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Abstract

In modern computer science, the management of massive data is a fundamental problem

because the amount of data is growing faster than we can easily handle them. Such data

are often represented as strings such as documents, Web contents and genomics data;

therefore, data structures and algorithms for space-efficient string processing have been

developed by many researchers. In this thesis, we focus on a string dictionary that is an

in-memory data structure for storing a set of strings. It has been traditionally used to

manage vocabulary in natural language processing and information retrieval. The size of

the dictionaries is not problematic because of Heaps’ Law. However, string dictionaries

in recent applications, such as Web search engines, RDF stores, geographic information

systems and bioinformatics, need to handle very large datasets. As the space usage of

string dictionaries is a significant issue in those applications, it is necessary to develop

space-efficient data structures.

If limited to static applications, existing data structures have already achieved very high

space efficiency by exploiting succinct data structures and text compression techniques. For

example, state-of-the-art string dictionaries can be implemented in space up to 5% of the

original dataset size. However, there remain trade-off problems among space efficiency,

lookup-time performance and construction costs. For example, Re-Pair that is a powerful

compression technique for a text is well used to obtain high space efficiency and fast lookup

operations, but the time and space needed during construction are not practical for very

large datasets.

In our work, we attempt two approaches to solve the problems. One develops novel

string dictionaries based on double-array tries. The double-array trie can support the

fastest lookup operation, but its space usage is very large. We propose how to improve

the disadvantage. The novel string dictionaries can support very fast lookup operations,

although the space usage is somewhat larger compared to existing compressed ones. The

other addresses to improve the high construction costs of applying Re-Pair by introduc-

ing an alternative compression strategy using dictionary encoding. Our strategy enables

lightweight construction, while providing competitive space efficiency and operation speed.

If allowing dynamic operations such as insertion and deletion, there are some sophisti-

cated data structures. While they improve the space efficiency by reducing pointer over-

heads, they still consume much larger space than the static string dictionaries because
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some redundancy for dynamic update is needed. In fact, the number of dynamic applica-

tions handling very large string dictionaries is fewer than that of static ones; however, a

part of applications as in Web crawler and Semantic Web need to compact dynamic string

dictionaries. In this thesis, we propose a new data structure through path decomposition

that is a technique for constructing cache-friendly trie structures. Although the path de-

composition has been utilized to static dictionary implementation, we adopt it for dynamic

dictionary construction with a different approach. From experiments, we show that our

data structure can implement the smallest dynamic string dictionary.

We also address problems of dynamic double-array trie dictionaries. The dynamic

dictionaries are well-used as in stream text processing and search engines, but the space

efficiency tends to decrease with key updates. Although we can still maintain high efficiency

using existing methods, these methods have practical problems of time and functionality.

In this thesis, we present several practical rearrangement methods to solve these problems.

We show that the proposed methods can support significantly faster rearrangement via

read-world datasets.

As all our methods are heuristic and practical, we sometimes do not provide the the-

oretical guarantees; however, we always show the practical performances through careful

experiments using large real-world datasets. Furthermore, most of our implementations

are provided as open source libraries under the MIT License.
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Chapter 1

Introduction

In modern computer science, the management of massive data is a fundamental problem

because the amount of data is growing faster than we can easily handle them. For in-

stance, billions of people are posting on social networking services such as Twitter and

Facebook; the number is thousands to tens of thousands per second. Although analyzing

and mining such large data are very useful in many real-world applications, the amount of

data obviously exceeds the size that we can analyze through naïve data structures in main

memory. Use of secondary or tertiary storage can be one of the temporary solutions, but

the difference of data processing speed between main and external memories is very large.

In addition, there are many situations where memory is limited and a large secondary

memory is not at hand, such as routers and smartphones. Therefore, many researchers

have investigated space-efficient data structures for in-memory data processing [106].

Such data are often handled as sequences of characters, or strings, such as documents,

Web contents, genomics data, sensor data, and behavioral history; therefore, many compact

data structures for string processing have been developed. This thesis focuses on string

dictionaries to store a set of strings in main memory and to provide fast query processing.

In short, it is an associative array with string keys, such as std::map<std::string,type >

in C++ or map[string]type in Go. It is a very underlying and familiar data structure,

and has been used to store a document vocabulary in classical applications of natural

language processing and information retrieval. In general, such applications do not need

to manage very large datasets because of Heaps’ Law [61]. This is a very precise law which

states that the vocabulary of a text of n words is of size O(nβ), where β depends on the

particular text. Value β is usually in the range 0.4–0.6 [14]. This means that the space

consumption of the dictionary of a terabyte-size collection would be a few megabytes. The

dictionary would easily fit in any main memory.

On the other hand, a number of natural language applications such as Web search

engines and machine translation systems are not under Heaps’ Law, as mentioned in [26,

95]. Also, other recent applications involving Web graphs, resource description framework

(RDF) stores, bioinformatics, NoSQL databases, geographic information systems and so
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on have to manage very large datasets through string dictionaries. From that background,

many space-efficient string dictionaries using a variety of techniques have been proposed,

and many sophisticated implementations have been published as open source libraries.

Although the implementations have different features, we can classify them into two

classes: static and dynamic. Static dictionaries do not allow to insert and delete key strings

at any time. In other words, a static dictionary is built from an existing lexicographically-

sorted dataset at hand, basically offline. In contrast, dynamic ones allow to insert and

delete keys flexibly; therefore, they can be applied to more applications. Concerning

the dictionary size, static dictionaries considerably outperform dynamic ones. Actually,

most of applications handling very large data are satisfied using static string dictionaries

because the data are not frequently changed. Nevertheless, a part of applications as in Web

crawler and Semantic Web need to compact dynamic string dictionaries. Consequently,

many researchers and engineers have investigated efficient data structures for each class as

follows.

For static string dictionaries, the most significant literature would be [26] (or its ex-

tended journal version [95]), which mentioned the need of space-efficient string dictionaries

and presented some compact data structures. On the other hand, some researchers pro-

posed distinct compact data structures [8, 57, 139]. These can implement string dictionaries

in space much smaller than classical data structures, while supporting lookup operations

within a few microseconds. For example, Martínez-Prieto et al. [95] showed that their

state-of-the-art dictionaries can be implemented in space up to 5% of the raw dataset size

through careful experiments using large real-world datasets. However, there remain trade-

off problems among space efficiency, lookup-time performance and construction costs. For

example, a powerful compression technique for a text, called Re-Pair [83], is well used to

obtain high space efficiency and fast lookup operations, but the time and space needed

during construction are not practical for very large datasets.

