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Abstruct

In order to design control systems via modern control theory, it is necessary to derive
a mathematical model for controlled systems based on state-space representation.
If the mathematical model describes the controlled system with sufficient accuracy,
satisfactory control performance are achievable by using various controller design
methods. However, there always exist some gaps referred to as “uncertainties” be-
tween the controlled system and the mathematical model. The uncertainties in the
controlled system may cause deterioration of control performance or unstability of
the controlled system. For this view point, many researchers have studied robust
control for uncertain dynamical systems, and a lot of results for robust control have
been developed. It is well known that controllers in most of the existing result for
robust control have fixed gains only. Moreover, these robust controllers with fixed
gains are designed by considering the worst case variations of uncertainties. Thus
these design approaches are conservative when an actual perturbation regions of
uncertainties is smaller than supposed ones. In contrast with these, several design
methods of variable gain robust controllers have been proposed. By using these vari-
able gain robust controllers, flexible controller design is possible such as avoidance
of excessive control input and deterioration of response characteristics caused by the
influence of uncertainties.

On the other hand, controlled systems become more complex because of the rapid
development of modern industry. Such complex systems should be considered as
“large-scale interconnected systems”. However, as is well known, it is difficult to
apply centralized control to such systems due to physical constraints, calculation
amounts and so on. Therefore, in decentralized control, controlled systems are di-
vided into several subsystems, and controllers are designed for each subsystems.
Furthermore, many researchers have also studied decentralized robust control for
uncertain large-scale interconnected systems. However, there are few results for de-

centralized robust controllers with variable gains. In the case of the conventional



decentralized robust controllers with fixed gains, the size of linear matrix inequali-
ties (LMIs) which should be solved to design decentralized robust controller becomes
large. In contrast with these, LMIs for decentralized variable gain robust controllers
are more simple than ones of the conventional decentralized robust controllers with
fixed gains only, namely, there is a possibility that decentralized variable gain con-
trollers can stabilize uncertain large-scale interconnected systems which cannot be
stabilize in the case of conventional fixed gain controllers.

In this thesis, for uncertain large-scale interconnected systems, we propose design
methods of decentralized variable gain robust controllers (DVGRC).

First of all in chapter 1, we introduce the history of control theory, robust control
and decentralized control. Moreover, the purpose and the originality in this thesis
are described. Finally, notations and useful lemmas which are used in this thesis
are shown. In chapter 2, we propose an LMI-based design method of a decentral-
ized variable gain robust regulator for a class of uncertain large-scale interconnected
systems. For the uncertain large-scale interconnected system, uncertainties and in-
teractions satisfy so-called matching condition. Furthermore, a sufficient condition
for the existence of proposed decentralized variable gain robust controller is given
in terms of LMIs. Finally, we include a numerical example to show the effective-
ness of the proposed decentralized robust controller. Next, chapter 3 describes a
design method of decentralized variable gain robust controllers with guaranteed dis-
turbance attenuation performance referred to as “L, gain performance” for a class
of uncertain large-scale interconnected systems. In chapter 3, we also assume that
uncertainties and interactions satisfy matching condition, and disturbance inputs
are square integrable functions. Additionally, we show that sufficient conditions for
the existence of the proposed decentralized variable gain robust controller with guar-
anteed Ly gain performance are given in terms of LMIs. Finally, simple illustrative
example is shown. Chapter 4 shows a decentralized variable gain robust controller
for a class of large-scale interconnected systems with mismatched uncertainties. For
the uncertain large-scale interconnected systems, uncertainties and interactions do
not satisfy matching condition, and we divide them into the matched part and the
mismatched one. A sufficient condition for the existence of the proposed decentral-
ized variable gain robust controller is reduced to LMIs. Finally, we show a numerical
example to validate the proposed design procedure. Chapter 5 describes conclusions

in this thesis and future works.
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Chapter 1
Introduction

Robust control for uncertain dynamical systems and decentralized robust control
for uncertain large-scale interconnected systems have been well studied. In this
chapter, we introduce the history of control theory. Namely, we look back the history
of development for classical and modern control, robust control and decentralized
control. Moreover, the purpose and the originality in this thesis are described.

Finally, notations and useful lemmas which are used in this thesis are shown.

1.1 Classical Control and Modern Control

As you know, control systems can be found in diverse field of industry such as electric
power systems, robotics, chemical plants, transportation systems, space systems and
so on. In order to control such systems, many researchers have well studied various
control strategies and when we design control systems, it is necessary to construct
mathematical models for the controlled systems. For mathematical models, there are
mainly two types of representation, i.e., transfer function representation (classical
control theory) [1-3] and state-space representation (modern control theory) [4-6].

Classical control theory have been developed in the 1950’s, and describe controlled
systems by using the relation between inputs and outputs (i.e. transfer function
representations and frequency responses). For the stability analysis based on classi-
cal control, Routh-Hurwitz stability criterion [7] and Nyquist criterion [8] are well
known. Bode and Nichols proposed graphical design methods, which are well-known
as “Bode diagram” [9] and “Nichols chart” [10], respectively. Moreover, some design

methods based on classical control such as PID (Proportional, Integral and Deriva-

1



1.1. CLASSICAL CONTROL AND MODERN CONTROL

tive) controllers and phase lag-lead compensators have been suggested [11]. However
in classical control theory, controlled systems are mainly linear and time-invariant,
and have single input and single output only. Furthermore, experiences and trial
and error are needed for design approaches based on classical control theory.

On the other hand, modern control theory has been presented by Kalman in the
1960’s. Modern control theory describes not only the relation between inputs and
outputs but also internal states of controlled systems by using state variables, i.e.,
controlled systems have been represented as state equation (i.e. state space rep-
resentations). Kalman has proposed optimal regulator theory [12,13] and optimal
filtering one [14]. Namely, in modern control theory, controller design problems are
reduced to optimization problems based on the concept of state variables. As men-
tioned above, classical control is a design theory of frequency domain and controlled
systems are mainly linear and time-invariant, and have single input and single out-
put only. In contrast, modern control is a design theory of time domain, and it
is applicable to systems which are difficult to deal with by classical control (e.g.
multi-input and multi-out systems and nonlinear systems), and thus there are a lot
of results based on the state space representation for stability analysis and controller
design problems [15-17]. The characteristics of classical control and modern control

are summarized in Table 1.1.

Table 1.1: Characteristics of classical control and modern control

Classical control Modern control
Design space Frequency region Time domain
System representation | Transfer function State equation
Design approach Graphical methods | Matrix computation

In modern control theory, pole assignment [18,19] and optimal control theory
[20-22] are representative controller design methods. Pole assignment is that if
controlled systems are linear and controllable, state feedback control laws can place
the closed-loop poles for controlled systems at arbitrary locations in the complex
plane. Moreover, optimal control is the problem of finding a control law which
minimizes a certain cost function. Especially, for linear systems, linear quadratic
optimal control is a controller design problem that minimizes a given quadratic cost

function which includes state and control variables, and the control law derived by



CHAPTER 1. INTRODUCTION

solving the optimization problem is referred to as linear-quadratic regulator (LQ
regulator) [23]. It is well known that LQ regulator has a robustness and a low
sensitivity for parameter variations of controlled systems. Furthermore, its state
feedback control law can be designed easily by using the solution of an algebraic

Riccati equation and stability for the closed-loop system is guaranteed [24].

1.2 Robust Control

When we design control systems, it is necessary to establish mathematical models for
controlled systems. If the mathematical model describes the controlled system with
sufficient accuracy, satisfactory control performance are achievable by using various
controller design methods. However, there inevitably exist some gaps between the
controlled systems and its mathematical model, and the gaps are referred to as
“uncertainties”. Uncertainties are caused by linearization for nonlinear systems,
modelling error (e.g. model order reduction), variations of system parameters and so
on. The uncertainties in the mathematical model may cause deterioration of control
performance or unstability of control systems. Therefore, many researchers have
well focused robust control problems for dynamical systems with uncertainties, and
a large number of existing results for robust stability analysis and robust stabilization
have already been obtained [25-27]. As an example of applications for robust control,

let us consider the control for a space rocket such as Figure 1.1 [28].

Figure 1.1: Space rocket [28]
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Figure 1.2: Overview of robust controller design
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Although nominal parameters of the space rocket can be obtained by various tests,
its true parameters are uncertain/unknown due to the effect of flight enviroment and
so on. Therefore, designers should consider gaps (uncertainties) between nominal
values and true ones. In particular, since launch and flight of the rocket are one-shot,
robust control is very effective for such case.

In general, the mathematical model derived by modelling is unique. But, in robust
control theory, the mathematical model for the controlled system is considered as
a model set consisting of a nominal model and uncertainties, and controllers are
designed such that robust stability and desired performance for all systems belonging
to a model set are achieved. Namely, the controller design problem in robust control

is defined as follows.

The controller design problem in robust control

Design a controller which stabilizes all systems belonging to a model set which

includes a nominal model and variations of uncertainties.

This means that robust controller design is worst-case one. Figure 1.2 shows the

4



CHAPTER 1. INTRODUCTION

process of controller design. In the 1980’s, main problems of robust controller de-
sign was to ensure the robust stability of uncertain systems. From the 1990’s, lots
of controller design methods which achieve not only robust stability but also de-
sired performance for uncertain systems have been established [29,30]. One can see
that quadratic stabilization based on Lyapunov stability criterion and H* control
are typical robust controller (e.g. [31-35]). Furthermore some researchers investi-
gated quadratic stabilizing control with achievable performance level in reference
to such as a quadratic cost function [36,37], robust H? control [38,39] and robust
H>-type disturbance attenuation [40,41]. In addition, the results for robust sta-
bility analysis and robust controller design problems using parameter dependent
Lyapunov functions (PDLFs) or piecewise Lyapunov functions (PLFs) have been
presented [42-44]. Moreover, Chesi has proposed the design method of robust con-
trollers based on homogeneous polynominal Lyapunov functions (HPLFs) for linear
systems with polytopic time-varying uncertainty [45]. Additionally, for uncertain
linear systems with exogenous disturbances, a linear state feedback controller which
achieves not only robust stability but also minimization of the bound of invariant
ellipsoidal set for the output has also been suggested [46]. However, most of robust
controllers consist of fixed gain parameters which are designed by considering the
worst case variations for uncertainties/unknown parameters. In contrast with such
conventional robust control with fixed gains, several design methods of some robust
controllers with variable gains have also been proposed (e.g. [47,48]). In the work of
Maki and Hagino [47], by introducing time-varying adjustable parameters, adapta-
tion mechanisms for improving transient behavior have been suggested. Moreover,
for linear systems with matched uncertainties, Oya and Hagino [48] have introduced
an adaptive compensation input which is determined so as to reduce the effect of
uncertainties. In addition, a design method of robust controllers with variable gains
based on LQ optimal control for a class of uncertain linear systems has also been
shown [49]. These robust controllers have both fixed controller parameters and vari-
able ones tuned by updating laws, and resultant control systems are more flexible
and adaptive comparing with the conventional robust controllers with fixed gains
only. Note that in this thesis, these robust controllers with time-varying adjustable

parameters are referred to as “variable gain robust controller”.



1.3. DECENTRALIZED CONTROL

1.3 Decentralized Control

In recent years, owing to the rapid development of industry, controlled systems have
become highly complex and large in dimension, and such dynamical systems are re-
ferred to as “large-scale interconnected systems” or “large-scale complex systems”.
Although large-scale and complex systems can be seen in diverse fields such as traf-
fic systems, economic systems, electrical systems and so on, it is difficult to apply
centralized control strategies for such large-scale interconnected systems because of
calculation amounts, physical communication constraints and so on. Therefore, de-
centralized control problems for large-scale interconnected systems have been well
studied [50-54]. In the decentralized control strategy, large-scale interconnected sys-
tems are divided into several subsystems and controlled each one by more than one
controller or decision maker involving decentralized computation. Figure 1.3 shows
the overview of decentralized control. In Figure 1.3, the number of subsystems and
controllers is 3, and d;; denotes interactions from i-th subsystem to j-th subsys-

tem. The major problem of large-scale interconnected systems is how to deal with

Controller 1 Controller 2
7y

S s g s e
| ; WOz - |

|
: Subsystem1 )\ Subsystem2 ),
I : daq R I
| ‘,‘ % d13 d2 3’.’ ‘0‘ |
: dg;™ 3 F o ds :
: Subsystem 3 :
| |
. e .

\ 2

d;;: Interaction
Controller 3 K '

Figure 1.3: Overview of decentralized control
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| >
g m Falnl B AR
—]

Figure 1.4: Traffic system [55]

the interactions among subsystems. Namely, each subsystem is controlled by the
corresponding controller. For typical applications of decentralized control, a decen-
tralized traffic signal control system based on decentralized intelligence (Figure 1.4)
has been developed [55]. Furthermore, we find that smart grid (Figure 1.5), which
control electric power supply and demand using networked decentralized small-scale
power sources, receives much attention in recent years [56].

During the last three decades, various types of decentralized control problems
have been studied, and a large number of results in decentralized control systems
can be seen in the work of Siljak [52]. Furthermore, a framework for the design of
decentralized robust model reference adaptive control for interconnected time-delay
systems has been considered in [57] and decentralized fault tolerant control problem
has also been solved [58]. Lee et al. [59,60] have studied synchronization problems for
complex dynamical network with randomly switching topology [59,60]. Additionally,
stability analysis and decentralized controller design problems for fuzzy large-scale
systems have been shown [61,62]

For decentralized robust control for uncertain large-scale interconnected systems,
many researchers have also considered various problems (e.g [63-67]). In the work
of Mao and Lin [63], the aggregative derivation are tracked by using a model follow-
ing technique with online improvement for large-scale interconnected systems with

unmodelled interaction, and a sufficient condition for which the overall system when

7
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Figure 1.5: Smart grid [56]

controlled by the completely decentralized control is asymptotically stable has been
presented. Chen et al. [64,65] have considered a design problem of a decentralized
controller for a class of interconnected nonlinear dynamical systems with uncertain
parameters and input disturbances. Additionally, decentralized robust controllers
which guarantee robust stability with prescribed degree of exponential convergence
have been presented. For a class of uncertain interconnected systems with state
and input delays, Zhang et al. [67] have proposed a design method of decentralized
output feedback controllers based on Riccati equation. Furthermore, decentralized
guaranteed cost controllers for uncertain large-scale interconnected systems have
also been suggested [68-70]. In addition, the robust decentralized control problem
for discrete-time singular large-scale systems with interval uncertainties has been in-
vestigated [71]. However, there are few results for decentralized variable gain robust
controllers for large-scale interconnected systems. In the case of decentralized ro-
bust controllers with fixed gains, the size of linear matrix inequalities (LMIs) which
should be solved to design decentralized robust controller becomes large. But, the
size of derived LMIs for decentralized variable gain robust controllers are smaller
comparing with the conventional decentralized robust controllers with fixed gains
only, namely, there is a possibility that decentralized variable gain robust controller
can stabilize uncertain large-scale interconnected systems which cannot be stabilized

by the conventional decentralized robust controllers.
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1.4 Purpose and Points of Originality

In this thesis, for uncertain large-scale interconnected systems, we propose LMI-
based design methods for decentralized variable gain robust controllers. Further-
more, simple illustrative examples are included to show the effectiveness of the
proposed decentralized variable gain robust control strategies.

