f(M(t))| = |(1 +M(t))γ − 1| ≤ CM(t) ≤ C(1 + t)−1 ,

we observe from (3.36) that

∥u(t)∥ ≤ C(1 + t)−
N
4 + C

∫ t

0

(1 + t− s)−1(1 + s)−1∥u(s)∥ ds

+ C

∫ t

0

e−δ(t−s)(1 + s)−3 ds

≤ C(1 + t)−min{N
4 ,3} + C

∫ t

0

(1 + t− s)−1(1 + s)−1∥u(s)∥ ds

and since ∥u(t)∥ is bounded (see (2.6)) we have

∥u(t)∥ ≤ C(1 + t)−min{N
4 ,1}

which implies the desired estimate (4.5). □

Proposition 4.2 Under the assumption of Proposition 4.1, it holds that

M(t) ≤ E(t) ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
. (4.8)

Proof. We derive (4.8) by the same way as in the proof of Proposition 3.2.
Instead of (2.6), we use

g(t)2 ≡ ∥u(t)∥2 ≤ C(1 + t)−η ,

and we observe from (3.6) that

E(t) ≤ C
(
E(t) + (1 + t)−η

)
(E(t)− E(t+ 1)) . (4.9)

Thus, applying Lemma 3.1 to (4.9), we obtain the desired estimate (4.8). □

Proposition 4.3 Under the assumption of Proposition 4.1, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + (1 +M(t))
γ ∥Au(t)∥2 ≤ C(1 + t)−2−η (4.10)

and

∥u′(t)∥2 ≤ C(1 + t)−2−η with η = min

{
N

2
, 2

}
. (4.11)

Proof. We derive (4.10) by the same way as in the proof of Proposition 3.3.
Instead of (3.17) and (3.18), we use

f(t)2 ≡M(t)∥Au(t)∥4 ≤

{
C(1 + t)−1−η ,

C(1 + t)−1−ηF (t) ,
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and

g(t)2 ≡M(t) ≤ C(1 + t)−1−η ,

and we observe from (3.16) that

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1−η

)
(F (t)− F (t+ 1))

+ C(1 + t)−2−2η sup
t≤s≤t+1

F (s) . (4.12)

Thus, applying Lemma 3.1 together with the Young inequality to (4.12), we
obtain the desired estimate (4.10).
Moreover, we derive (4.11) by the same way as in the proof of Proposition

3.4. Instead of (3.22), we use

h(t)2 ≡ (1 +M(t))2γ∥Au(t)∥2 ≤ C(1 + t)−2−η ,

and we observe from (3.21) that

ρ
d

dt
∥u′(t)∥2 + ∥u′(t)∥2 ≤ C(1 + t)−2−η

which gives the desired estimate (4.11). □

Proposition 4.4 Under the assumption of Proposition 4.1, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + (1 +M(t))
γ ∥Au′(t)∥2 + γ

2
(1 +M(t))

γ−1 |M ′(t)|2

≤ C(1 + t)−3−η . (4.13)

Proof. We derive (4.13) by the same way as in the proof of Proposition 3.5.
Instead of (3.32) and (3.33), we use

f(t)2 ≡ ∥u′(t)∥∥Au(t)∥∥A1/2u′(t)∥2 ≤

{
C(1 + t)−4−2η ,

C(1 + t)−2−ηL(t) ,

and

g(t)2 ≡ ∥u′(t)∥2 ≤ C(1 + t)−2−η ,

and we observe from (3.31) that

sup
t≤s≤t+1

L(s)2 ≤ C
(
L(t) + (1 + t)−2−η

)
(L(t)− L(t+ 1))

+ C(1 + t)−4−2η sup
t≤s≤t+1

L(s) . (4.14)

Thus, applying Lemma 3.1 together with the Young inequality to (4.14), we
obtain the desired estimate (4.13). □

Gathering Proposition 4.1–4.4, we arrived the following theorem.

Theorem 4.5 In addition to the assumption of Theorem 2.3, suppose that the
initial data [u0, u1] belong to L1(RN ) × L1(RN ). Then, the solution u(t) of
(1.1) satisfies

∥u(t)∥2 ≤ C(1 + t)−η with η = min

{
N

2
, 2

}
, (4.15)

∥A1/2u(t)∥2 ≤ C(1 + t)−1−η , (4.16)

∥u′(t)∥2 + ∥Au(t)∥2 ≤ C(1 + t)−2−η , (4.17)

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−3−η for t ≥ 0 , (4.18)

where C is some positive constant.

Proof. (4.15) follows from (4.5). (4.16) follows from (4.8). (4.17) follows from
(4.10) and (4.11). (4.18) follows from (4.13). □
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ρ
d

dt
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Proposition 4.4 Under the assumption of Proposition 4.1, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + (1 +M(t))
γ ∥Au′(t)∥2 + γ

2
(1 +M(t))

γ−1 |M ′(t)|2

≤ C(1 + t)−3−η . (4.13)
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Abstract

In this paper, we study the Fourier transformation of Lp
loc-functions

and Lq
c-functions. Here we assume that the condition

1

p
+

1

q
= 1, (1 ≤ p ≤

∞, 1 ≤ q ≤ ∞) is satisfied. Thereby we prove the structure theorems of
the image spaces FLp

loc and FLq
c . We study the convolution f ∗g of a Lr

c-
function f and a Lp

loc-function g. Here assume d ≥ 1. Further we assume

that the condition
1

q
=

1

p
+

1

r
− 1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞)

is satisfied. This is a generalization of the theory of Fourier transforma-
tions of L2

loc-functions.
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Introduction

In this paper, we study the Fourier transformation of Lp
loc-functions and

Lq
c-functions and some applications. Here we assume that the condition

1

p
+
1

q
=

1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) is satisfied. In section 1, we define the Fourier
transformation and the inverse Fourier transformation of Lp

loc-functions. We
show some examples of Fourier transformation of Lp

loc-functions. We prove

1