For dynamic string dictionaries, there are some space-efficient data structures [10, 54,

84, 130, 149]. While these attempt to improve the space efficiency by reducing pointer

overheads, they still consume much larger space than the static dictionaries because some

redundancy for dynamic update is needed. Note that, concerning a trie [48, 79] that

is a major tree structure of constructing string dictionaries, several practical compact

dynamic representations have been presented. Especially, Poyias et al. [123, 124] recently

proposed compact trie representations in asymptotically information-theoretically optimal

space while supporting basic tree operations in constant expected time. However, there

has been no discussion or evaluation about string dictionary implementation.

As discussed above, there remain some problems both for the static and dynamic dic-

tionaries, whereas the amount of string data will keep growing. In our work, we addressed
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the engineering of more efficient data structures to solve the problems. We sometimes do

not provide the theoretical guarantees since our data structures are heuristic; however,

we always show their practical performances through careful experiments using large real-

world datasets. Furthermore, most of our implementations are provided as open source

libraries on Kanda’s GitHub page at https://github.com/kampersanda under the MIT

License.

1.1 Thesis Organization and Our Contributions

This thesis is structured as follows. In Chapter 2, we first show basic notations used

throughout the thesis and summarize tools for implementing our dictionaries. We also

introduce applications, definitions, and existing data structures of string dictionaries. We

then present our contributions, which are summarized below.

Static Compressed Double-Array Tries In Chapter 3, we propose new string dictio-

naries based on double-array tries [2]. The double array is a data structure well-used to

represent a trie because its node-to-node traversal speed is the fastest; however, its space

usage is much larger compared to recent compressed data structures because it uses two

pointers for each node. Although Yata et al. [142] proposed a compact form of the double

array, it still uses one pointer for each node. By solving the problem, we propose more

compressed data structures supporting fast lookup operations.

The contents of this chapter are based on [70, 74].

Static Dictionary Compression Using Dictionary Encoding In Chapter 4, we

attempt an alternative compression strategy to string dictionaries, instead of an existing

strategy using the Re-Pair compression. Re-Pair is a powerful compression tool and can

provide fast decoding, but the compression incurs large construction costs in practice

although it is theoretically executed in linear time and space over the length of a given text.

Although we can choose other lightweight compression techniques such as Huffman coding

[66] and online grammar compression [96, 97], Re-Pair is the most popular compression

tool at present because of the excellent compression rate. To solve this problem, we apply

dictionary encoding to string dictionary compression.

The contents of this chapter are based on [71, 73]

Dynamic Path-Decomposed Tries In Chapter 5, we propose a new data structure of

space-efficient dynamic string dictionaries, namely a dynamic path-decomposed trie. It is

based on a trie formed by path decomposition [46] that is a trie transformation technique.

The path decomposition was proposed to construct cache-friendly trie structures and is

https://github.com/kampersanda
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utilized in static applications at present [57, 64], whereas we use it for dynamic dictionary

construction with a different approach.

The contents of this chapter are based on [72]

Practical Rearrangement of Dynamic Double-Array Tries In Chapter 6, we in-

vestigate practical rearrangement of dynamic double-array trie dictionaries. Although the

space efficiency of dynamic double-array trie dictionaries tends to decrease with key up-

dates, we can still maintain high efficiency using existing methods [99, 115, 143]. However,

these methods have practical problems of time and functionality. This chapter presents

some efficient rearrangement methods to solve these problems.

The contents of this chapter are based on [75]
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Chapter 2

String Dictionaries

In this chapter, we first introduce the basic notation used throughout this thesis in Sec-

tion 2.1. We then describe tools for implementing our data structures in Section 2.2. In

Sections 2.3 and 2.4, we show applications and definitions of string dictionaries, respec-

tively. Section 2.5 finally summarizes selected data structures of the string dictionaries.

2.1 Basic Notation

In all cases, our arrays start at position zero. An array A of n elements A[0]A[1] . . . A[n−1]

is denoted as A[0, n), or A[0, n− 1]. The length of the array A[0, n) is |A| = n. Although

we sometimes call arrays sequences, there is no difference between those.

A string is an array of elements drawn from a finite universe, called the alphabet.

Alphabets are usually denoted as Σ = {0, 1, . . . , σ − 1}, where σ is the alphabet size. The

alphabet elements are called characters or symbols. The set of all the strings over Σ is

denoted as Σ∗. Given a string x[0, n), a substring from the i-th character to the j-th is

denoted by x[i, j] or x[i, j + 1). Particular cases of substrings are prefixes, of the form

x[0, i), and suffixes, of the form x[i, n). A special case of particular importance is when Σ

is {0, 1}. In this case, the string is called a bit string or a bit array.

Functions bac and dae denote the largest integer not greater than a and the smallest

integer not less than a, respectively. For example, b2.4c = 2 and d2.4e = 3. Notation (a)2

denotes a binary representation of value a, and |(a)2| denotes the code length, that is, the

bits needed to represent a. For example, (9)2 = 1001 and |(9)2| = 4. The base of the

logarithm is 2 throughout this paper, i.e., log a = log2 a.

2.2 Tools

This section describes major tools for implementing compact data structures, related to our

work. Note that we assume that the tools are in static cases, not supporting to dynamically

update own structures.
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2.2.1 Fully Indexable Dictionaries

A fully indexable dictionary (FID) is a key component of many compact data structures.

Given a bit array B, the FID supports the following operations:

• Rankb(B, i) returns the number of b ∈ {0, 1} bits in B[0, i)

• Selectb(B, i) returns the position of the i+ 1 th occurrence of b ∈ {0, 1} in B.

Given a bit array B[0, 8) = 00100110, the operations are performed as Rank0(B, 6) =

4, Rank1(B, 6) = 2, Select0(B, 2) = 3, and Select1(B, 1) = 5.

Let n be the length of B. The operations can be supported in constant time by adding

o(n) bits of redundancy to the bit array in theory [67, 103]. Some practical implementations

were proposed. The simplest implementation is to partition the bit array into large and

small blocks, and to use two auxiliary arrays keeping Rank hints for each block, which

called verbatim in [114]. It supports Rank in O(1) time and Select in O(log n) time using

additional o(n) bits. Other implementations include cache-conscious ones [53], entropy-

compressed ones [114], and so on [76, 77, 126]. If a bit array is the main part of own data

structure, choice of an FID implementation is significant; otherwise, the verbatim provides

enough performance experientially.

2.2.2 Variable Byte Coding

Variable-length coding is a scheme to compress a sequence consisting of many small in-

tegers using variable-length codes with less space. Especially, the scheme is convenient

for compressing posting lists of inverted indexes; therefore, a number of techniques have

been proposed in the area of information retrieval [151]. Here, we introduce variable byte

(Vbyte) coding [134] that is a simple and useful coding technique.

Given an integer a, Vbyte encodes it into byte codes as follows. First, the integer a is

cut into 7-bit chunks, a = a1a2 . . . ak. Each chunk is then stored in the lowest bits of a

byte, whose highest bit is 1 for a1 . . . ak−1, and 0 for ak. As the Vbyte coding can compress

an integer sequence using the byte codes, the encoding and decoding are simple and fast.