First of all in chapter 2, an LMI-based design method of a decentralized variable
gain robust regulator for a class of uncertain large-scale interconnected systems is
proposed. Uncertainties and interactions which are included in the large-scale in-
terconnected system satisfy so-called matching condition [31,72]. Furthermore, a
sufficient condition for the existence of proposed decentralized variable gain robust
controller is given in terms of LMIs. The proposed decentralized variable gain robust
controller achieves not only robust stability but also satisfactory transient behavior.
Note that LMIs in the case of conventional decentralized fixed gain robust controllers
may not feasible for large-scale interconnected systems with matched uncertainties.
On the other hand, the proposed LMI condition is always feasible, namely, design-
ers can derive the decentralized variable gain robust controller provided that some
assumptions are satisfied.

Next, based on the result of chapter 2, we present a design method of decentral-
ized variable gain robust controllers with guaranteed disturbance attenuation per-
formance referred to as “L, gain performance” for a class of uncertain large-scale
interconnected systems in chapter 3. The proposed decentralized robust controller
achieves not only internal stability but also £, gain performance. The decentral-
ized variable gain robust controller design method derived in chapter 3 is a natural
extension of the result of chapter 2.

In chapter 4, we show a decentralized variable gain robust controller for a class of
large-scale interconnected systems with mismatched uncertainties. For the uncer-
tain large-scale interconnected systems, uncertainties and interactions do not satisfy
matching condition. There is a possibility that the proposed decentralized variable
gain robust controller can stabilize the large-scale interconnected systems with mis-
matched uncertainties, in the case that the conventional decentralized fixed gain ro-
bust controller cannot be designed. The effect of matched parts of uncertainties can
be suppressed by the variable gain parameter in the proposed controller, and the size
of LMIs which should be solved to design proposed variable gain robust controller is

smaller than one for the conventional fixed gain robust controllers. Therefore, the



1.5. NOTATIONS AND LEMMAS

proposed design method can be applied more larger class of uncertain large-scale
interconnected systems, and the proposed decentralized robust control scheme is
very useful.

Finally, in chapter 5, we summarize the result and the usefulness of the proposed
decentralized variable gain robust control strategies in this thesis. Moreover, we

describe future works to be carried out.

1.5 Notations and Lemmas

In this section, we show notations and useful and well-known lemmas (see [73-75]
for details) which are used in this thesis.

For a matrix A, the transpose of matrix A and the inverse of one are denoted
by A” and A~!, respectively. In addition, H.{A} and I, mean A + A" and n-
dimensional identity matrix, respectively, and a block diagonal matrix composed
of matrices A; for i = 1,--- M is represented as diag (A, -+, Apr). For real
symmetric matrices A and B, A > B (resp. A > B) means that A — B is positive
(resp. nonnegative) definite matrix. For a vector o € R", ||c|| denotes standard
Euclidian norm, and for a matrix A, ||.A|| represents its induced norm. The symbols

A . . . i ) o
*" and “=" mean symmetric blocks in matrix inequalities and equality by definition,

respectively.
Lemma 1.1 For arbitrary vectors A and £ and the matrices G and H which have

appropriate dimensions, the following inequality holds;

Y

H. (ATGAMHE} < 2|67

HE

where A(t) with appropriate dimension is a time-varying unknown matriz satisfying

IA@)] < 1.0.

Proof : By using Schwarz’s inequality [74] and the relation ||A(¢)|| < 1.0, one can

see that the relation
HAN'GA()HEY = 20 TGA(tYHE
< 2[IG" MA@l
< 2| A HE|

can easily be obtained. [ |

10
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Lemma 1.2 (Schur complement) For a given constant real symmetric matriz ©,

the following items are equivalent.

ZZ) @11 >0 and 922 — @,{291_11912 >0,
ZZZ) @22 >0 and 911 — @1292_219{2 > 0:

Proof : See Boyd et al. [73] for details. |

11






Chapter 2

Decentralized Variable Gain
Robust Controller for Large-Scale
Interconnected Systems with
Matched Uncertainties

In this chapter, for a class of large-scale interconnected systems with uncertainties
which satisfy matching condition, a decentralized variable gain robust controller
which achieves not only robust stability but also satisfactory transient behavior is
proposed [76]. We show that the proposed variable gain robust controller design
strategy is based on LMIs.

2.1 Problem Formulation

Let us consider the uncertain large-scale interconnected system composed of N

subsystems represented by

d

N
i) = Au(t)a(t) + D Aiy(t)a; () + Biui(t), (2.1)

j=1
i

where z;(t) € R™ and w;(t) € R™ (i = 1,--- ,N) are the vectors of the state and the

. . : T,
control input for the i-th subsystem, respectively and z(t) = (21 (t), -, 2} (t))" is

13



2.1. PROBLEM FORMULATION

the state of the overall system. The matrices A;;(t) and A;;(t) are given by

Aii(t) = A + BiAi(t)Ex,

(2.2)

In (2.2), matrices A;;(t) € R™*" are coefficients for interactions among subsystems,
and the matrices A;; € R"*"  A;; € R " and B; € R"*™ mean the nominal
system matrix and the nominal input one. In addition, the matrices D;;, &; and &;;
with appropriate dimensions denote the structure of interactions or uncertainties.
Moreover, matrices A;;(t) € R™*Pi and A;;(t) € R™*% represent unknown param-
eters satisfying the relations ||A;(¢)]] < 1.0 and ||A;;(t)]| < 1.0, respectively. One
can see from (2.2) that the uncertainties and the interaction terms satisfy so-called
matching condition [31,72].

Now, we introduce the following nominal subsystem which is obtained by ignoring

uncertainties and interactions in (2.1);

In (2.3), 7;(t) € R™ denote w;(t) € R™ are the vectors of the state and the control
input for the i-th nominal subsystem, respectively.

Firstly, the standard linear quadratic control problem is adopted for the i-th nom-
inal subsystem of (2.3) in order to generate the desired trajectory in time response
for the uncertain i-th subsystem of (2.1). Note that we can also adopt some other
design methods for deriving the desirable response (e.g. pole assignment). It is well
known that the optimal control input for the i-th nominal subsystem of (2.3) can

be obtained as

(2.4)

In (2.4), X; € R™*™ is a symmetric positive define matrix which satisfies the alge-

braic Riccati equation
H {A[X} — XBR'B/ X + Q; =0, (2.5)

where Q; € R"*™ and R; € R"™*™ are the weighting matrices, and these ma-
trices are positive definite matrices. Note that Q; € R™*™ and R; € R™*™ are

determined in advance so that the desirable transient behavior is achieved.

14



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS
WITH MATCHED UNCERTAINTIES

Let us introduce error vectors e;(t) 2 x;(t) —T;(t). Besides, for the i-th subsystem
of (2.1), using the feedback gain matrix K; € R™*" of (2.4), we define the following
control input [48];

wi(t) = Kimi(t) + v(t), (2.6)
where v;(t) € R™ is the compensation input defined as
vi(t) 2 Fiey(t) + Li(as, i, ei(t), (2.7)

where, F; € R"™*" and L;(x;,e;,t) € R™*" denote the fixed compensation gain
matrix and the variable one, respectively. From (2.1), (2.3), (2.6) and (2.7), the

following uncertain error subsystem is derived;

N
d
j=1
JF

+ BiLi(x;, e, t)e;(t). (2.8)

In (2.8), Ak, € R™*™ is the stable matrix described as Ak, = A;; + B; K;.
From the above discussion, our design objective in this chapter is to determine the
decentralized variable gain controller of (2.6) such that the resultant overall system

achieves not only robust stability but also satisfactory transient behavior.

2.2 Decentralized Variable Gain Robust Regula-

tor

A sufficient condition for the existence of the proposed decentralized control system

is shown as the following theorem [76];

Theorem 2.1 Let us consider the uncertain error subsystem of (2.8) and the control
input of (2.6).
By using symmetric positive definite matrices YV; € R"*"™ and §; € R"*™  ma-

trices W; € R™>*™ and positive constants €¢; which satisfy the LMIs

(_fife_{_@:z%_f BW,} 1 A (V%) ) 0 (2.9)

15



2.2. DECENTRALIZED VARIABLE GAIN ROBUST REGULATOR

(fle_{_s_“flf_ﬁ_}; _ Y _> <0, (2.10)
* : —E (62)

the fixed gain matriz F; € R™*™ and the variable one L;(x;,e;,t) € R™*™ qre
determined as F; = Wiygl and

Ci(eivxiat) + Th(emt) T T
- BIP, BIPies(t) # 0),
BTPa (BiPe) 20, oy

1>

Li(x;, e, t)

In (2.9) — (2.11), matrices A; (Y;), ¥; and I (€;), and positive scalar functions
Gi(ei, i, t) and n;(e;, t) are given by

A (yi)é(yz.pﬁ Vi€l - YDy Vi€l ViDL Vgl

YDy Vi€ra) (2.12)

Wié (Di,; 53; DiT—l i gz‘T—l i Dgrl i 55;1 i D}C/i gf/z) ) (2'13)
I; (ei)édiag (ellml, edg, oy €imdm oy €im1dy 1y €iprlmg s €l 1y s

NIy eNIqM), (2.14)

Giler, i, t) 2 || BEPies(t) | € (1)) (2.15)

ni(eq, i, t) 226 (N — 1| BEPyes ()2 (2.16)

Moreover, t. in (2.11) is given by te = limesg —o(t —€) [47].
Then robust stability of the overall error system composed of the N error subsys-

tems of (2.8) is guaranteed.

Proof : In order to prove Theorem 2.1, the following quadratic function is
defined;

N N
Ve, T, ) 2> Voleint) + > Vi, (@), (2.17)
=1 =1

where V., (e;, t) and Vg, (T;, t) are given by

Vei (eia t) é

el (t)Piei(t), (2.18)
Vi (@i, t) 27 (4)S,74(1). (2.19)

16



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS
WITH MATCHED UNCERTAINTIES
For the quadratic functions V,,(e;, t) of (2.18), we have

EValent) < ) [H { (A + BEY P} eatt) + 21 B P00

N
1
i =1
i

N
1 - J—
+ =D () (DgDy + £5€,) Ty (1). (2.20)

For derivation of (2.20), we have used Lemma 1.1 and the well-known inequality
1
2075 < data + gﬁTﬂ (2.21)

for any vectors with appropriate dimensions and a positive scalar §. Moreover, the

following relation for the quadratic functions Vg, (T;, t) of (2.19) holds;

d

%sz (flv t) - f?(t) [He {Ajf;zgl}} fl(t) (222)

Firstly, the case of Bl P;e;(t) # 0 is considered. In this case, substituting the

variable gain matrix of (2.11) into (2.20) and some algebraic manipulations give

39<
—
)

S

~
N—
IN
Q)

=N
~—~
~
S~—

| — |

1 (A + B P} enlt)

(1) (DI Dy + E5E5) (1)

+
D=

oS
LSl
Lo

+
D=
.MZ
8|
e

<. =

"(t) (DLDy; + ELEG) T5(t). (2.23)

(S
Ml

17



2.2. DECENTRALIZED VARIABLE GAIN ROBUST REGULATOR

Thus, we can easily see that the following relation can be obtained;

V(e 7)< iem A { (A + BiF)' P} )

dt p
N
DIEACIEACHENELD
N 1 N
F200 2 G0 (DEDs + EEy) es(0)
B =
1 N
= E O (D EE) Ty (224)
ot

N N
d — T 1 T T
“V(e,7t) < ;e (t) | H. {(AKZ + BiE)" } ;Z (DEDj; + E5€37) | eilt)
J#i
N N
+> 7 () [ HAAR ST+ - (DLDji + EL€,) | m(t),  (2.25)
=1 =1
i
if the matrix inequality conditions
N L
— J
”HA
H {ALS) + Z (DIDji + E1E;:) <0 (2.27)
=1
J#i

holds, then the following inequality for the quadratic function V(e, T, t) is satisfied;

%V(e T, t) <0 for VE(t) #0, (2.28)



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS

WITH MATCHED UNCERTAINTIES
Next we consider the case of Bf P;e;(t) = 0. In this case, from (2.20) and (2.22)

the time derivative of the quadratic function V(e, T, t) of (2.17) can be written as

d N T
%V(e,f, t) = ;ef(t) [He {(AKZ' + B, F}) PZH ei(t)

N
+ 3 7 () [He {A% S} Tilt). (2.29)
i=1
Namely in the case of B P;e;(t) = 0, the relation of (2.28) also holds.
From the above, the overall error system is clearly robust stable, because the
nominal subsystem is asymptotically stable.
Finally, the matrix inequalities of (2.26) and (2.27) are considered. By introducing
the matrices ); 2 Pt and W 2 F;P; and pre- and post-multiplying both sides of the

matrix inequality of (2.26) by ), the following matrix inequality can be obtained;

N
1
H {AgiYi + BW} + > —Yi (DfiDsi + £5i&;i) Vi < 0. (2.30)
— €
J#i
Thus by applying Lemma 1.2 (Schur complement) to (2.27) and (2.30), we find that
the inequalities of (2.27) and (2.30) are equivalent to the LMIs of (2.10) and (2.9),
respectively. Thus by solving the LMIs of (2.9) and (2.10), the fixed compensation
gain matrix is determined as F; = W,;); ' and the variable one is given by (2.11).

Hence the proof of Theorem 2.1 is completed. [ |

Remark 2.1 The decentralized variable gain robust controller design method in this
chapter can be applied to the uncertain large-scale interconnected systems with time
delays (see [77]). Furthermore, although the uncertainties in the large-scale inter-
connected systems of (2.1) are described as structured uncertainties, in [78], the
parameter structured uncertainties are considered. The proposed design method in

this chapter can easily be extended to such control systems.

Remark 2.2 In order to derive the proposed decentralized variable gain robust con-
troller, solutions of the LMIs of (2.9) and (2.10) are needed. In the LMIs of (2.9)
and (2.10), LMI variables ¢; € R' can arbitrarily be selected subject to ¢; > 0. There-
fore we find that there always exists the solutions of the LMIs of (2.9) and (2.10),
1.€., the proposed decentralized robust controller can always be designed. Therefore,

the proposed design method is very useful.
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2.3. NUMERICAL EXAMPLES

2.3 Numerical Examples

In this example, the uncertain large-scale interconnected system consisting of three
two-dimensional subsystems is considered, namely, N’ = 3. The system parameters

are given as

~10 0.0 0.5 —1.0 ~10 15
Ay — Ay =  Agg = ,
H ( 1.0 1.0) - ( 1.0 —1.0) % ( 0.0 1.0)

1.0 1.0 0.0 , 1.0
Bl — 3 BQ - 5 B3 - 3 811 - )
0.0 1.0 1.0 0.0
1.0 1.0 1.0 2.0
= ) £33 = ) Df, = ) Dy = )
2 ( 2.0 53 1.0 12 2.0 13 2.0
1.0 1.0 1.0 0.0
DT — . DL, = . DI = . DL = :
2 ( 0.0 ) 2 1.0 3 1.0 52 2.0
2.0 2.0 1.0 0.0
T — CET = & = &L = ,
12 ( 1.0 ) 13 ( 2.0 ) 2 ( 0.0 ) 2 ( 2.0 )

2.0 2.0
eT L ET = . 2.31
o ( 0.0 ) % ( 1.0 ) (2:31)

Furthermore, we select the following initial values of the uncertain large-scale system

of (2.31) and the nominal system;

| | T
x(o):(z.o 10105 1.511.0 —2.0) ,
- - (2.32)

. . T
z(0) = ( 1.0 =15 ! —-1.0 1.0 ! 1.5 —=1.5 ) .

Additionally, unknown parameters are selected as Ay;;(t) = cos (5nt) and A;;(t) =
— sin (27t), respectively.
In this example, for the weighting matrices Q; € R?*? and R; € R (i = 1,2, 3)

for the nominal subsystems, we consider the following two cases:

e Type 1: Q; = diag(1.0, 2.0), Q, = diag(1.0, 1.0 x 10'), Q3 = I,
Ry =10, Ry =1.0 x 10", R3 = 1.0 x 10!

° Type 2: Ql =1.0x 101]2, Q2 =1.0x 101]2, Qg = d1ag(50, 1.0 x 101),
Ri=10x10"1, Ry =1.0, R3=1.0

20



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS

WITH MATCHED UNCERTAINTIES
Firstly, Type 1 is considered. By solving the algebraic Riccati equation of (2.5),

the symmetric positive definite matrices X; € R**? and the optimal gain matrices

K; € RY2 of (2.33) for the i-th nominal subsystem are derived as

2.6458 5.6458 7.5663 —3.4261
Xl = ) XQ = )
* 1.4937 x 101 * 7.5682

[ 49377 3.5301

X3 = x 1071

’ % 2.0081 (2.33)
K= —2.6458 —5.6458 ) Ky = ( _ 41402 —4.1421 ) « 101,
Ks=( —3.5301 x 102 —2.0081 ) .

Besides, by using Theorem2.1, we design the proposed decentralized variable gain
robust controller. By solving LMIs of (2.9) and (2.10), we have

i 2.0399 x 10 —3.6077 [ —2-2706 x 10!
' . 17958 )7 ~7.1943 ’
J, 8.0537 4.8515 x 10~ wr— [ T3ISTY
o * 08791 )7 %\ —1.5631 ’
b, 6.1443 “31541 1\ —8.7819
’ —3.1541 1.1110 x 10' )’ —5.1838 x 10" ' (2.34)
s _ [ 1o 3suL) o (87701 51918\
U« 16921 P * 8.5940 ’
4.7618 2.3655
83 = X 101,
x  7.4323

€1 = 1.7410 x 10}, €; = 1.2826 x 10!, €3 = 4.2199 x 10%.

Thus the symmetric positive definite matrices P; € R?*? and the fixed gain matrices

F; € RY2 can be computed as

p _ [ 76040 x 10~2 1.5276 x 10~
b * 8.6376 x 10~
1.2453 x 10~! —6.1157 x 103
P, =
* 1.0152 x 10~!
1.9052 x 10~!  5.4085 x 102 (2.35)
Py =
N 1.0536 x 10~
F = ( —5.7563 —1.9542 x 10! ) B = ( —2.5281 2.0481 x 10~! )
Fy=( —2.8277 —3.4977 )
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Next, Type 2 is considered. As with Type 1, the symmetric positive definite
matrices X; € R?*? and the optimal gain matrices K; € R'*? of (2.36) for the i-th

nominal subsystem are derived as

1.1417 2.6595 1.0128 x 10* —8.1942
Xl - ) XQ - )
* 3.0364 x 10! * 1.0511 x 10*

2.2373 7.2487 x 1071 1
Xy = x 107,
* 4.6297

K= ( 11417 —2.6595 ) % 101, Ky = ( _1.9338 —2.3166 )
Ks=( —7.24871 x 10~ —4.6297 ) .
(2.36)
By solving LMIs of (2.9) and (2.10), matrices ); € R**?/ W, € R? and §; € R**?,

and positive scalars ¢; can be obtained as

9.3921 —2.5581 2.5430 x 10!
yl = ) W,lr =
* 1.0929 —5.5057
6.1941 —1.5624 T —-9.0216 1
y2 - ; W2 == X 10 s
* 7.6210 1.2692
5.3346 —2.0748 —9.3795
yS = ) W?T = )
* 6.1365 —1.8179 (2.37)
1.0483 2.1948 2.2637 —1.8223
81 = , 9 = X 101,
* 4.5887 x 10! * 2.4260
1.7343 x 10* 3.9504
83 - )
* 7.8018
€ = 1.7141 x 101, €9 = 1.2878 x 101, €3 = 3.2954 x 10%.
Consequently, we can derive
P 2.9374 x 107! 6.8755 x 107!
b * 9.5243 ’
1.7025 x 10~Y 3.4904 x 1072
7)2 == )
* 1.3837 x 107!
21584 x 10-1 7.2975 x 10-2 (2.38)
P3 - )
* 1.8763 x 1071
= ( 3.6844 3.5863 ) Py = ( —1.0929 1.4414 ) ,
Fy;=( —2.1571 —1.0256 > .

22
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WITH MATCHED UNCERTAINTIES
Figures 2.1 — 2.8 show the simulation results of this numerical example. In these

figures, x(l)(t) and fgl)(t) (I = 1,2) are the [-th element of z;(t) for i-th subsystem

7

and one of the state T;(t) for i-th nominal subsystem, respectively. From these
figures, one can find that the proposed decentralized variable gain robust controller
stabilizes the uncertain large-scale systems with system parameters of (2.31) in spite
of uncertainties and interactions. Moreover, the proposed decentralized variable
gain robust controller achieves good transient response close to the desired transient
behavior generated by the nominal subsystem. Additionally, in the result of Type2,
one can see that the state variables of each subsystem converge faster than the
result of Type 1. Namely, it can be confirmed that the transient behavior for each
subsystem can be changed by adjusting the weighting matrices. Thus, we have

shown the effectiveness of the proposed decentralized robust control system.
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2.4. SUMMARY

2.4 Summary

In this chapter, a decentralized variable gain robust controller for a class of large-
scale interconnected systems with uncertainties and interactions which satisfy match-
ing condition has been proposed. Furthermore, a numerical example have been il-
lustrated to show the effectiveness of the proposed control strategies. The proposed
decentralized variable gain robust controller achieves not only robust stability but
also satisfactory transient behavior generated by the nominal subsystem. Moreover,
the transient behavior for each subsystem can be adjusted by selecting the weighting
matrices. The proposed LMI condition is always feasible, i.e., designers can derive
the decentralized variable gain robust controller provided that some assumptions
are satisfied. On the other hand, in the case of the conventional decentralized fixed
gain robust controllers, derived LMIs may not feasible for large-scale interconnected
systems with matched uncertainties. Thus, the proposed method in this chapter is

very useful.
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Chapter 3

Decentralized Variable Gain
Robust Controllers with
Guaranteed Lo Gain Performance
for Uncertain Large-Scale

Interconnected Systems

For a class of uncertain large-scale interconnected systems, an LMI-based design
method of decentralized variable gain robust controller with guaranteed L, gain
performance is shown in this chapter [79]. Moreover, the effectiveness of the pro-

posed controller is presented through simple numerical examples.

3.1 Problem Formulation

Consider the uncertain large-scale interconnected system composed of the following

N subsystems;

N
%xi(t) = Ay (t)x;(t) + Z Aij(t)x;(t) + Biu(t) + Iywi(t),
=

Zz(t) == CZZIZ(t) + inwi(t),

(3.1)

where x;(t) € R™, u;(t) € R™ | z;(t) € RP and w;(t) € R% (i = 1,--- ,N) are the

vectors of the state, the control input, the controlled output and the disturbance
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input for the i-th subsystem, respectively. The disturbance input w;(t) € R% is
assumed to be square integrable, that is, w;(t) € £3]0,00). The matrices A;(t) and
A;;(t) in (3.1) are given by

Aui(t) = A + BiAi(t)Ex,

(3.2)

In (3.1) and (3.2), the matrices A;; € R™*™  A;; € R"*™ B, € R"*™ () €
Rpoxmi [0, € R™*% and I',, € RPI*% are known system parameters, and the matri-
ces D;j, &; and &;; with appropriate dimensions represent the structure of interac-
tions or uncertainties. Moreover, the matrices A;;(t) € R™*™ and A;;(t) € R™i*%
are unknown time-varying parameters satisfying the relations ||A;(¢)|| < 1.0 and
1A;;(®)|l < 1.0, respectively, i.e., the uncertainties and the interaction terms satisfy
the matching condition.

Now, we define the following control input for the i-th subsystem of (3.1);

u;(1) 2 Fixi(t) + (i, 1),
i(24,t) - Li(s,t)w(t),
where, F; € R™>*™ and v;(x;,t) € R™ denote the fixed gain matrix and the com-

pensation input for the i-th subsystem of (3.1). From (3.1), (3.2), and (3.3), we can

derive the following closed-loop subsystem;

(3.3)

N
d
j=1
J#i

Now a definition of the decentralized variable gain robust control with guaranteed

Ly gain performance is given as follows;

Definition 3.1 The control input of (3.3) for the uncertain large-scale intercon-
nected system of (3.1) is said to be a decentralized variable gain robust control
with guaranteed Lo gain performance v* > 0 if the internal stability of the resul-
tant closed-loop system of (3.4) is ensured, and Ho.-norm of the transfer function
from the disturbance input w(t) é(wlT(t), wa (), ,wi ()" to the controlled output

2(t) é(le(t), 2 (t),- 20 (8)T s less than or equal to a positive constant v*.
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By using symmetric positive definite matrices P; € R"*™  we consider the fol-

lowing quadratic function;

N
V(.I,t) ézvi(xiat)a (35)
where V;(z;,t) is
Vi, t) = 2l ()P (8). (3.6)

Moreover, we introduce the following Hamiltonian;

N
a2 V@0 + Y 0a0) - 0Pl ). (37

Then, for the uncertain large-scale interconnected system of (3.1) and the control
input of (3.3), we have the following lemma for the decentralized variable gain robust

control with guaranteed L, gain performance v* > 0;

Lemma 3.1 Let us consider the uncertain large-scale interconnected system of (3.1)
and the control input of (3.3).
If there exist symmetric positive definite matrices P; (i = 1,--- ,N) and positive

scalars 7 which satisfy the inequality
H(z,t) <0, (3.8)

for the quadratic function V(x,t) and the signals z(t) and w(t), then the control
input of (8.3) is a decentralized variable gain robust control with guaranteed Lo gain

performance v*, where v* is given by
Y =maxy, (i=1,---,N). (3.9)

Proof : The following inequality can be obtained by integrating both sides of the
inequality of (3.8) from 0 to oo with z;(0) = 0;

V(z,00) + ﬁf; {/000 2T () z(t)dt — (7)) /000 w?(t)wi(t)dt} < 0. (3.10)

One can see that the overall uncertain closed-loop system of (3.4) is robustly stable
(internally stable) from the inequality of (3.7) and (3.8), i.e., robust stability of the

overall uncertain closed-loop system with w(t) = 0 is guaranteed. Moreover, the
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Hoo-norm of the transfer function from the disturbance input w(t) to the controlled

output z(t) is less than a positive constant «v*, because the inequality of (3.10) means

the following relation;

(3.11)

[EGI w(t)

Thus the proof of Lemma 3.1 is accomplished. [ |

< .
[:2 Py [:2

From the above discussion, in this chapter, the design objective is to design the
decentralized variable gain robust controller of (3.3) such that the overall system
achieves not only internal stability but also guaranteed £, gain performance v* > 0.
That is to derive the symmetric positive definite matrices P; € R™*™  positive
constants 7*, the fixed gain matrices F; € R™*" and the compensation input
i(z;,t) € R™ which satisfy the inequality of (3.8) for uncertainties Ay;(t) € R
and A;;(t) € R™**4  and the disturbance input w;(t) € £5[0, 00).