2.2.3 Directly Addressable Codes

A problem with variable-length coding is how to access the code of the i-th integer directly.

Brisaboa et al. [25] proposed the directly addressable codes (DACs) to solve the problem

practically. DACs implement direct extraction by combining Rank with a Vbyte encoding

scheme. Suppose that DACs represent an array of integers P . Given a parameter b, we split

(P [i])2 into blocks of b bits, p(i,ki), . . . , p(i,2), p(i,1) where ki = d|(P [i])2|/be. For example in

P [i] = 49 and b = 2, we split (49)2 = 110001 into p(i,3) = 11, p(i,2) = 00, and p(i,1) = 01.
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0 1 2 3 4 5 …
P p(0,2),p(0,1) p(1,1) p(2,2),p(2,1) p(3,3),p(3,2),p(3,1) p(4,1) p(5,2),p(5,1) …

DAC	representation

0 1 2 3 4 5 …
A1 p(0,1) p(1,1) p(2,1) p(3,1) p(4,1) p(5,1) …
B1 1 0 1 1 0 1 …

0 1 2 3 …
A2 p(0,2) p(2,2) p(3,2) p(5,2) …
B2 0 0 1 0 …

0 …
A3 p(3,3) …

Figure 2.1: DAC representation for array P .

First, arrays Aj store all the j-th blocks for 1 ≤ j until all blocks are stored. Next, bit

arrays Bj are defined such that Bj [i] = 1 iff Aj [i] stores the last block.

Figure 2.1 shows an example of a DAC representation. Let i1, i2, . . . , iki denote the

path storing P [i], that is, A1[i1] = p(i,1), A2[i2] = p(i,2), . . ., Aki [iki ] = p(i,ki). We can

extract P [i] by following the path and by concatenating the Aj values. The start position

i1 is given by i1 = i, and the after ones i2, . . . , iki are given by the following;

ij+1 = Rank(Bj , ij) (Bj [ij ] = 1). (2.1)

From Bj [ij ] = 0, we can identify that Aj [ij ] stores the last block. For example in Fig-

ure 2.1, P [5] is extracted by concatenating values A1[5] = p(5,1) and A2[3] = p(5,2). The

second position 3 is given by Rank(B1, 5) = 3, and we can see that A2[3] = p(5,2) is the

last block from B2[3] = 0.

LetN denote the maximum integer in P , DACs can represent P using arrays A1, . . . , AL

and B1, . . . , BL−1, where L = d|(N)2|/be. Note that DACs do not use BL because that AL
stores only the last blocks is trivial. Since Aj is a fixed-length array, extracting an integer

in a DAC representation takes O(L) time in the worst case. In practice, byte-oriented

DACs with b = 8 are well-used because very fast extraction can be supported.

2.2.4 Grammar-Based Compression

Grammar-Based Compression [28] finds a small context-free grammar that generates the

text to compress. Finding the smallest grammar for a given text is NP-hard.
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Re-Pair [83] is a practical technique of grammar-based compression [28]. It finds the

most frequent pair xy in a text and replaces all its occurrences with a new symbol z. A

new rule z → xy is added to dictionary R. This process iterates until all remaining pairs

are unique in the text. As a result, the original text is encoded into a compressed sequence

C with dictionary R. Each symbol of C is decoded by recursively expanding the rules in

R. The time taken depends on its recursion depth.

2.2.5 Succinct Trees

A tree is an acyclic connected graph and one of the most pervasive data structures. Here,

we consider an ordinal tree that is a rooted tree where the order of the children of each

node is specified. General pointer-based data structures represent a tree of n nodes in

O(n log n) bits, but this space is much larger than the information-theoretical lower bound

as follows. The number of ordinal trees is equal to the Catalan number Cn = 1
n+1

(
2n
n

)
[55]. It is easy to derive the approximation Cn ≈ 4n/n3/2 from the Stirling approximation.

Actually, this implies that logCn = 2n−Θ(log n), that is, representation of an ordinal tree

needs at least dlogCne = 2n bits.

Succinct representations of ordinal trees use just 2n + o(n) bits and can carry out

many operations on the tree in constant time. Basically, we can classify succinct tree

representations into four types [7]:

• the level-ordered unary degree sequence (LOUDS) representation [38, 67],

• the balanced parentheses (BP) representation [67, 103],

• the depth-first unary degree sequence (DFUDS) representation [17], and

• the fully-functional succinct tree (FF) representation [31, 108].

Here, we describe LOUDS and DFUDS because they are applied for some space-efficient

string dictionary implementations.

LOUDS It is the simplest succinct representation of ordinal trees. It encodes a node with

d children into d 1s and one 0, while traversing nodes in breadth-first order. For example,

a node with three children is encoded into 1110. Note that leaves are also considered as

nodes with non-children, and the super root 10 is added to the head. The resulting bit

array consists of n 0s and n+ 1 1s, as shown in Figure 2.2b.

Let us define two basic tree operations: Child(v, i) returns the i-th child of node v,

and Parent(v) returns the parent of node v. LOUDS can support these by constructing

the FID to the bit array as follows.

• Child(v, i) = Select0(Rank1(v)) + 1 + i
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(c) DFUDS representation

Figure 2.2: Succinct tree representations.

• Parent(v) = Select1(Rank0(v))

The operations can be performed in constant time. As the resulting bit array is of

length 2n+ 1, the LOUDS representation takes only 2n+ o(n) bits.

DFUDS It is a succinct representation supporting powerful tree operations. It encodes

a tree into a sequence of parentheses. A node with d children is encoded into d (s and one

), while traversing nodes in depth-first order. For example, a node with three children is

encoded into (((). Note that leaves are also considered as nodes with non-children, and

the super root ( is added to the head. The resulting parentheses consist of n (s and n )s,

where n denotes the number of nodes. Figure 2.2c shows an example of DFUDS for the

tree in Figure 2.2a.

We first need to define operations on balanced parentheses (BP) in order to describe the

tree operations of DUFDS. A sequence of BP is inductively defined as follow: an empty

sequence is BP; if α and β are sequences of BP, then also (α)β is a sequence of BP, where

( and ) are called mates. Let BP is a sequence of BP, we define the following operations

on the sequence:
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• FindClose(i), for a value i such that BP [i] = (, returns the position j > i such

that BP [j] = ) is its mate.

• FindOpen(i), for a value i such that BP [i] = ), returns the position j < i such that

BP [j] = ( is its mate.

In general, those parentheses are represented as bits, where 1 and 0 represent ( and ),

respectively. Let the length of BP be 2m (i.e., m (s and m )s), BP can be encoded in

2m+ o(m) bits, while supporting the above operations in constant time [67, 103, 108].