3.2 Decentralize Variable Gain Controller with

guaranteed £, Gain Performance

The following theorem shows sufficient conditions for the existence of the proposed

decentralized robust control system [79];

Theorem 3.1 Let us consider the large-scale interconnected system of (3.1) and the
control input of (3.3).
By using symmetric positive definite matrices Y; € R™*™ the matrices W; €
R™i*™ and positive scalars €; and y; which satisfy the LMIs
H {A; Y+ BW;} ' I, + ViCL T, | A; (Vi)

|
|
_____________ o D - - - - o

* TTTL, — il 10 0 <0, (3.12)
+ +

the fized gain matriz F; € R™*" and the compensation input ;(z;,t) € R™ are
determined as F; 2 Wiygl and

S VST gty (BIPa(r) #0)
|B2Pa0)

L

Wiz, t) (3.13)
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In (3.12) and (3.13), matrices A; (};) and §; (¢;), and scalar functions (;(x;,t) and
n;i(zi,t) are given by

AY)E (WCL YDL, Vel ViDL vl
yz‘Dzr—l i yigizil i yiDZ;,ji-l i yl.ggrl it
YDy ViEXii) (3.14)
O (&) 2 diag (I, €11m,, 115,121, €21i, -+ -
SN TR [ TERY P €i+1Imi+17 €i+1lsi+1i7 T
N T Ensyi) (3.15)

Gl t) = || BIPa() |

Eiixi(t) H ) (3.16)

2

ni(zi,t) = ¢ (N —1) HBZTPZxZ(t)

(3.17)

Note that t. in (3.13) is given by t. = limesqo(t —€) [47].
Then the control input of (3.3) is the decentralized variable gain robust control

with guaranteed Ly gain performance v* = max,/7;.

Proof : In order to prove Theorem 3.1, we consider the quadratic function
V(z,t) of (3.5), the Hamiltonian H(z,t) of (3.7) and the inequality of (3.8).
For the quadratic function V;(z;, t) of (3.6), its time derivative along the trajectory

of the resultant closed-loop subsystem of (3.4) can be compute as

%VZ(.TZ, t) = x?(t) :He {(A“ -+ BZE)T PZ}] Z; + He {x?(t)PZBZAZZ(t)gZ,J.TZ(t)}

(

N
+ H &l (OPiB; ) (Dij + Ay&iy) (1)

j=1
L JFi

+ He {.%'ZT(t)PZBzﬁz(Z'Z, t)xz(t)} + He {xZT(t)PZszwZ(t)} . (318)
Moreover, by using Lemma 1 and the well-known inequality
1
2075 < dato + gﬁTﬁ, (3.19)
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for any vectors a and ( with appropriate dimensions and a positive scalar §, we

have the following relation for the function V;(z;, t);

T t) < 7l 0) (1 { (A + BE P Y] ) + 2 | BP0 [t
+2¢; (N — 1) 2l (t)P; B; B Py (t)
+ = Zm ) (DEDy; + ELE;) m;(t)
J?ﬁz
+ He {a] ()PiB;Li(wi, t)as(t) } + He {a] Q)Pilpwi(t)} . (3.20)

Firstly, the case of BIP;x;(t) # 0 is considered. In this case, substituting the
compensation input of (3.13) into (3.20) and some algebraic manipulations derive

the following inequality;

%Vi(a:i,t) < 27(t) [He {(AZ,« B 73}] (1)
1 N
+ = > 2] (t) (DD + ELE) =;(t)
i
+ H, {z] (O)Pilwi(t)} . (3.21)

Additionally, one can see from (3.1) that the relation

2 (t)z:(t) — (07) wl (wi(t) = o (1)CF Ciiai(t) + He {f (t)Cul Lwi(t) }

+w] (t) (LFL, = yily,) wilt), (3.22)

holds, where (v)” é%. Therefore from (3.5), (3.7), (3.21) and (3.22), we can obtain

the following relation for the Hamiltonian H(z, t);

1) < ﬁ: a0 [He {(AZ-,; + B,F)” PH ()

N N
1
200 2o (1) (DIDy + E) (1)
=1 " | j=1
J#
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N

ZH {al(t) (Pl + CELL) wi()} + 3 ol (1) CF Gz (1)

+Zw ) (TEL,, — iy, ) wit). (3.23)

The inequality of (3.23) can also be rewritten as
xt<Zx [ {A“—i-BF) PZ}]xZ(t)

N N

F3 a0 4SO+ ERE) )
i=1 j=1 "7
J#i

+2H{x (P L }+zw (0CTCu(t)

+ZH{:¢ (t)CE I ywi(t) }—l—Zw ) (FET, = ~dy,) wit)

10 [H {4+ BF) P} + CEC;

1
— (D};Dji + i) | (1)

Mz

2
+ZH{:¢ ) (Pily, + CEL,) wi(t)}

+ Z Wl (t) (IET, — ~yiy,) wilt). (3.24)

Furthermore, some algebraic manipulations for (3.24) give the following inequality;

N T
i t) <3 ( xéti ) (P, i, %) ( i) ) , (3.25)
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where ¥;(P;, €;,7;) € RMita)x(nitai) is given by

A [ Ti(Pi€) | Pil,, +CLT,

wipoan (HHD PR, (320
. 2 1744

Yi(Piy i) = H, {(Azz + BiFi)T Pz'} + CZ-T,;CZ-z-
N g
+ Z_; - (DL + £LE;:) - (3.27)
Hence if the matrix inequality
(P, €i,vi) <0 (3.28)

holds, then the inequality of (3.8) for the Hamiltonian is satisfied.

Next in the case of B] P;z;(t) = 0, one can see from (3.18) and (3.22) and the
definition of the control input of (3.3) and the compensation input of (3.13) that if
the matrix inequality of (3.28) holds, then the inequality of (3.8) is also satisfied.

Finally, we consider the matrix inequality of (3.28). By introducing the matrices
yzéP;l and WiéFiyi and pre- and post-multiplying both sides of the matrix

inequality of (3.28) by diag (), I,,), we have the following inequality
Zi(Vi, Wi, € ;Fx- +ViCE T,
Vi, Wi, €i,7i) = (- =Y W —6—)4 Lot NGl f-)

<0, (3.29)
where =;(YV;, W, €;) € R™*™ is matrix described as

Zi(Vi, Wi, €) = H.{AuY: + BW;} + yiogoz‘z‘yi
N1
+ z_; e—iyi (DIDji + ELE5:) . (3.30)

Thus by applying Lemma 2 (Schur complement) to (3.29) we find that the matrix
inequalities of (3.29) are equivalent to the LMIs of (3.12). In the LMIs of (3.12),
scalar variables ¢; > 0 and ; > 0 can arbitrarily be selected. Therefore we find that
the LMIs of (3.12) are always feasible, i.e. there always exists the solution of the
LMIs of (3.12). Therefore, by solving the LMIs of (3.12), the fixed gain matrix is
determined as F; = W;Y; ! and the compensation input is given by (3.13), and the
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proposed control input of (3.3) becomes a decentralized variable gain robust control

with guaranteed Lo gain performance v* of (3.9). Therefore the proof of Theorem
3.1 is accomplished. n

Next, the conventional fixed gain decentralized robust controller for uncertain
large-scale interconnected systems of (3.1) is provided. The next corollary gives
an LMI-based design method of the conventional fixed gain decentralized robust

controller with guaranteed L, gain performance.
Collorary 3.1 Consider the following control input instead of (3.3):
wi(t) £ Kiz;(t), (3.31)

where K; € R™>*" s the fived gain matriz for the i-th subsystem of (3.1). In this
case, the LMIs of (3.12) in Theorem 3.1 is transformed into following LMIs;

O;i(Si, Wi, €, €5) : 1I; : I, J' A:(Si)
* - ! 0 ! 0
———————————— :——Zﬁf—”i—:——————————:——————— < 0, (3.32)
* S S S DUy 0
* : * : * —: QZ'(GZ',EU)
A N
92(82, WZ', €, Eij) = He {AMSZ + BZWZ} + GZBZBZT + Z Eisz'BiT, (333)
i=1
i
A(S)E(SCE s sl el gl - e (3.35)
A ) 1
Qi(eia Gij) = —diag ([pia J\ﬁ[n“ ei[ria Eiljs“a T >€iN[iN) . (3-36)

Namely, by solving the LMIs of (8.32), the fized gain matrixz is determined as K; =
WS

Proof : By using the similar way to the proof of Theorem 3.1, Corollary 3.2

can easily be proved. [ |

Remark 3.1 In chapter 2, the nominal system is introduced so as to generate the
desired trajectory of the state and the control input. Moreover, the proposed con-
troller design method can be applied to the uncertain large-scale interconnected sys-
tems with state delays (see [82] for details). The proposed design method in this

chapter can be easily extended to such control problem.

37
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Remark 3.2 The decentralized robust controller synthesis proposed in this chapter

1s adaptable when some assumptions are satisfied. Namely, if the matching condition
for uncertainties and interactions is satisfied, then the proposed decentralized variable
gain robust controller is applicable, i.e. the LMIs of (3.12) are always feasible (see
/7%) Additionally, the size of LMIs in the proposed design equals to n; + 2q; +

Z (nj +s45). On the other hand, for decentralized robust controllers with fized

j=1.j#i
N

gain matrices, the size of LMIs of (3.32) to be solved is 2n;+ Z n;+2p;i+q;+1i+

=1,
N

Z sij. Furthermore, the number of variables for LMIs of (3.12) is less than that

J=1j#i
of the decentralized robust controllers with fized gain matrices. Therefore, one can

see that the proposed decentralized robust controller design method in this chapter is

very useful.

Remark 3.3 The proposed decentralized variable gain robust controller can be ob-
tained by solving LMIs of (3.12). Since LMIs of (3.12) define convex solution sets
of (Vi, Wi, €i,7:), and thus various efficient convex optimization algorithms can be
applied to test whether these LMIs are solvable and to generate particular solu-
tions [80,81]. In addition, these solutions parametrize the set of decentralized vari-
able gain robust controllers with the Lo gain performance. Namely, one can see that
the result in Theorem 3.1 can easily be extended to the decentralized variable gain

robust controller with suboptimal Ly gain performance (see Corollary3.2).

Collorary 3.2 Since the LMIs of (3.12) define a convex solution set, we consider
minimizing the parameter ~y;, because our interest is in establishing Lo gain perfor-
mance. Furthermore in the LMIs of (3.12), v; has no correlation with ~v; (j # 1).
Thus our design problem can be reduced to the following constrained convexr opti-
mization problem (see [80,81]);

Minimi ] subject to (3.12). 537
oo inimize - ly;] subject to (3.12) (3.37)

If the optimal solution Y; > 0, W;, €¢; > 0 and v; > 0 of the constrained optimization
problem of (3.37) is obtained, then the control input of (3.3) with the fized gain
matriz F; = W;Y ™" and the compensation input ;(x;, t) of (3.13) is the decentralized

variable gain robust control with suboptimal Lo gain performance v* of (3.9).
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3.3 Numerical Examples

In this example, the uncertain large-scale interconnected systems consisting of three
two-dimensional subsystems is considered, i.e. N’ = 3. The system parameters are

given as

15 1.0 1.0 —1.0 05 1.0
Ay — Ay =  Agg = ,
H ( 1.0 05 ) - ( 1.0 —15 ) 5 ( 15 —1.0 )

Blz<1.o 7322(1.0 ’B?):(o.o),gﬂ: 1.0)7

0.0 0.0 1.0 0.0

- () () ma- (1) o6-(T0)
D%:((l):g),pg;:(?:g ’ 52(?8) g;:<(1)8 © o (3.38)
() (on ) () 2= (20)
() e ) (o) - (0n)

— =
o O

1.0 1.0
F:Eg = ) Ct) = ) Cq, =
( 1.0 ) 1 ( 0.0 ) 22 (

I, =10, TI,=10 I, =10.

1.0
) CT - )

Firstly, we design the proposed decentralized variable gain robust controller on
the basis of Theorem 3.1. By solving LMIs of (3.12), we have positive definite

matrices ); € R**2 matrices W; € R'*2, and positive scalars ¢; and «; given by

1.0187 —4.3846 x 1071 T —2.4004
yl — 9 Wl — 9
* 3.9896 x 107! —1.8211

1.4782 —1.0391 —5.7365
y2 = ) W,ér = 1 )
* 1.8897 —3.4728 x 10
8.7797 x 1071 —9.7835 x 1071 T —2.9187
y3 = ) W?, = ] )
* 1.7125 —2.3220 x 10

€1 =6.1366, ¢ =6.9400, €3 =6.1119,
v =3.0826, 7 =3.0208, 75 = 3.0840.

(3.39)
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Thus the symmetric positive definite matrices P; € R?*? and the the fixed gain

matrices F; € R'? can be computed as

1.8628 2.0472 1.1027 6.0629 x 107!
Pl - 5 PQ - )
* 4.7564 * 8.6254 x 10!

3.1346 1.7908

Py = ,
’ +  1.6071 (3.40)

Fy=( —81997 —1.3576 x 10* ), Fy = ( —6.5360 —3.7775 ) :

Fy=( —1.0786 x 100 —7.2254

Additionally, the positive scalars 7] = ,/7; can be obtained as
vy = L7557,  ~5 =1.7380, ;= 1.7561. (3.41)

Therefore, the guaranteed £ gain performance v* of (3.9) for the proposed controller

is given by
~v* = 1.7561. (3.42)

In this example, the initial value of the uncertain large-scale system with system

parameters of (3.38) is selected as follow;
: : T
20)= (10 ~101-05 10110 ~20 ) . (3.43)

Furthermore, unknown parameters and disturbance inputs are given as

ij () = — sin(27t), (3.44)
wi(t) = 2.0 exp(—t) cos(brt).

Note that disturbance inputs w; € R! (i = 1,2,3) tend to 0 as ¢ tends to infinity.
The simulation result of this numerical example is shown in Figures 3.1 — 3.4. In
these figures, xgl) (t) denotes the I-th element of the state x;(t) for the i-th subsystem,
respectively. From these figures, one can see that the proposed decentralized variable
gain controller achieves internal stability for the uncertain large-scale systems with
system parameters of (3.38) in spite of uncertainties and interactions. Therefore, the

effectiveness of the proposed decentralized robust control system has been shown.
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Figure 3.1: Time histories of x;(¢)

State

012 34567829
Time
Figure 3.2: Time histories of z5(t)
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oy
A R
g 05
S S O
w or e
-0.5 by ——
_1 ; ; ; . .(t>. . .
012 3 456 789
Time
Figure 3.3: Time histories of x3(¢)
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Figure 3.4: Time histories of u(t)
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3.4 Summary

In this chapter, based on the result of chapter 2, we have presented an LMI-based
design method of a decentralized variable gain robust controller with £, gain perfor-
mance for a class of uncertain large-scale interconnected systems. As with chapter 2,
uncertainties and interactions which are included in the large-scale interconnected
system satisfy matching condition. The proposed decentralized robust controller
achieves not only internal stability but also £, gain performance. Furthermore, the
derived LMIs are always feasible, and the size and the number of variables of resul-
tant LMIs are smaller than that of the conventional decentralized fixed gain robust
controller. In addition, the proposed decentralized variable gain robust controller
can easily be extended to one with suboptimal £, gain performance by applying a
convex constraint optimization problem. One can easily see that the result in this
chapter is an extension of the result of chapter 2. Thus, the effectiveness of the

proposed decentralized variable gain robust controller is presented.
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Chapter 4

Decentralized Variable Gain
Robust Controller for Large-Scale
Interconnected Systems with

Mismatched Uncertainties

In this chapter, a decentralized variable gain robust controller for a class of large-
scale interconnected systems with mismatched uncertainties is shown [83]. The
decentralized variable gain robust controller is natural extension of the result derived
in chapter 2, and thus the controller design problem is reduced to the solvability of
LMIs.

4.1 Problem Formulation

We consider the uncertain large-scale interconnected system composed of N subsys-

tems as

N
%%(Tf) = A;i(t)z;(t) + ; Aij(t)%' (t) + Biuy(t), (4.1)
J#i

where x;(t) € R™ and u;(t) € R™ (i = 1,---,N) are the vectors of the state

and the control input for the i-th subsystem, respectively. In (4.1), the matrices
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A;i(t) € R and A;;(t) € R™*™ are given by

Au(t) = Ai + BilN() i + B A (D)E (42)
Aij(t) = Ajj + BDyj + B:A;j(1)E;; + BEAL(ES. ’
In (4.1) and (4.2), the matrices A; € R"*™ and B; € R™*™ are known system
parameters and the matrices A (t) € R™>X"i Ay (t) € R™i*sii . Ad(t) € RPi>%i and
A (t) € RPi*4is are unknown time-varying parameters which satisfy || A (t)[] < 1.0,
1A @) < 1.0, [[AZ(t)]] < 1.0 and [[A5(2)]] < 1.0, respectively. Moreover, the
matrices D;;, &; and &;; with appropriate dimensions represent the structure of
matched interactions or uncertainties and the matrices A;;, Bi, BZ#, &+ and cS'L
denote the structure of mismatched ones. Namely, the uncertainties and interactions
in the large-scale interconnected system under consideration are treated separately
divided into the matched part and the mismatched one.

Now, the control input is defined as

ui(t) = Fii(t) + i@, 1),

2
B (4.3)

In (4.3), F; € R™*" and v;(x;,t) € R™ are a fixed gain matrix and a compensation
input for the i-th subsystem of (4.1). Note that £;(z;,t) € R™*" is a variable
gain matrix for the i-th subsystem. From (4.1) — (4.3), the following closed-loop

subsystem can be obtained;

%xi(t) = (A + B Fy) (1) + (BiAu()Es + BEAL(DER) 24(t)
N
+B; Y (Dij + Ay (H)E;) z5(t) + Z Ay + BEAL()ES) (1)
éii J#z
+ BiLi(xs, t)a(t). (4.4)

From the above discussion, the design problem in this chapter is to derive the
decentralized variable gain robust control input of (4.3) such that the overall closed-
loop system with mismatched uncertainties achieves robust stability. More specifi-
cally, the fixed gain matrices F; € R™*™ and the compensation input 1;(z;,t) € R™
are designed such that asymptotical stability of the overall closed-loop system com-

posed of N subsystems of (4.4) is guaranteed.
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4.2 Decentralize Variable Gain Robust Controller

In this section, we show an LMI-based design strategy for the decentralized variable
gain robust controller for the overall closed-loop system with mismatched uncer-
tainties composed of N subsystems represented by (4.4). A sufficient condition for
the existence of the proposed decentralized variable gain robust control system is

summarized as follows;

Theorem 4.1 Consider the large-scale interconnected system of (4.1) and the con-
trol input of (4.3).
If there exists the solution of LMIs

(f‘_)i_O_’i’_V_Vz»ff@ By ! A ) <0 (4.5)

M omatrices W; €

then by using symmetric positive definite matrices ); € R™
R™>™ and positive scalars o;, €; and 0;; which satisfy the LMIs of (4.5), the fized
gain matriz F; € R™>™ and the compensation input ¥;(x;,t) € R™ are determined

as F; = Wz-ygl and

Gl t) 4+ mi(s,t)
| B] P (8)]|”
Vi, te) (B Piz;(t) = 0),

2 BI'Pii(t) (B} Pizi(t) #0),

wi('riv t)

where t. in (4.6) is given by te = limesgc—o(t —€) [47]. In (4.5) and (4.6), matrices
Oi( Vi, Wi, 04, 6:5), Ai(Vi) and $2;(04, €, 6;:), and scalar functions (;(z;,t) and n;(x;, t)
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are given by

N
O (Vi, Wi, 05, 6i5) 2 HAA;Yi+ BW;} + Uz'BZ-L (BZ-L)T + Z 5¢injA3;-

=1
i

Z(s B (BH)" (4.7)
pot
A; (y»é(yz (&) oL wiEl vl Vel
VDI, VEL,, VDL, VL, -
VDL, Vi€l Vi o Vi V(&)
Vi€l )" Yi(ehy ) ;i (EJ#Z-)T>, (4.8)

T

AN
Qi(Uz', €is 5ij) =diag (Uz'[qm €1y, €11s,5, €2y, €005, - -
) Gi—lfmi,l, Gi—lfsi,li, €i+l[mi+1> €i+1[si+1i> Tt
s 6/\flmj\[a EN[sNia 5lilnia T aéi—li[ma 5i+1i[nia T

) 5Nzlnza 51i[q1i> Tty 5i—1i[qi,1i7 5i+1ilqi+1i7 Tty 5Ni[q/\[¢) s

(4.9)
G, t) 2 | BT P ()| i (8)], (4.10)
(24, 1) 2 (N — 1)|| BT Pazi (1) (4.11)

Then the control law described by (4.3) is the decentralized variable gain robust

controller which stabilizes the overall system.
Proof : Using symmetric positive definite matrices P; € R™"*"  we define the
Lyapunov function candidate as

N
V()2 > Vilait), (4.12)

=1

where V;(z;,t) is the following quadratic function;
Vi(ws, t) 2 27 () Pizs(t). (4.13)
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The time derivative of V;(z;,t) along the trajectory of the closed-loop subsystem

of (4.4) is given by

%Vi(xi, t) = 2T (t) [He {(Aii + BF)" 73}] (1) + 20T ()P By A (1) S (1)

N
+ 2a] ()P BFAG (0 Emi(t) + 22 ()PB; Y (Dyj + Aij(1) ) (1)

j=1
J#i

N
=1
]j;éi

(4.14)

Additionally, by applying Lemma 1 and the well-known inequality
1
22758 < sala + EBTB. (4.15)

for any vectors a and 3 with appropriate dimensions and a positive scalar 9, the

following relation for the quadratic function V;(x;,t) can be obtained;

d

Vi@ t) < oT () [He {(Au+ BF) P} ailt) + 2 | BEP)]|

(1) H

ol (OPBE (BE) Palt) + (1) (63)" k)

)

+ 2¢; (N — 1)z} (t)P; B; B} Py (t)

) (DDi; + &
+ - Z +ELEG) x4(t)
J?ﬁz
N

+Z5mx PAUA Pt 25—

J#z jﬁ

N

+Z§z]$ PBL BL Pl‘z 25— EJ‘ ()

T T
+ 22 (P BiLy (s, t)a,(t). (4.16)

Firstly, the case of B] P;z;(t) # 0 is taken into account. In this case, by substitut-

ing the variable gain matrix of (4.6) into (4.16) and some algebraic manipulations,
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we can derive the following inequality;

%Vi(xi, 1) < 27 (t) [H {(AZ-Z- + BT P}] J(t) + o (1P BE (BE) Pai(1)

N

1 1
*"—$()(5ﬂ Eiwi(t) + ;j}jfﬂﬂ(pgpw+5$&ﬂ$ﬂﬂ
T
<N
+ Z%x )P Ay AL Py (t) + Z 6—x]T(t)x](t)
— 0;;
J#Z gii

N
1
—i-z%x (OP:B (BS)" Pixi(t)JrZijjT (t) (E5)" &b (8).
g o
(4.17)

Therefore from (4.12) and (4.17), we obtain the following inequality for the
quadratic function V(x,t);

N
d T T
%V(%t) S;% (t) [He {(Au + B,F;) PzH w4(t)
X T 1L (pl N L 7 INT o1
+Zalxl )P:B;- (B; ) Pixi(t)—i-;g—ixi ) (&7) Exailt)
N 1 N
+Z€ > T (t) (DIDy + ELE) 2;(t)
=
N N 1
+ZZ5M YPiA; AL Pii(t) + ) = (t);(t)
=1 1.7&1. =1 j=1""
J7F VE)
+ZZW? (O)P:B; (Bf) Piai(t)
=1 j#l
JF
N N 1
+Zza—jx]r(t) (&5 Eba;(t). (4.18)
i=1 j=1 "
J#i
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The inequality of (4.18) can be rewritten as

%V(%t) < ﬁf;x;‘r’(t) [He {(Au + B;F)" Pz}] i(t)
N N

+Y ol (t)P;B; (Bil)T Pixi(t) + Z ixf(t) (S;)T Exrai(t)
1

1=

N N
+Zzl ) (DIDji + £€5) wi(t)
=1 j5=1 €
JFi

N
= D wl OP(Piy i i, Gig)ilD) (4.19)

where @;(P;, 04, €;,0;;) € R"*" is given by

1>

@,(P;, 04, €:,0i5) = H, {(Azz + BiFi)T Pi} + 0P B (Bil)TPi + % (&%)T&%

+§ DTDjz+57;5 § 8P Ay AL P
1 .7
jJ?fZ jyéz

L i 1
+ .5 Inz+26 PiBik (B P+Z » LEL (4.20)
J#Z J?ﬁz J#Z

Therefore, if the matrix inequality
@Z‘(PZ',O'Z',Q,(SZ'J') <0 (421)
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holds, then the following inequality for the time derivative of V(z,t) of (4.12) is
satisfied;
d
%V(x t) <0, Vaz(t) #0. (4.22)
Secondly, for the case of B P;x;(t) = 0, one can see from (4.14) and the definition
of the fixed gain and variable one of (4.6) that if the matrix inequality of (4.21) holds,
then the inequality of (4.22) is also satisfied.
Finally, the matrix inequality of (4.21) is analyzed. By introducing the comple-
mentary matrices Y 2 Pt and W, 2 F;Y;, and pre- and post-multiplying both sides

)

of the matrix inequality of (4.21) by ); € R™*™ it can be obtained that

HAAuY; + BW;} + 0.B; (BiL)T + %yz‘ (&%)T EiYi

N
1
+ Z —Y; (D;Dji + £/:€;:) Vi + Z 6 Aij Al + ) =YY
j=1 "¢

1€ =
put T j#i
N
1
+Z<$UBl (B&:)" Z(s_ ) €LY <0, (i=1,---,N)  (4.23)
7j=1
i j#i

Thus, from the inequality of (4.23) and Lemma 1.2 (Schur complement), one can
find that the matrix inequalities of (4.23) are equivalent to the LMIs of (4.5). There-
fore, by solving the LMIs of (4.5), the fixed gain matrix and variable one are given
by F; = W;Y; ! and (4.6), respectively, and the proposed control input of (4.3)
becomes a decentralized variable gain robust stabilizing control. Thus the proof of

Theorem 4.1 is completed. [ |

Theorem 4.1 represents the proposed decentralized variable gain robust control
strategy. Next we show the conventional fixed gain decentralized robust controller
for large-scale interconnected systems with mismatched uncertainties of (4.1). The
next corollary gives an LMI-based design method of the conventional fixed gain

decentralized robust controller.
Collorary 4.1 Consider the control input
wi(t) & Kimi(t), (4.24)

instead of (4.3), where K; € R™*" s the fived gain matriz for the i-th subsystem of
(4.1). In this case, the LMIs of (4.5) in Theorem 4.1 is transformed into following
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LMIs;

(ﬁ@@% paonand) | IO ) <0 (4.25)
0;5) ’ '

n(yiawivﬂiaaia€i76ij)éHe {AuY; + BW;} + BB} + 0;B;- (BiL)T

+26i(./\/’—1)BZ-BZ-T+Z§ Ay AL+ ch B (BS)"

stﬁi J#z
(4.26)
A
) = (el ¥ (&0)" vof Wl
YD, Vi€l ViDL, Vi€l i
VDG, VL Vi - Vi V(&)
T 1N\T
Vi(EE ) ViR )T WER)T), (4.27)
Qi(ﬂia 03, €4, 5z'j) 2 diag (Mi[ri, Ji[q“-a €10y, €1ds4, 0
) Gi—llmi,l, Ei—llsi,li, €i+1lmi+1a €i+llsi+1i> T
aej\f[m/\[a GN[sNia 51ilni> Tt aéi—li[nia 5i+li[nia T
) 5Ni[m> 512](111'7 ) 52'—11'[%711'7 5i+1i[qz‘+m T
s ONilgny,) - (4.28)

By solving the LMIs of (4.25), the fived gain matriz is determined as K; = WDt

Proof : By adopting the similar way to the proof of Theorem 4.1, Corollary
4.1 can easily be proved. [ |

Remark 4.1 In this chapter, the uncertain large-scale interconnected system com-
posed of N subsystems of (4.1) is considered. Moreover, the uncertainties and the
interactions included in the controlled system are represented as (4.2), i.e., these
terms consist of the matched part and the mismatched one. Note that this assump-
tion holds without loss of generality, because it is well-known that the general struc-
tured uncertain terms can be dealt with the matched part and the mismatched one

(e.g. Remark 5 in [8}]). By adopting such a dividing way, we can derive less con-
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servative LMI conditions for the proposed decentralized controller comparing with
the existing result (e.g. [68])

Remark 4.2 In this paper, the stabilization problem of the large-scale intercon-
nected system with mismatched uncertainties is mainly concerned. On the other
hand in chapter 2, the nominal subsystem is introduced to generate the desired tra-
jectory of the state and the control input. Furthermore, although the uncertainty
included in the controlled system of (4.1) is described as structured uncertainties, in
the work of [78], the parameter structured uncertainties are considered. Note that

the proposed design strategy can easily be extended to such control problems.