Reconsidering the DFUDS representation, the sequence of parentheses is balanced;

therefore, it can be encoded in 2n + o(n) optimal bits, while supporting the operations

for parentheses in constant time. DFUDS supports the basic tree operations using the

balanced parentheses as follows:

• Child(v, i) = FindClose(Select)(Rank)(v) + 1)− i) + 1

• Parent(v) = Select)(Rank)(FindOpen(v − 1))) + 1

2.3 Applications

Traditional applications of string dictionaries are in natural language processing and infor-

mation retrieval. String dictionaries have been an important component to store natural

language words as in full-text inverted indexes [14] and morphological analyzers [80]. As

described in Chapter 1, Heaps’ Law [61] states that the vocabulary of a text of n words is

of size O(nβ), where β depends on the particular text. Some experiments [5, 13] on the

TREC-2 collection have shown that the most common values for β are between 0.4 and

0.6. This means that the space consumption of the dictionary of a terabyte-size collection

would be a few megabytes. When using modern computers, we will be able to easily handle

such dictionaries in main memory even if naïve data structures are used. On the other

hand, as mentioned in [26, 95], there are many recent applications handling very large

string dictionaries without according to Heaps’ Law, as follows.

In natural language applications, Web collections and N -grams are well-known large

datasets. Web collections are much less clean than text collections whose content quality

is carefully controlled. As such collections include typos, unique identifier and regular

words, dictionaries as in Web search engines easily exceed gigabytes. N -grams are widely

adopted for many tasks such as auto-completion in search engines, similarity search, au-

tomatic speech recognition, and machine translation [33, 90]. The datasets are at the

heart of statistical natural language processing, and the amount is deeply related to the

performances of systems. Actually, efficient data structures for N -gram language models

have been developed apart from the topics in this thesis [60, 111, 118, 120]. As they are
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suitable for storing N -grams, both the time and space performances of them are outper-

form those of compressed string dictionaries if implementing N -gram language models.

However, the data structures for N -grams support only a simple lookup operation for a

query string. A part of applications such as input method editors [81] need string dictio-

nary implementation supporting rich operations such as prefix-based and reverse lookup

operations.

Web graphs are coherent subsets of the World Wide Web and are used for many tasks

such as Web mining, Web spam detection, and finding communities of interest [39, 78,

128]. The Web graph is a directed graph whose nodes are Web pages and edges are

hyperlinks among them. As the size of graph representation was the significant problem,

some compressed representations were proposed in the last 15 years [24, 29]. Due to the

works, we can represent the nodes and edges in very compact space, whereas the size of

URL names becomes relatively problematic; therefore, space-efficient string dictionaries

for storing URLs are required. Related to the area, Web crawlers [22, 132] keep track of

massive URLs it has visited.

Other important applications arise in Semantic Web, or so-called Web of Data [18]. It

interconnects RDF datasets from diverse fields of knowledge into a cloud of data-to-data

hyperlinks. RDF [91] is a framework to describe attributes and relation of resources, which

consist of the terms: URIs, blank nodes, and literal values. As the Web of Data grows in

popularity, larger datasets emerge and a number of efficient management systems of RDF

datasets, or RDF stores, have been developed [109, 136]. In those systems, the terms of

RDF datasets are compactly stored by encoding them into integers using string dictionaries.

A recent paper [94] reported the significant of the performance of RDF dictionaries.

The other applications arise as in NoSQL, bioinformatics, internet routing and geo-

graphic information systems. The descriptions are provided by [95]. Actually, most of

applications described above are satisfied using static string dictionaries because the data

are not frequently changed. Nevertheless, a part of applications need to dynamic ones,

such as vocabulary accumulation [62], Web crawlers [22, 132] and dipLODocus[RDF] [136].

2.4 Definitions

A string dictionary is a data structure that stores a set of strings X ⊂ Σ∗. This section

defines static and dynamic string dictionaries used throughout this thesis.

2.4.1 Static Dictionaries

A static string dictionary is a data structure that provides a bijection between strings in

X and unique integer IDs between 0 and |X | − 1. It supports the following operations:
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• Lookup(x) returns the ID of string x if x ∈ X ; otherwise returns −1.

• Access(i) returns the string corresponding to the ID i ∈ [0, |X |).

• PrefixLookup(x) returns the set of strings in X included as prefixes of string x.

• PredictiveLookup(x) returns the set of strings in X starting with string x.

• SubstringLookup(x) returns the set of strings in X containing string x.

Lookup is the most basic and minimum required operation. Depending on design of

string dictionaries, several other definitions can be considered such as reporting only the

membership and obtaining the associated values; however, we define Lookup as the pair

operation of Access to support dictionary encoding that replaces strings into the integer

IDs. The dictionary encoding is essential for database systems, RDF stores, Web graphs

and so on. Nevertheless, we can easily implement the design storing key-value pairs by

introducing a satellite array of size |X |. Needless to say, Access is the inverse operation

of Lookup.

The other operations are additional but required from particular applications. The

prefix-based operations, PrefixLookup and PredictiveLookup, are useful for nat-

ural language applications such as input method editors [81], morphological analyzers

[80], stemmed searches [14] and auto-completions [16]. The substring-based operation

SubstringLookup is required, for example, in SPARQL regex queries [125], mainly used

for full-text purposes in Semantic Web applications [50].

2.4.2 Dynamic Dictionaries

A dynamic string dictionary is a data structure that associates arbitrary values to each

string x ∈ X . It supports the following operations:

• Search(x) returns the associated value of string x if x ∈ X ; otherwise, returns nil.

• Insert(x, v) registers the string x to the dictionary, or X ← X ∪{x}, and associates

value v to the string.

• Delete(x) removes string x from the dictionary, or X ← X \ {x}.

• PrefixSearch(x) returns the set of strings in X included as prefixes of string x.

• PredictiveSearch(x) returns the set of strings in X starting with string x.

We are not aware of any dynamic dictionary implementation to provide the bijection

and substring-based operations. Therefore, we define the dynamic string dictionary storing

key-value pairs. Search and Insert are basic and required at least. Delete is also
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important but is not required in applications only constructing dictionaries online, such

as the above-described ones. PrefixSearch and PredictiveSearch are used in some

search engines, database systems, and so on, in the same manner as the static case.

2.5 Data Structures

This section summarizes data structures for implementing string dictionaries, while cat-

egorizing them based on conceptualistic techniques. We discuss leading data structures

we think and do not discuss traditional ones such as linked lists and binary pointer trees.

Detailed descriptions of string dictionaries involving traditional data structures are in [9],

although state-of-the-art dictionaries are not included because [9] is a little bit old thesis.

2.5.1 Hash Tables

Hashing [32] is a folklore method to implement dictionary structures with any types. Hash-

ing string dictionaries store strings in a hash table by generating an element index from

a string using a hash function and by placing the string into the element. If multiple

strings are hashed to the same location, some form of collision resolution is needed. Since

the origin of hashing was proposed by H.P. Luhn in 1953 [79], many methods have been

proposed for resolving collisions. Basically, there are two classes: closed and open hashing.

Here, we first describe how to implement static string dictionaries using closed hashing,

and then describe how to implement dynamic ones using open hashing.

We denote a closed hash table of length m as H. Closed hashing (also called open

addressing) [119] stores every object (or string in our case) directly at an address of H and

resolves collisions by searching for another empty element through some probing scheme

such as linear probing and double hashing. Linear probing sequentially searches another

empty element from the collision position until finding it. Double hashing computes another

hash function and searches another empty element by skipping elements using the result.

The space usage and time performance depends on its load factor α = n/m, where n is

the number of registered objects. Using good hash functions, unsuccessful and successful

searches respectively require on average 1
2(1 + ( 1

1−α)2) and 1
2(1 + 1

1−α) probes with linear

probing. With double hashing, unsuccessful and successful searches require on average

(1 − α)−1 and −α−1 ln(1 − α) probes, respectively. Although value α takes a trade-off

between space and time, the search can be performed in constant expected time if setting

a proper α, for example, α < 0.9 in the double hashing [79].

Static string dictionaries are implemented by computing hash functions with key strings

and by storing the strings in H. However, as H includes some empty elements, the ad-

dresses of H cannot simply provide the mapping between strings in X to IDs in the range
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Figure 2.3: Closed hashing dictionary.

[0, |X |). To solve this problem, we introduce a bit array B such that B[i] = 1 iff H[i]

is nonempty, and constructs the FID to B. Lookup(x) searches address i such that

H[i] = x through the hash algorithm and returns Rank1(B, i). Access(i) is simply

H[Select1(B, i)].

Example 2.1. Figure 2.3 shows an example of a closed hashing dictionaries for strings

idea, ideal, ideas, ideology, tea, techie, technology, tie and trie.1 The strings

are distributed in the hash table at random via a hash algorithm. The string IDs are also

defined according to their addresses. The load factor is α = 9/13 = 0.69. Lookup(idea)

obtains the target address 4 via the hash algorithm and returns the ID as Rank1(B, 4) = 3.

Access(3) is simply H[Select1(B, 3)] = H[4] = idea.

Closed hashing can dynamically insert objects to the hash table, but the performance

rapidly declines as the load factor approaches 1, and we cannot easily resize the hash

table. On the other hand, open hashing (also called separate chaining) can insert objects

to the hash table without such restriction; therefore, it is often used to implement standard

hash maps at present, such as std::unordered_map in C++. Here, we describe how to

implement dynamic string dictionaries using open hashing.

In common with the closed hash table, we denote an open hash table as H of length

m. Each element stores a pointer to the beginning node of a linked list, where each node

in the list has a registered string, the associated value, and a pointer to the next node.

Specifically, a pointer to the string is stored as the length is variable. Search(x) obtains

the address of H by computing a hash function with string x, and search the target node

in the linked list. Insert and Delete are also implemented in the same manner.
1In this section, we basically show examples of string dictionaries using the set of strings.
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Figure 2.4: Open hashing dictionary.

Example 2.2. Figure 2.4 shows an example of an open hashing dictionary. In common

with Figure 2.3, the strings are distributed at random via a hash algorithm and stored

to the linked lists. Search(trie) obtains the target address 5 via the hash algorithm and

the head of the linked list. By traversing the nodes with comparing the strings, the value 8

stored in the target node is returned.

HashDAC Martínez-Prieto et al. [95] proposed static compressed dictionaries based on

closed hashing, namely HashDAC. It distributes strings to the hash table H in the same

manner as described above, but does not store them in H. Instead, a new table H ′ of

length n is used such that H ′[Rank1(B, i)] = H[i], where n denotes the number of strings.

H ′ is a string array whose indices correspond to string IDs, and is represented in compact

space by compressing the strings through Re-Pair and by eliminating the string pointers

through DACs.

Array Hash The bottleneck of standard open hashing dictionaries, as shown in Fig-

ure 2.4, is that a node of the linked lists has two pointers of a string and next node.

The pointers incur not just space overheads but also cache misses. Askitis and Zobel [12]

designed cache-conscious dynamic dictionaries by eliminating the pointers, namely array

hash. It concatenates the strings in a linked list and sequentially searches them. Although

the time complexities of the operations are increased, the practical performances are im-

proved due to the cache efficiency. Also, the space usage can be improved because the

pointers are eliminated.

2.5.2 Front Coding

Front Coding [135] is a folklore technique to compress lexicographically sorted strings. It

encodes each string as a pair (`, α), where ` is the length of the longest common prefix

with its predecessor and α is the remaining suffix. This technique exploits the fact that
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real-world strings have similar prefixes such as URLs and natural language words. For

example, it was used to compress the set of URLs in the Web Graph framework [21].

This technique is used only to implement static dictionaries because the strings must

be sorted. To allow for direct access, the strings are divided into buckets encoding b strings

each. Each first string (referred to as the header) is explicitly stored and the remaining

b − 1 strings (referred to as internal strings) are differentially encoded, each with respect

to its predecessor.

In the directly accessible Front Coding dictionary, Lookup(x) can be performed in

two steps. The first step consists of a binary search for string x in the set of headers to

obtain the target bucket. The second step sequentially decodes the internal strings of the

bucket while comparing each with x. Access(i) is performed in two steps as well. The

first step calculates the appropriate bucket ID with a simple division bi/bc. The second

step sequentially decodes the internal strings of the bucket until it obtains the (i mod b)-th

internal string. Lookup(x) and Access(i) = x take O(|x|(log n
b + b)) and O(|x|b) times,

respectively. Also, PredictiveLookup can be supported by searching the target range

of sorted strings.

Example 2.3. Figure 2.5 shows an example of the Front Coding dictionary of bucket

size ` = 4. As shown in this figure, the string ideal is differentially encoded into pair

(4, l) from the previous string idea. Also, the string ideas is differentially encoded into

pair (4, s) from the previous string ideal, and so on. However, idea, tea and trie are

not encoded because they are headers for each bucket.

In the example, Access(6) is performed as follows. We get the target bucket ID as

b6/4c = 1. We also get the offset of the target string in bucket 1 as 6 mod 4 = 2. Hence,

we decode strings in bucket 1 until the second internal string. The first internal string is

decoded by concatenating the prefix of length 2 of the header tea and the remaining suffix

chie. The result is techie. Next, the second internal string is decoded by concatenating
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the prefix of length 4 of the previous string techie and the remaining suffix nology. The

result is technology. Consequently, Access(6) = technology.