Remark 4.3 In the design method of the conventional fixed gain controller in Corol-
lary 4.1, the size of LMIs to be solved equals to

N
ZC :an + 7+ qi + Z (mji—l—sji—i-qji). (429)
J=1j#i

Howewver, the size of LMIs in the proposed design method is

N
Z,=Nni+qi+ Y (mji+ s+, (4.30)
=1
i.e. Z.—2,=r;. Moreover, the number of variables in the LMIs of (4.5) is less than
that of the conventional decentralized fixed gain robust controller. In consequence,
the feasible region of the LMIs of (4.5) is large comparing with (4.25). Therefore,
we find that the proposed decentralized robust controller design method is very useful

and less conservative comparing with the conventional decentralized robust control.

Remark 4.4 In chapter 2, mismatched uncertainties have not been considered.
Note that by eliminating some parameters corresponding to mismatched term in
(4.5), the LMIs of (4.5) derived in this chapter can be reduced to the LMIs of
(2.9). Therefore, one can see that the proposed design method for in this chap-
ter 1s the natural extension of the result in chapter 2. Moreover, one can easily
see from (4.6) and (4.17) that the effects of matched uncertainties and interac-
tions can be reduced by the proposed variable gain controller. Therefore the size of
LMIs becomes small compared with the case that uncertainties dealt with the mis-
matched part only as uncertainties, i.e., the proposed LMI condition is less conser-

vative than the case that uncertainties are not divided into matched and mismatched
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parts. Furthermore, the compensation input 1;(z;,t) is bounded because the rela-
tion ||¢;(z;, t)|| = ||Euzi(t)]| + & (N —1) HBzTszz(t) is satisfied. Additionally, in
the case that there exist the mismatched uncertainties only, the compensation input
iz, t) defined as (4.6) becomes V;(z;,t) = €;(N — 1)BIPiz;(t) because of E; = 0.

4.3 Numerical Examples

In this section, two numerical examples are run in order to demonstrate the efficiency

of proposed decentralized variable gain robust controller.

4.3.1 Example 1

In the simulation study, the uncertain large-scale interconnected systems consisting
of three two-dimensional subsystems is involved, i.e., N' = 3. The system parameters

are supposed to

—1.0 1.5 1.5 —1.0 —2.0 2.0
5 22 — 33 — )
1.5 0.5

( 1.0 1.0 0.0 —2.0 )
0.0 1.0 0.0 1.0 0.0

9 BQZ 9 BSZ ) gll: )
1.0 0.0 1.0 1.0 0.0
0.0 2.0 3.0 0.0 5.0 x 1071 0.0

2.0 0.0 1.0 0.0 /' 0.0 0.0
0.0 0.0 0.0 5.0x 1071
Bi = . Bf = * ,
3.0x 1071 0.0 0.0 0.0
4.0 x 1071 0.0 1.0 0.0 0.0 0.0
& = = , E = ,
0.0 0.0 0.0 0.0 5.0 x 1071 0.0
3.0x 1071 0.0 0.0 3.0 x 1071
A12 = s A13 = )
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
Ag = . , Aoz = 1 ,
5.0 x 1071 0.0 5.0 x 1071 0.0
0.0 4.0 x 107! 5.0 x 1071 0.0
A31 == ) A32 = )
0.0 0.0 0.0 0.0

95



4.3. NUMERICAL EXAMPLES

2.0 2.0 1.0 1.0
DI = , DI = , DI = . DL = ,
. ( 1.0 ) . ( 0.0 ) “ ( 3.0 ) “ ( 2.0 )
1.0 0.0 1.0 1.0 1.0 0.0
; D;{Q - ) 512 - ; 813 - 5
0.0 3.0 0.0 3.0 2.0 0.0
2.0 0.0 0.0 2.0 1.0 0.0
) 523 = ) 831 = )
0.0 2.0 1.0 0.0 3.0 1.0
2.0 0.0 5.0 x 107t 0.0 3.0 x 107" 0.0
532 - ) Bf_Q - 9 Bffi - 9
3.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
By = , By = ,
50x 1071 0.0 4.0 x 107t 0.0
1 4.0 x 1071 0.0 1 50x 1071 0.0
B31 - ’ B32 - )
0.0 0.0 0.0 0.0
N 0.0 0.0 N 0.0 5.0x 107!
512 = ) 513 = )
50x 1071 0.0 0.0 0.0
1 3.0x 107! 0.0 1 0.0 0.0
&1 = ; 3= )
0.0 0.0 0.0 5.0x 107!
N 5.0x 1071 0.0 N 0.0 0.0
531 = ) 532 =
0.0 0.0 0.0 4.0x 107!

(4.31)

Firstly by solving LMIs of (4.5), we can obtain

g [ 89953 10453 x 10" [ 13156 x 101 —9.9780 x 10~
e * 23056 x 10! | 77 * 1.2110 x 10
1.7559 x 101 —1.2504 x 10
Vs = 1
N 9.1249 x 10
Wy = ( —1.4434 —9.4126 x 10 ) Wy = ( _77177T 1.3525 ) % 101,
Wy = ( —2.8256 —6.9872 ) % 10",

o1 = 1.9919 x 101, o = 3.0988 x 10!, 03 = 4.4852 x 10,
€1 = 1.8034 x 102, e = 1.4918 x 102, €3 = 1.6632 x 102,
S0 = 3.2237 x 101, &5 = 4.2751 x 101, 8y, = 2.1469 x 10,
Sa3 = 2.2465 x 101, 631 = 6.2652 x 101, 835 = 5.3206 x 10"
(4.32)

Therefore, symmetric positive definite matrices P; € R'*? and fixed gain matrices
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F; € RY2 can be computed as

2.3494 x 10~! 1.0651 x 10~
P, =
* 9.1662 x 102
7.6490 x 102 6.3025 x 1073
P, =
* 8.3097 x 102
. 9.8037 57602 \ o (4.33)
* 8.1012
o= —1.0365 x 100 —8.7815 ) ,
F,=( —5.8180 6.3744 x 107! > ;
Fy=( —6.8012 —7.2907 ) .

Now the conventional design method for the decentralized robust control with
fixed gains in the work of [68] is applied to the uncertain large-scale system of
(4.31). In the case of the conventional decentralized fixed gain robust controller,
the LMIs of (4.25) cannot be solved, namely, the conventional fixed gain robust
controller of (4.24) cannot be designed.

In this example, initial value of large-scale interconnected system of (4.31) is
selected as x(0) = < —-1.5 1.0 I 1.0 —2.0 I 1.5 —1.0 )T. Furthermore, unknown

parameters are given as

Ayi(t) = ( cos(2.0mt) 0 ) ;

Aii(t) = ( 0 cos(—mt) ) , (4.34)
AL(t) = diag ( sin(~6.0mt), cos(~6.0nt) ). '
Aj;(t) = diag ( — cos(wt), sin(nt) ) .

Figures 4.1 — 4.4 show the simulation result of this example. In these figures,
.IZ(Z) (t) denotes the [-th element of the state x;(t) for the i-th subsystem. From
these figures, the proposed decentralized variable gain robust controller stabilizes
the uncertain large-scale interconnected systems with system parameters of (4.31).
Therefore, the effectiveness of the proposed design method of decentralized variable

gain robust controller is shown.
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2 N
15_ ,,,,,,,,, ,,,,,,,
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,
QO O L s I
= 0.5
5 or S
os| -
1t/ 2V —
@
a5 b
O 05 1 15 2 25 3
Time
Figure 4.1: Time histories of z;(¢) (Example 1)
1 —
os\
0 i
2 |
s o5
N |
g [ S S e e rrrrrrr
15+ Dy ———
-2 a a () .
O 05 1 15 2 25 3
Time

Figure 4.2: Time histories of z5(¢t) (Example 1)
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1.5 T T T
1\ B
os N
0 |- e
os| S
-1 25 (1) —_
-1.5 50 '

O 05 1 15 2 25 3

Time

State

Figure 4.3: Time histories of z3(¢) (Example 1)

40
30
20
10 {....
0
20 R
-30 —

Control input

O 05 1 15 2 25 3
Time
Figure 4.4: Time histories of u(t) (Example 1)
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4.3.2 Example 2

In this example, we consider three-machine infinite bus system model as shown in
Figure 4.5 [85].

@ hydro  infinite bus

hydro thermal

Figure 4.5: Three-machine infinite bus system model [85]

This three-machine infinite bus system model system can be represented as the
large-scale interconnected system composed of three four-dementional subsystems

with the following system parameters [86];

—9.2200 x 107! 1.000  —2.6600 x 107" —9.0000 x 10~

A, = —2.7500 —2.7800 —1.3600 —3.7000 x 107! ’
0.0 0.0 0.0 1.0000
—4.9500 0.0 —5.5500 x 10! —3.0000 x 10~*
—2.1000 x 107! 1.0000 —1.6000 —5.0000 x 1073
Ay = —1.9000 —1.8000 9.3000 —1.2000 x 10~* ’
0.0 0.0 0.0 1.000
—3.1000 0.0 —5.6000  3.2000 x 1072
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~1.9700 x 1071 1.0000 12000  —3.0000 x 10~
4| 50010t 20000 300 70100 x 107 —2.3700 |
0.0 0.0 0.0 1.0000
—3.4000 0.0 —2.1000 x 101 —1.7000 x 102
0.0 0.0 0.0
3.6100 7.8900 5.6300
B, = , By = , Bsg = ;
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.0 0.0
&= grmeo | 0 8T | Lgr00x 1070 |
5.5400 1.2700 x 10~
0.0 0.0
& = 1.26000 <1070, (£5) = 1.86000 X 1075
1.2700 2.0000
0.0 0.0
T 0.0 . 0.0
) = Loosox02 |7 = | L0000 10-¢
1.0000 x 10~? 2.0000 x 102
2.4000 x 10~2 0.0 —8.7000 x 10~2 —2.0000 x 10-3
. 0.0 0.0 0.0 0.0 |
0.0 0.0 0.0 0.0
2.2200 x 101 0.0 81700 x 101 4.0000 x 10-*
7.2000 x 10~ 0.0 —2.5000 x 102 —3.0000 x 10-3
o 0.0 0.0 0.0 0.0 |
0.0 0.0 0.0 0.0
0.2400 x 10~ 0.0 1.7500 x 101 2.0000 x 10~2
21000 x 10~ 0.0 1.2100 x 10~2  3.0000 x 10~
0 0.0 0.0 0.0 0.0 |
0.0 0.0 0.0 0.0

—2.4300 x 1072 0.0 1.3700 x 1072 —3.4000 x 102
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6.0000 x 1072 0.0 4.6000 x 102 2.0000 x 103
0.0 0.0 0.0 0.0
Aoz =
0.0 0.0 0.0 0.0
1.2000 x 102 0.0 2.9800 x 102 —2.8000 x 102
—2.0000 x 10% 0.0 8.3000 x 102 0.0
0.0 0.0 0.0 0.0
Az =
0.0 0.0 0.0 0.0
—1.2400 x 107 0.0 4.9800 x 102 —1.7000 x 102
11000 x 1072 0.0 2.2000 x 102 0.0
0.0 0.0 0.0 0.0
Asy =
0.0 0.0 0.0 0.0
—7.0000 x 10 0.0 6.3700 x 102 —1.1000 x 10~
_4.3767 x 102 —1.2742 x 102
., 0.0 - 0.0
Pe=1 somixi0e PP rmezxi0s |
—3.0471 x 103 _5.5402 x 10-*
~1.3942 x 103 —1.2674 % 10~
., 0.0 - 0.0
Pa=l omssexi02 PP T isssoxi0t |
—1.9011 x 10~* —3.0697 x 102
—1.2043 x 102 37300
0.0 0.0 (
Pa=| rgoxio |" P27 | a5 | X
—1.5986 x 102 21847
0.0 0.0
0.0 0.0
E2= 1 yis00 |0 85| sa100x 1075 |
1.3900 2.7700 x 10~
0.0 0.0
o _ 0.0 e 0.0 |
1.2700 x 105 2.5300 x 105
6.3400 x 10~% 1.2700 x 106
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0.0 0.0
T _ 0.0 T 0.0
3 8.8800 x 106 | 8.8800 x 10~° |’
1.7800 x 10~° 1.7800 x 1076
0.0 0.0
0.0 - 0.0
&) = , (&) = ,
(652) 1.5000 x 102 (653) 3.0000 x 102
5.0000 x 1073 1.0000 x 104
0.0 0.0
0.0 - 0.0
oAt T , &L — , 4.35
(&31) 1.0000 x 102 (£23) 2.0000 x 102 (4.35)
5.0000 x 104 1.0000 x 103
0.0 0.0
0.0 - 0.0
EJ_ g — . ) 8J_ - y
(&31) 5.0000 x 10~3 (£32) 5.0000 x 102
1.0000 x 1072 1.0000 x 103
0.0
. 0.0 o o
B; :Bij: 0.0 {17]:17273} (17&])
1.0000 x 1073