Lookup(technology) is performed as follows. We first obtain the bucket that may

store the query string, through binary search for each header. In this case, the bucket ID is

1 because tea is less than technology and technology is less than trie lexicographically.

Next, we search the string by decoding the internal strings in the same manner as Access.

As a result, Lookup(technology) = 6.

Plain Front Coding (PFC) It is a very simple byte-oriented Front Coding implemen-

tation [95]. It encodes the Front Coding dictionary into a byte sequence by concatenating

the shared lengths and remaining strings. Note that the length is encoded using Vbyte and

a special terminator is appended to each string. The beginning positions of each header

are kept in a pointer array of size dn/be. As the byte data other than the headers are

always accessed sequentially, we can compress them using an arbitrary text compression

technique such as Re-Pair or Huffman coding [66].

Hu-Tucker Front Coding (HTFC) It is a more compact implementation at the price

of slightly slower operations [95]. It compresses the bucket headers, not compressed in PFC,

using the Hu-Tucker coding [65, 79]. The Hu-Tucker coding assigns optimal prefix codes

like Huffman coding, while retaining the lexicographic order of the symbols; therefore, two

Hu-Tucker encoded sequences can be lexicographically compared. This feature enables the

binary search for the headers in compressed form.

2.5.3 Full-Text Index

Given a text T , a full-text index is a data structure that fast reports all the positions where

pattern p occurs in T . A suffix array [89] is one of efficient data structures for the full-text

index. We consider all the N suffixes of a text T of length N . The suffix array SA[0, N) of

T contains all the starting positions of the suffixes of T listed in lexicographic order. All

substrings in T appear as prefixes of successive suffixes in SA; therefore, their appearance

positions correspond to ranges SA[sp, ep]. The limits sp and ep can be found with two

binary searches in O(|p| logN) time [89].

Given a set of strings X = {x0, x1, . . . , xn−1}, we can implement static dictionaries by

constructing the suffix array over a text T = $x0$x1$ . . . $xn−1$ of length N , where $ is a

special character that is lexicographically smaller than any characters. The suffix array SA

is then as follows: SA[0] = N − 1 always holds since T [N − 1] = $, and SA[i+ 1] indicates

the suffix $xi$xi+1$ . . . for all 0 ≤ i < n. By using the suffix array, the basic operations

are performed as follows. Lookup(x) can be carried out by finding the range SA[sp, ep]
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𝑆𝐴 Sorted suffixes
0 17 $

1 0 $idea$ideal$ideas$

2 5 $ideal$ideas$

3 11 $ideas$

4 4 a$ideal$ideas$

5 9 al$ideas$

6 15 as$

7 2 dea$ideal$ideas$

8 7 deal$ideas$

9 13 deas$

10 3 ea$ideal$ideas$

11 8 eal$ideas$

12 14 eas$

13 1 idea$ideal$ideas$

14 6 ideal$ideas$

15 12 ideas$

16 10 l$ideas$

17 16 s$

All	suffixes
0 $idea$ideal$ideas$

1 idea$ideal$ideas$

2 dea$ideal$ideas$

3 ea$ideal$ideas$

4 a$ideal$ideas$

5 $ideal$ideas$

6 ideal$ideas$

7 deal$ideas$

8 eal$ideas$

9 al$ideas$

10 l$ideas$

11 $ideas$

12 ideas$

13 deas$

14 eas$

15 as$

16 s$

17 $

Figure 2.6: Full-text dictionary using a suffix array.

over the pattern $x$ for the range SA[1, n]. If x is registered, sp = ep essentially and its

ID is sp− 1. Access(i) = T [SA[i+ 1] + 1, SA[i+ 2]) simply.

The main advantage of full-text dictionaries is to support the substring-based opera-

tions. By using the suffix array, SubstringLookup(x) is performed as follows. We first

find the range SA[sp, ep] for pattern x. The results will indicate all the occurrences of

x within any string of X ; therefore, we extract the corresponding strings for each occur-

rence. Let k = SA[i] for sp ≤ i ≤ ep, T [k] is the head character of x inside some string

in X . We then extract the area T [j, l] such that j ≤ k ≤ l, T [j − 1] = $, T [l + 1] = $,

and $ 6∈ T [j, l], by scanning characters from the position k until encountering $. Essen-

tially, PredictiveLookup(x) is also supported by search for $x in the same manner as

SubstringLookup.

The suffix array can implement string dictionaries supporting powerful substring op-

erations, but the space usage is very large because of maintaining the original text T in

Ndlog σe bits and suffix array SA in NdlogNe bits.

Example 2.4. Figure 2.6 shows an example of the suffix array for strings idea, ideal

and ideas, that is, a text T [0, N) = $idea$ideal$ideas$, |T | = 18. SA[1] = 0 points

to the suffix T [0..] = $idea$..., SA[2] = 5 points to the suffix T [5..] = $ideal$..., and

SA[3] = 11 points to the suffix T [11..] = $ideas$.... The dictionary operations are per-

formed as follows. Access(1) = T [SA[2]+1..SA[3]) = T [6, 11) = ideal. Lookup(ideal)
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searches the string for a range from SA[1] to SA[3] with binary search, while restoring each

registered string with Access.

FM-Index The FM-index [44, 45] is a practical technique to represent the suffix array in

compressed space. The FM-index exploits the behavior of the LF-mapping obtained from

the Burrows-Wheeler transform [27]. It can compute sp and ep for string x in O(|x| log σ)

time, and extract x ∈ X in O(|x| log σ) time also. Martínez-Prieto et al. [95] presented two

variants of the FM-Index: faster and smaller versions. The faster version is so-called suc-

cinct suffix array [45], which achieves zero-order compression of a text. The smaller version

uses the implicit compression boosting idea [88], which achieves high-order compression.

2.5.4 Tries

A trie [37, 48, 79] is an edge-labeled tree structure for storing a set of strings. It is built

by merging prefixes and giving a character to each edge. Strings are registered on the

root-to-leaf paths. In other words, a query string is searched by traversing root-to-leaf

nodes using the characters. Note that when a string x ∈ X is the prefix of another one

y ∈ (X \ {x}), i.e., x = y[0, |x|), the terminal of string x corresponds to an internal node

(not a leaf). Therefore, we need some way to identify the nodes corresponding to string

terminals. In the thesis, such nodes are called terminal nodes. Basically, there are two

ways to identify terminal nodes: using terminal flags and using terminal characters.

The former way introduces a bit array B where B[s] = 1 iff node s is terminal. Needless

to say, we can identify terminal nodes by checking the bit flag in B. Moreover, it can

efficiently support the Lookup/Access operations, because a bijection between terminal

nodes and string IDs can be implemented by constructing the FID to B; therefore, this

way is often used to implement the static dictionaries. The basic operations are carried

out as follows. Lookup(x) traverses nodes from the root using each character of x and

returns the string ID obtained from Rank1(B, s) for the reached terminal node s. In

contrast, Access(i) traverses nodes from the terminal node obtained from Select1(B, i)

and returns concatenation of the edge labels on the path. Assuming that Rank and

Select are performed in constant time, both Lookup/Access are performed in O(k)

optimal time, where k is the length of the target string.

Example 2.5. Figure 2.7 shows an example of a trie using terminal flags (although we

do not depict the bit array because the node IDs are not assigned). The number of nodes is

30. The nodes depicted as a square are terminal ones and denote the string IDs assigned

in the preorder. Lookup(techie) traverses the colored nodes using each character and

returns the string ID 5. In contrast, Access(5) traverses the colored nodes in reverse and

returns techie by concatenating the edge characters on the path.
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Figure 2.7: Trie using terminal flags.

The latter way appends a special terminator $ to each string in order that each leaf

corresponds to each terminal of strings. In other words, we can check the membership

if we can arrive at a leaf using a string with the special terminator. Compared to using

terminal flags, the number of nodes is larger by the number of strings because of the

additional leaf nodes, instead the bit array is not needed. Dynamic string dictionaries are

often implemented by this way because such a trie can store arbitrary values to the leaves

instead of pointers to its children. When values are stored in the leaves, the operations are

carried out as follows. Given a query string x with the special terminator, or x[|x|−1] = $,

Search(x) traverses nodes until the leaf in the same manner as Lookup and returns the

value stored in the leaf. The operation can be supported in O(|x|) time. Insert(x, v)

initially searches the string x using Search(x). If the search fails, it adds nodes with the

remaining suffix from the failed node and stores the value v to the new leaf. Delete(x)

also initially searches the string x using Search(x). If the search succeeds, it removes the

nodes corresponding only to the string from the leaf. The operations can also be supported

in O(|x|) time if node addition and deletion is performed in constant time.

Example 2.6. Figure 2.8 shows an example of the trie using terminal characters. The

number of nodes is 39 and nine more than the number of nodes in Figure 2.7, because of

the nine registered strings. The nodes depicted as a square are leaves and denote the values

stored; thus, the leaf corresponding to string techie$ stores value 5. Search(techie$)

traverses the colored nodes using each character and returns the value 5. Insert(teche$, 9)

first traverses the nodes until the red one with the prefix tech and then appends new nodes
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Figure 2.8: Trie using terminal characters.

from the red node with the remaining suffix e$. Finally, the value 9 is stored to the new

leaf. Delete(techie$) first traverses the colored nodes in the same manner as Search,

and then removes the blue nodes from the reached leaf to the red node in reverse traversal.

The feature of the trie is to support prefix-based operations such as PrefixLookup

and PredictiveLookup because the prefixes of strings are merged as nodes. The oper-

ations in static dictionaries are carried out as follows. PrefixLookup(x) detects all the

terminal nodes we met while traversing nodes to search the string x, and then returns the

prefixes corresponding to the terminal nodes. PredictiveLookup(x) initially searches

the string x. If the string is not registered, it returns an empty set; otherwise, it enumer-

ates all the terminal nodes in the subtrie of the terminal node of the string x, and then

returns the corresponding strings. In dynamic string dictionaries, PrefixSearch and

PredictiveSearch are also performed in the same manner as these.

Compact Trie Variants For trie compression, there is the important fact that nodes

near leaves are likely to be sparse, as shown in Figure 2.7, because the suffixes are not

shared. One of solutions to reduce the redundancy merges the suffixes backward also.

The resulting structure is not a tree but a graph, generally called a directed acyclic word

graph (DAWG) or an minimal acyclic deterministic finite automaton (MADFA) [34]. The

DAWG can store strings in compact space, but the one-to-one mapping between the strings
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and terminal nodes in tries is lost; therefore, the dictionary implementations as described

above can not be adopted. Although we can implement a bijection between strings and

IDs by using a numbered automaton [86], additional integer data must be attached to each

edges. Here, we describe three trie variants with maintaining the one-to-one mapping as

follows.

• A minimal-prefix trie (MP-trie) [3, 41] maintains only minimal prefixes to identify

each string as nodes and the remaining suffixes as separated strings. The leaves have

the links to own separated strings instead pointers to children. The MP-trie can

simply reduce the number of node pointers.

• A double trie [4] is based on the MP-trie, which constructs another trie from the

separated strings backward. By using the two tries, it can merge both prefixes and

suffixes while maintaining the mapping.

• A patricia trie [52, 100] is a form constructed by eliminating one-way nodes and

attaching string labels to edges. Especially, it can implement compact dictionaries

for long strings because many one-way nodes are included. As the edge labels are

variable, its efficient implementation is more difficult than the other variants.

Array and List Tries We introduce two traditional trie representations called the array

and list tries before sophisticated data structures are described below. The array trie

represents a node using an array of σ + 1 pointers to its σ children and one parent. Let

As is the array of node s, As[c] stores the pointer to the child indicated with character c;

therefore, the child can be directly found in O(1) time. However, the arrays for a trie are

very sparse and its space usage is O(mσ logm) bits.

The list trie (a.k.a. binary search trie) represents a node using two pointers to its

first child and next sibling, and a character between the node and its parent. The list

trie can represent a trie without useless space unlike the array trie. Its space usage is

O(m(logm+ log σ)) bits, but finding a child takes O(σ) time.

Double Arrays A double array [2] is a trie representation using two pointer arrays, as

the name suggests. It has both the advantages of the array and list tries by sophisticatedly

arranging node addresses such that a few empty elements arise in the arrays, while sup-

porting constant node-to-node traversal. The retrieval speed is the fastest and the space

usage is practical occupying Ω(m logm) bits.

Since the original double array was proposed to implement semi-dynamic trie dictionar-

ies, its update speed is slow and unstable; however, a number of works [99, 115, 143, 147]

attempted to solve this problem. Owing to these, recent dynamic implementations such
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as Cedar [148] enables update times that are close to those of a hashing dictionary, such

as the C++ standard library’s std::unordered_map. Therefore, there have been some

applications using dynamic double-array tries such as a full-text search engine and online

text-stream processing [149].

As for static applications, Yata et al. [142] proposed a compact form of double arrays,

namely the compact double array (CDA). It is composed of one pointer array and one

character array, that is, space bottlenecks of the original pointer arrays can be reduced.

On the other hand, the disadvantage of CDA is that Access is impossible due to the

pointer elimination; therefore, its applications are limited. Fuketa et al. [49] proposed the

single array with multi code (SAMC) that eliminates the remaining pointer array in CDA,

instead of using additional code tables. However, its applications are more limited for fixed

length keywords such as zip codes.