In order to obtain the proposed decentralized variable gain robust controller, we

consider Theorem 4.1. By solving LMIs of (4.5), the following solutions can be

obtained;
3.7878 x 101 —7.4806 32862 5.0962
* 59707 x 100 —3.5341 3.2705
= " * 7.7496 x 1071 —3.3345 x 10~ |
* * * 2.7495 x 10!
74248  —8.2387 —1.5062 8.0610
% 3.2510 x 100 —3.5360 x 10~1 —5.3083 x 10~
2= " " 3.8621 —1.5011 ’
* * * 1.9168 x 10*
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14578 x 101 —1.0812 x 101 —2.1242 4.4548
- . 3.9548 x 100 —1.4665 —1.7421 x 10~
Vs = N " 1.0947 —3.5470 x 10" |
* * * 1.6254 x 10"
Wi = ( 7.0764 2.2199 x 10! —5.0421 —5.6077 x 10 ) ,
Wy = ( —5.0647 x 10" —1.9396 —4.9560 9.7925 x 10! ) , (4.36)

Wi = ( 2.0315 x 102 —2.3730 x 102 —2.8862 x 101 4.3241 x 10" ) ,
o1 = 6.5797 x 101, o5 = 6.5790 x 10, o3 — 6.5781 x 10!,

€ = 6.5822 x 101, e, — 6.5893 x 101, €5 — 6.5829 x 10,

S1p = 2.5875 % 101, 615 = 5.0776 x 101, 85y = 1.2289 x 10,

Sys = 84152 x 101, Gy = 1.1860 x 102, §sy — 7.7637 x 10,

Therefore, symmetric positive definite matrices P; € R*** and fixed gain matrices

F; € RY™* can be computed as

8.6264 x 1072 4.5044 x 1072 5.6498 x 107! —1.4495 x 102

b _ . 4.6520 x 1072 3.9927 x 10~* —9.0400 x 1073
* * 5.4701 —8.5871 x 1072 |’
* * * 3.9090 x 102
5.5408 x 107! 1.3843 x 107! 1.4407 x 10~* —2.1791 x 10!
P, — * 6.5396 x 1072 3.9244 x 1072 —5.3331 x 1072
* * 3.0486 x 107! —3.5627 x 1072 |’
* * * 1.3955 x 107!
2.1184 x 107! 7.6182 x 1072 4.9811 x 10~1 —4.6374 x 102
o * 5.4023 x 1072 2.1515 x 107! —1.5606 x 102
* * 2.1400 —8.7514 x 1072 |’
* * * 7.2156 x 1072
Fy=( —4.2552x 107! —1.5477 x 1071 —9.9039 —2.0623 ) :
Fy=( —1.4765 —4.4367 x 107! —1.6948 5.2702 x 10~ )

Fy=( 85758 —4.2275 —1.5412 x 10! —7.1738 x 102 ) .
(4.37)

In this example, we choose the initial value of large-scale interconnected system
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of (4.35) as follows;

| | T
;1:(0)2(1.0 ~1.0 0.0 0511.2 —3.0 0.0 —0.5:1.0 —1.3 0.0 0.5) .
(4.38)

Furthermore, unknown parameters are given as

An(t) = Ayy(t) = AL (1) = AL () = sin(60mt) {j = 2,31,
Agp(t) = Doj(t) = Agp(t) = Agy(t) = 1 — exp(=0.01t) {j = 1,3}, (4.39)
Asa(t) = A1) = Ak (1) = AL (1) = %sin(lZOwt) (=12}

Il
>

The simulation result of this example is shown in Figures 4.6 — 4.9. In these
figures, .IZ(Z) (t) are the I-th element of the state x;(t) for the i-th subsystem. From
these figures, the uncertain power system with system parameters of (4.35) is robust
stable by the proposed decentralized variable gain robust controller. Therefore, the
effectiveness of the proposed design method of decentralized variable gain robust

controller is shown.
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State

State

Figure 4.7: Time histories of z4(t) (Example 2)
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Figure 4.8: Time histories of z3(¢t) (Example 2)
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Figure 4.9: Time histories of u(t) (Example 2)
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4.4 Summary

This chapter has shown the decentralized variable gain robust controller for a class of
large-scale interconnected systems with mismatched uncertainties. The uncertain-
ties and interactions which are included in the large-scale interconnected system are
divided into the matched part and the mismatched one, and the effect of matched
parts can be reduced by the variable gain parameters in the proposed controller.
Moreover, the size of the proposed LMIs is smaller than both the case that uncer-
tainties and interactions are not divided into matched and mismatched part, and the
conventional decentralized fixed gain robust controller. Namely, the feasible region
of the LMIs derived in this chapter is large comparing with ones for the conventional
decentralized fixed gain robust controller. In other words, the proposed decentral-
ized variable gain robust controller can be applied to more larger class of uncertain
large-scale interconnected systems comparing with the conventional decentralized

fixed gain robust controller. Therefore, the result in this chapter is very useful.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we have proposed new decentralized variable gain robust controllers
for uncertain large-scale interconnected systems. Additionally, the effectiveness of
decentralized variable gain robust control strategies proposed in this thesis have
been shown through simple numerical examples.

In chapter 2, for a class of large-scale interconnected systems with uncertainties
and interactions which satisfy matching condition, a decentralized variable gain ro-
bust controller which achieves not only robust stability but also satisfactory transient
behavior generated by the nominal subsystem has been proposed. The proposed LMI
condition is always feasible, namely, designers can derive the decentralized variable
gain robust controller provided that some assumptions are satisfied. In the case of
the conventional decentralized fixed gain controllers, derived LMIs may not feasi-
ble for large-scale interconnected systems with matched uncertainties. Thus, the
proposed decentralized robust control strategy is useful.

Chapter 3 is an extension of the result of chapter 2 and the design method of
the decentralized variable gain robust controller with guaranteed L, gain perfor-
mance for a class of uncertain large-scale interconnected systems with disturbance
inputs has been suggested. As with the result of chapter 2, if the matching con-
dition for uncertainties and interactions is satisfied, then the resultant LMIs are
always feasible, i.e., the proposed decentralized variable gain robust controller can
be designed. The size and number of variables of resultant LMIs are smaller than

that of the conventional decentralized fixed gain robust controller. In addition, the
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proposed decentralized variable gain robust controller can easily be extended to one
with suboptimal £, gain performance by applying a convex constraint optimization
problem.

In chapter 4, the decentralized variable gain robust controller for a class of large-
scale interconnected systems with mismatched uncertainties. The uncertainties in
the large-scale interconnected system are divided into the matched part and the
mismatched one, and the effect of matched parts can be reduced by the variable
gain parameters in the proposed controller. Moreover, the size of LMIs which should
be solved is smaller than the case that deals with the mismatched part only as
uncertainties, i.e., the proposed LMI condition is less conservative than the case
that uncertainties are not divided into the matched and the mismatched parts.

By the way, in the work of Hopp and Schmitendorf [87], the design methods of
linear controllers which achieve practical tracking for linear systems with matched
uncertainty and e-tracking for linear systems with mismatched uncertainty have
been suggested. The proposed decentralized variable gain robust control strategy
can be extended to such control problems (see Appendix).

The design problems of decentralized variable gain robust controllers for uncer-
tain large-scale interconnected systems considered in this thesis are reduced to the
solvability of LMIs, and the size of LMIs are smaller than the case of the conven-
tional fixed gain robust control. Therefore the proposed controller design methods
of decentralized variable gain robust control systems are less conservative, and the
proposed decentralized variable gain robust controller can easily be derived. Note
that it is well known that LMI-conditions can easily be derived using various calcu-
lation tools (e.g. MATLAB Robust Control Toolbox and Scilab LMITOOL). Thus,

we find that the proposed controller design methods are very useful.

5.2 Future Works

In the future research, we will extend the proposed variable gain robust controllers
to such a broad class of systems as uncertain large-scale interconnected systems with
time delays, discrete-time systems and so on. Furthermore, in this thesis, we have
assumed that all state variables of uncertain large-scale interconnected systems are
measurable directly. However, there are only a few case of such systems in general,

and estimation of internal variables by using measurable input and output variables
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is needed. For such cases, observer-based controller and output feedback control are
useful. Thus, we will apply the proposed controller design methods to such problems
by using observer [88] or output feedback control [89].

On the other hand, in recent years, formation control for multi-agent systems
(MASs) has attracted the attention of many researchers (e.g. [90-92]). A multi-
agent system consists of several agents (e.g. vehicles and mobile robots) which
interact with one-another by network. In control strategies for multi-agent systems,
consensus problem [93-95] and coverage problem [96-98] are mainly considered.
Since formation control problems for multi-agent systems are considered as one
of decentralized control problems, we will also apply the proposed decentralized
variable gain robust control strategies in this thesis to formation control problems

for multi-agent systems with uncertainties.
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Appendix

Decentralized Variable Gain
Robust e-Tracking for a Class of
Uncertain Large-Scale

Interconnected Systems

In this appendix, a decentralized variable gain robust controller which achieves e-
tracking for a class of large-scale interconnected systems with mismatched uncer-
tainties is introduced [99]. Furthermore, we show that sufficient conditions for the
existence of the proposed decentralized variable gain robust controller are reduced
to the feasibility of linear matrix inequalities (LMIs). Finally, a simple numerical
example is presented to demonstrate the effectiveness of the proposed decentralized

robust control system.

A.1 Problem Formulation

Let us consider the uncertain large-scale interconnected system composed of N

subsystems described as

N
ilt) = Au(t)ri(t) + > Ay(t)x;(t) + Baui(t),

J=1
JF
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where z;(t) € R, u;(t) € R™ and y;(t) € RY (i = 1,--- ,N) are the vectors of
the state, the control input and the output for the i-th subsystem, respectively and
a(t) = (a1 (), - ,xf/(t))T is the state of the overall system. The matrices Ay (t)
and A;;(t) are given by
Ay(t) = Ay + BiAyi(H)Ey + B AL (1) Ex, (A2)

Aij(t) = Aij + BiDyj + BiAi;(t) €5 + B A5 (1)E;;-
In (A.2), the matrices A; € R"*"i A, € RY*" B, € R"*™i and C; € Ri*™ de-
note the nominal system matrices. Additionally, the matrices D;;, &; and &;; with
appropriate dimensions represent the structure of matched interactions or uncertain-
ties and the matrices A;;, B;", Bj;, &; and &;; show the structure of mismatched
ones [83]. Namely, the uncertainties and interactions are divided into the matched
part and mismatched one. Besides, matrices Ay (t) € R™>™ A(t) € R™>*%,
Aj;(t) € RPix%i and Aj5(t) € RP*% denote unknown parameters satisfying the
relations [|A;(#)]| < 1.0, [|Ay;(#)]] < 1.0, [[A5 ()| < 1.0 and HAf;(t)H < 1.0.

Now, the reference model which should be tracked by the subsystems of (A.1) is
given by

L (t) = Ap (1),

Yr,(t) = Cr,0p, (1),

(A.3)

where z,,(t) € R™i and y,,(t) € R% are the state and the output of the reference

model, and we assume that there exist a finite positive scalar M; such that
[, ()] < M;, Vit > 0. (A.4)

Furthermore for the reference model of (A.3), there exist matrices G; € R™*" and
H; € R™*"i which satisfy [87]

(g B BN Y (e (A.5)
OZ' : Olixmi Hz OTi

The nominal subsystem, which is obtained by ignoring uncertainties and interac-

tions in (A.1), is shown as

—7;(t) = Aumi(t) + Bu(t),
7i(t) = Cimi(t).

(A.6)
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In (A.6), 7;(t) € R™, u;(t) € R™ and y,(t) € R% are the vectors of the state, the

control input and the output for the i-th nominal subsystem. Next by introducing

: N
an error vector between the nominal system and the reference model €;(t) =7;(t) —

Gz, (t), the nominal error subsystem

%éi(t) = AT () + Bs(t) — GiA, z (1)
= AuTi(t) + Biui(t) — (AuGi + B H;) T, (1)
is derived. In (A.7), w;(?) ém(t) — H;x, (t). If the vector w;(t) can be written as
wi(t) = —K;€;(t), then the error subsystem of (A.7) can be rewritten as
= AKiéi(t)> (A8)

where Ag, 2 Ay — BiK;. Furthermore, the tracking error e,,(t) éyi(t) — Y, (t) can

be represented as

Therefore, if the matrix A, is stable, then €,,(¢) tends to 0 as ¢ goes to infinity, i.e.,
the output of (A.6) tracks one of the reference model of (A.3). Then the nominal
control input @;(t) for the nominal subsystem is
=— K7;(t) + (K;G; + H)x,,(1). (A.10)
Now, by using the nominal control input @;(¢) of (A.10), we define the following
control input for the large-scale interconnected system of (A.1):

L

ui(t) = — Kz (t) + (K:Gi + Hy)x,, (t) + vi(t). (A.11)

In (A.11), v;(t) € R™ is the compensation input defined as [83]

2
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where, €;(t) 2 x;(t) — G;x,,(t) is the error vector between the controlled system and

the reference model, and F; € R™*" and @;(e;, x,.,t) € R™ are a fixed compensa-
tion gain matrix and a nonlinear modification term. From (A.1), (A.2), (A.11) and

(A.12), we have the uncertain closed-loop subsystem of (A.13)

%xi(t) = Ag,xi(t) + Bi(K;Gi + H)w,, (t) + Bilis () Euvs(t) + Bi- Az () E;rai(t)
N
+ B Y (Dyj + Ayi(t) )yt Z (Aij + BEAL()ES)z;(t) — BiFse;(t)
?2 J#z
— Bipi(e;, z,, t). (A.13)

Hence from (A.13) and the definition of e;(¢), the following error subsystem can be

obtained:

%ez‘(ﬁ) = (Ag, — BiFy)ei(t) + B A (1) Eqwi(t) + B Ay (8)E;; (1)
+ B Z Dy; + Ay (1) E)w; (t Z (Aij + B AL()ES)z;(t)
g% g
- BZ'QOZ‘((?Z‘, Lr;y t) (A14)

From the above, the design problem in this appendix is to determine the compen-
sation input v;(¢) of (A.12) such that the tracking error e, (t) = (el (¢),--- ,el ()

Y1 ? YN
is satisfactorily small, namely the overall system tracks the reference model as closely

as possible.

A.2 Design Method of Variable Gain Robust e-
Tracking Controller

By using the symmetric positive definite matrices P; € R"*™  we introduce the
following Lyapunov function candidate so as to derive the proposed decentralized

robust controller:

N
Ve, t) éZVi(ei,t), (A.15)
Vi(ei, 1) 2 el (t)Piei(t). (A.16)
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For the quadratic function V;(e;, t), its time derivative along the trajectory of the

error subsystem of (A.14) is given by

TVilent) = O HA(Ak, - BE)TPJedtt)
+ 2el ()P B Nii (1) Eis(e4(t) + Gz, (1))
+2¢; ()P By A (1)E (e(t) + Gy, (1))
N
+2¢] ()PB; Y _(Dij + Aij()E€:)(e(t) + Gy, (1)

j=1
i

'MZ

S0 =

+2e] ()P Y (Aij + BéAjj(t)é’é)(ej (t) + Gz, (1))

oS
Ll

— 2¢] (t)PiBipi(e;, wr,, ). (A.17)

For the relation of (A.17), applying the well-known inequality for any vectors with

appropriate dimensions and a positive scalar d;
T 1
208 < 60" + =35 (A.18)
and some algebraic manipulations give

d
EVi(ei, t) S 6;.,1(t)H6{( — B, F)TP }ez + 2 HBTP 62 H ||5“el(t)H

+ Z t)(DDy; + E5E)e;(t)
J#Z

+5 Zx T(DLDy; + EL8) G, (t)
J#Z

1
+ %xi(t)G? (EN" EXGix,. (1) + 225 el ()P Ay AL Pre,(t)
J#z
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+ 3206 (1P (B:)" Pieat)

— 2¢] (1)PiBipi(€i, Tr;, ). (A.19)
Now we define the nonlinear modification term ¢;(e;, x,.,,t) as

o piles, o, t) +nile, t)
1B} Pies(t)||?

w;(e;, ) B]'Pie;(t), (A.20)

where scalar functions p;(e;, z,,,t) and n;(e;, t) are given by

N
pilei, o, t) = || BiPiei(t)|| ([[€iies ()] + 1€ Gz, (1)]]) (A.21)
~ :
ni(ei, t) = 26;(N = 1)|| B;Pses (1))
By substituting (A.20) into (A.19) and some algebraic manipulations, we can derive

the following relation for the quadratic function V;(e;, t):

N
d 1
Ve < o7 T - T T
dtVz(ez,t)_eZ (t)H {(Ag, — BiF,)TP;}ei(t) +5Z;e )(DEDy; + ELE)e;(t)
j#i
1 N
5— Z ) ()G (DiDij + E5E:) G, (1)
=

28l (VPBL (BY) Prealt) + =l (1) (63) Ebeu(r)

i

+61x}§(t)(;f (EN)" LGz, (1) +225e £)P, Ay AL P, (t)

i

J#Z
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+225e (OP:B}; (BS) Pre(t)

J;é/l . 1
EIEACE AN CH T DICED DESAUIC R TR CH R IO
=i =i

Therefore, from (A.15), (A.16) and (A.22), the inequality of (A.23) for V(e,t) can
be obtained

N
—V(e.t) < Y el ()HA(Ax, — BiF)"Pi}ei(t)

i=1

(t )(DTD +5T‘€zy)€y( )

umﬂ

<. =

S| =
<.
T

'MZ
5

S0 =

+
S| =

.
Il
—

()GT(DDij + £5Ei;) G, (1)

oS
LSl

N N
FD Sl 067 {1+ ()" &5} Gan (0 (A.23)
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The inequality of (A.23) can be rewritten as

1
6—(DJTZ.Dji + 5};@,;)

Mz

d N
Ve <O Bl - BEPY +

<SS
Yl
SL =

+20,PBF (BY) Pit = (5L) Ex

i

N
+) 26P A AL + Z 26,P:B}: (BE)' P,

T i
+355 {6 i e
N ”’“ N
+Z ()GT{Z@(DTD +ELE) + 3 (f:L) Ex

From the assumption of (A.4) for the reference model, there exists a positive

scalar o; satisfying the following relation:

Leh e

(DjiDji + i) + 5

0’)|}—l

e {3

[N

w*n MZ Ea

1 J_ 1L

Furthermore, we assume that for the symmetric positive definite matrix P; € R™*™

the fixed compensation gain matrix F; and positive scalars «;, 6; and 9;, the inequal-
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ity

H{(Axg, — B;F) TP}+Z (DD + ETE;) + 26,PiBf (B)' P

7j=1
J#i

; ZQ&PAUATP +22573Bl (B:)' P,
j;éi j#
S|
25— {1 +(€4) 5;} < —al, (A.26)
=

holds. Therefore, from (A.24) — (A.26), we have

d N
—Vet Zal (t)+20i
=1

= —el'(t)Ae(t) + 0. (A.27)

N

In (A.27), AL diag(aq, - ,ap) and o £ Z ;. One can easily see that the follow-
i=1

ing relation is obvious:

e! (t)Ae(t) = Amin(A)lle(®)]%, (A.28)

and thus the inequality of (A.27) can be rewritten as

d
51}(6 t) < —min{o;}||e(®)|* + o. (A.29)
Therefore if the inequality of (A.26) is satisfied, then the upper bound of e(t) is
given by
[EO] [y —— (A.30)
‘ min{o;}’ '
ie., from (A.9) and (A.30), the upper bound of e,(t) is given by
e <1C1 | (A31)
g i} |

where C' = diag (Cy, -+, Cy).
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Finally, we consider the inequality of (A.26). By introducing the symmetric

positive definite matrices S; éPZ-_l and matrices W; éFZ-SZ-, and by pre- and post-
multiplying both sides of the inequality of (A.26) by S;, we have

HAAk,S; — BW;} + Z 5 S,(DIDji + ELE)S, +26,BF (BL)"
J#z
1 T N
+ 57& (Ex)" EiSi+ > 20A;A7 + Z 5B (BS)"

j=1
J#i J#z

1 T
+ 5—3 {L+ (&) g} s+ asis <o, (A.32)

Mz

S

J
J

S

Thus by applying Lemma 1.2 (Schur complement) to (A.32), we find that the
inequalities of (A.32) are equivalent to the following LMIs:

(@@M)j S ) 0 (4.33)
* | —$2:(5:,0;)

where, matrices ©;(S;, W;, d;), A; (S;) and §2;(5;, 0;) are given by

N
0i(Si, Wi, 6,) & HAAR,S: — BW,} + 26,B (BH) + 26,4,
=1

G
+225 B (BS)" (A.34)
J#z
Ai(S)ES 8DT SEE - SDL,, SiEL,, SDL,, SiELy;
SDL. SEf Si(ED" S Si(EH)T S s (E5)
S S (Ex)T), (A.35)
02.(8:,6;) 2 diag(BiLn,, 61Im,, 611s, -+ Si1lmys 1L, s Gis1lmys Gis1ls,
e Loy On s Oilgy 01l 1y Gioidny 0ily ..,
Sicrlny Sisilgrris s OnInss OnIg), (A.36)

and a scalar (3; is defined as j3; 2 a; '. Therefore by using the solution of the LMIs of
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(A.33), the fixed compensation gain matrix F; and the nonlinear modification term

vi(e;, z,,,t) are determined as F; = W;S; ! and (A.20), respectively.

Summarizing the above, we obtain the following theorem.

Theorem A.1 Consider the large-scale interconnected system of (A.1) and the con-
trol input of (A.9).

If there exist symmetric positive definite matrices S; € R™*™  matrices W; €
R™i*™ qnd positive constants (3; and §; which satisfy the LMIs of (A.33), the
fixed compensation gain matriz F; € R™*™ and the nonlinear modification term
vile;, z,,,t) € R™ are determined as ]ﬂ-él/\/iS[1 and (A.20). Then the upper
bound of e,(t) is given by (A.31).

Remark A.1 The nonlinear modification term ¢;(e;, z,,,t) of (A.20) is bounded,
because one can easily see that the norm of the function @;(e;, x;,t) can be represented

il i, 1)|| = e (O] + 1€aGaze, () + 26:N = DI BiPrest) .

as

Remark A.2 The tracking performance of the proposed decentralized controller is
high comparing with the conventional decentralized control scheme, because the feasi-
ble region of the LMIs of (A.33) is more larger than one of the LMIs corresponding
to the conventional decentralized controller design strategies, and the relation o; < o¢
for the parameters o; of (A.25) and ot corresponding to o; is satisfied. Therefore,
we find that the proposed decentralized variable gain robust e-tracking controller is

useful.

A.3 Numerical Examples

A numerical example is provided to demonstrate the efficiency of the proposed robust
controller.
The uncertain large-scale interconnected systems consisting of three two-dimensional

subsystems (AN = 3) is involved. The parameters of the controlled system are given
by
—-1.0 1.0 1.0 3.0 —-1.0 1.0
All = ) A22 = 9 A33 = )
1.0 0.1 0.0 —2.0 2.0 0.0
3.0x 107t 0.0 0.0 3.0x 107!
Ap = , Az = ;
0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0
A21 = _1 ) A23 = _1 )
20x107" 0.0 3.0x 107" 0.0

0.0 2.0x 107! 1.0 x 1071 0.0
A31 - ) A32 =
0.0 0.0 0.0 0.0

0.0 1.0 0.0 1.0

5 BZ == 5 Bd == ) C? = )
1.0 0.0 1.0 0.0
1.0 0.0 1.0 0.0 0.0 1.0

) C’3T = ) 511 - ) 822 = )
0.0 1.0 0.0 0.0 1.0 0.0
1.0 0.0 Bi— 1.0 x 10°1 0.0 BL_ 0.0 0.0
1.0 0.0 00 /) 7 3.0x10"' 00 )’
0.0 5.0 x 10~ 10><101 0.0

By = , Ef = :
0.0 0.0 0.0
10x101 0.0 0.0 0.0
0.0 0.0 2.0x 107! 0.0

) ’D
2.0 1.0 0.0
. DY = . Dl = . Df =
oo) . (00) * (10) ! (

. (10 (ro0) o (ro00) o (10 00
52 00 ) 7" 00 10 ) " 00 00 ) % 00 1.0 )’
(0020 o (1000} . (0000
% 1.0 00 ) 10 1.0 ) 7% 1.0 00 /)’
1.0x 101 0.0 1.0 x 10-1 0.0
B, = , Bz = ,
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
Bé_]. = —1 Y B;é = —1 )
1.0x 10~ 0.0 1.0 x 10~1 0.0
2.0 x 1071 0.0 1.0 x 10~1 0.0
By = , B3y = ,
0.0 0.0 0.0 0.0
| 0.0 0.0 | 0.0 1.0 x 10~
512 = ) 513 = )
2.0x 1071 0.0 0.0 0.0
| 3.0x 10! 0.0 | 0.0 0.0
521 = ) 523 = )
0.0 0.0 0.0 2.0 x 10~
| 1.0x 10! 0.0 | 0.0 0.0
531 = ) 532 = )
0.0 0.0 0.0 2.0x 10!

(A.37)
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and the parameters of the reference models for each subsystem are given by

0.0 1.0 0.0 —-1.0 0.0 1.0
Arl = ) Arz = ) AT3 = )
~1.0 0.0 1.0 0.0 ~1.0 0.0 (A.38)

Cro=(00 10).C=(00 10),C=(00 10).

Firstly, by solving the the matrix equation of (A.5), the solutions G; € R?**? and
H; € R'*? are obtained as

o 000 (o010 (04 02
ol )7 oo oo ) V1o 00)7 (A39)
Hy=(~09 —21), Ho=(10 —10), Hs=( —08 14 ).

Now, in order to design the feedback gain matrices K; € R'*2 we consider the
standard LQ optimal control problem. By selecting weighting matrices Q; € R?*?
and R; as Q1 = Qy = Q3 = [, and Ry = Ry = R3 = 1, respectively, we solve
the algebraic Riccati equation of (2.5). Then we can obtain the LQ optimal gain

matrices K € R'*? as

K, =( 1.0361 1.8556 ),
Ky = ( 24142 21213 ), (A.40)
K= ( 2.1481 2.3014

Next, we consider Theorem A.1. By solving LMIs of (A.33), we can obtain the

following solutions:

s (30 mams ) 1.0540

. 10599 Ch 65998 x 107 )
g, (60100 “Toss2 ) e (57658

* 5.7199 6.3485 (A.41)
g (3T BB e (8766 |

N S 1638 e 1.3804 ’

B, = 3.4846, B, = 3.0113, 35 = 3.0437,
5, = 2.5598, 0, = 2.8465, 3 = 2.6082.

Therefore, the symmetric positive definite matrices P; € R?*2, the positive scalars
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a; and the fixed compensation gain matrices F; € R'*2 can be computed as

3.7667 1.9621 1.6781 2.0678 x 1071
Pl - 5 PQ - )

* 1.9656 * 1.7738
4.0661 1.6204
733 = )
* 1.8707

0y = 34846, ap = 3.0113, a3 = 3.0437,
P = ( 5.2651 3.3654 ) By = ( 1.0988 1.2453 ) Py = ( 37867 1.6781 )
(A.42)

In this example, initial values of large-scale interconnected system of (A.37) and

reference models of (A.38) are selected as
. . T
2(0) = ( ~1.0 =201 —-10 0.010.0 2.0 ) , (A.43)

and ., (0) = 2,,(0) = z,,(0) = (1.0 1.0)". Furthermore, unknown parameters are

given by

Ayi(t) = ( cos(2.0mt) 0 ) , Ag(t) = ( 0 cos(—mt) > ’
A (t) = diag ( sin(—6.07t), cos(—6.07t) ) ; (A.44)
A (t) = diag ( — cos(wt), sin(nt) ) :

Figures A.1-A.5 are the simulation results of this numerical example. These
figures show that the time histories of the output y(¢) and 7(t), the norm of the error
ey(t) = y(t) — y(t) and the proposed decentralized variable gain robust controller
u(t).

From these figures, we can see that the proposed decentralized variable gain robust
controller achieves good tracking performance for each subsystem with uncertain-
ties. Therefore, the effectiveness of the proposed decentralized variable gain robust

controller have been shown.
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Figure A.1: Time histories of y;(¢) and 7, ()
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Figure A.2: Time histories of y5(t) and 7, ()
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A.3. NUMERICAL EXAMPLES
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Figure A.3: Time histories of y3(¢) and 74(t)
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Figure A.4: Time histories of ||e,(t)]|
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Figure A.5: Time histories of u(t)
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