LOUDS Tries The simplest approach to implement tries in optimal space is use of

the succinct trees. By using an additional character array storing edge labels, all the

succinct trees can represent a trie in 2m + o(m) + mdlog σe bits. Although these have

the same space efficiency, LOUDS is well used for trie dictionary implementation because

of the simpleness and adequateness [7]. For example, TX-trie [112] is a simple LOUDS

trie library. This library has been well used as a basic succinct trie implementation in

many academic settings. UX-trie [113] is an enhanced version of TX-trie, which is a more

compact implementation applying the double trie. UX-trie achieves high space efficiency

by representing the two tries using LOUDS. Kudo et al. [81] used LOUDS for dictionary

representation in Google input method editors. MARISA-trie described below also applies

LOUDS for trie representation.

MARISA Yata [139] proposed a space-efficient trie dictionary called MARISA (Match-

ing Algorithm with Recursively Implemented StorAge), which enhances the idea of the

double trie by adapting it to the patricia trie rather than the MP-trie. In other words,

MARISA stores string edge labels of a patricia trie into another patricia trie in the same

manner as the double trie; however, MARISA repeats the trie compression recursively. De-

pending on the depth of the recursion, the space efficiency can be increased. MARISA-trie

[140] applies LOUDS for trie representation.

XBW XBW [47] is an extension of the FM-index to represent a trie instead of a text.

It can support substring-based operations in spite of a trie structure. The space usage

achieves the optimal bits in the same as succinct tree representations. Recently, Manzini

[92] proposed an efficient construction algorithm of XBW.
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Path-Decomposed Tries Path decomposition [46] is a technique that transforms a trie.

It converts a path in the original trie into a single node and recurse in each subtree hanging

down from the path. The number of random accesses during retrieval is reduced compared

to the original trie as the height of the resulting tree is suppressed. By applying the

centroid path decomposition [46], the height is bounded by O(log |X |) and the average

lookup time over a string is bounded by O( log |X |
log σ ). Grossi and Ottaviano [57] proposed

practical succinct representation of path-decomposed tries using DFUDS, as described in

Chapter 4.

LZ-Compressed String Dictionaries Arz and Fischer [8] proposed a new data struc-

ture based on the LZ78 compression algorithm [150], which implements compressed static

string dictionaries. The data structure adopts the Lookup and Access operations to the

resulting LZ-trie for a text created by concatenating strigns, while introducing another

new trie named the phrase trie. The LZ-trie can be implemented using any data structures

as long as Access and longest prefix search are supported. The phrase trie with a large

alphabet is represented using an especial data structure presented in [8].

HAT-Tries The HAT-trie [10, 11] is one of efficient dynamic trie implementations, which

is an enhanced version of burst tries [62]. The burst trie is a dynamic data structure that

the number of trie nodes of an array trie is reduced at little cost, by collapsing trie-chains

into dynamic containers that share a common prefix. The containers are represented as any

associative arrays with string key. Askitis and Sinha engineered cache- and space-efficient

HAT-tries by applying the array hash to the container representation.

Judy Judy is a trie-based dynamic data structure developed by Doug Baskins at Hewlett-

Packard Research labs [15, 130]. It is carefully designed to leverage a CPU cache in modern

machines as much as possible. Judy dynamically changes the structural representation of

its nodes according to the number of data items they store.

Adaptive Radix Tree The adaptive radix tree (ART) [84] is similar to Judy in that the

structural representation adaptively changes. It is based on the array trie but uses small

arrays if the number of children is small. There are some types of internal node structures,

which are adopted depending on the number of children.
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Chapter 3

Static Compressed Double-Array

Tries

In our work, we propose compressed static string dictionaries based on double-array tries,

described in Section 2.5.4. The double array is a data structure well-used to represent a

trie. As the name suggests, it uses two pointer arrays and provides the fastest node-to-

node traversal, but its scalability is a significant problem because of the pointer arrays.

Although several compression techniques of static double-array tries were proposed to solve

this problem [49, 142], these techniques remain problems for scalability.

In this chapter, we present two static compressed double-array tries: the double array

through linear functions (DALF) and XOR-compressed double array (XCDA), after the

data structures of the double array and its existing compact form called the compact double

array (CDA) are introduced. CDA is a technique that replaces one pointer array into a

character array. In general, the character array is represented in smaller space, where each

element takes 8 bits in practice. However, there remains the other pointer array. DALF

compresses the pointer array such that each element is practically represented in 8 bits.

Although DALF can implement each double-array element in 16 bits, it cannot support

the Access operation, because DALF is based on CDA that does not support the opera-

tion. Therefore, we cannot use CDA and DALF as string dictionaries. XCDA compresses

the original double array with a different approach in order to support both Lookup and

Access. We do not give any theoretical evaluation of XCDA, but we show that XCDA can

implement static string dictionaries similar in size to DALF, through experiments using

real-world datasets.

3.1 Double Arrays

This section shows data structures of double-array tries.
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𝑠 𝑡1 𝑡2
BASE base
CHECK 𝑠 𝑠

+𝑐2
+𝑐1

𝑐1

𝑐2

𝑡1

𝑡2𝑠

𝑏𝑎𝑠𝑒

Figure 3.1: Node arrangement of a double array.

3.1.1 Data Structure

A double array [2] represents a trie using two integer arrays called base and check,

where base[s] and check[s] correspond to node s. A pair of base and check elements

corresponding to node s are denoted as element s. There exists an edge from internal node

s to node t with label c, the double array satisfies the following equations:

base[s] + c = t and check[t] = s. (3.1)

In other words, node IDs of the double array are arranged to satisfy Equation 3.1 as

Figure 3.1. The double array can find child t indicated with label c from node s by the

following two steps: the child ID is obtained by t← base[s] + c; and we can identify if the

child exists by comparing check[t] to s. Parent s of node t is simply gotten from check[t].

The edge label between node s and its parent is obtained by s − base[check[s]]. The

most significant advantage of double arrays is the fastest node-to-node traversal.

For space usage, base and check can include empty elements like hash tables because

nodes are located while satisfying Equation 3.1. In this thesis, we call node IDs correspond-

ing to empty elements unused node IDs. In other words, the length of base (or check)

is the sum of trie nodes and empty elements. Let N be the array length, the total space

usage of base and check is 2NdlogNe bits. The space usage depends on not only the

number of nodes but also that of empty elements; however, in practice, empty elements

are negligibly few compared to trie nodes.

In general, the MP-trie described in Section 2.5.4 is applied to implement compact

dictionaries using the double arrays. The separated strings are stored in a character array

called tail, while appending a special terminator $ for each string. Links to tail are kept

in the base values of leaves. To identify the leaves, we define a bit array leaf such that

leaf[s] = 1 iff node s is a leaf. In static construction, we can shorten the length of tail

by unifying common suffixes of the separated strings [142, 145].

Example 3.1. Figure 3.2 shows an example of a double-array dictionary using an MP-

trie for strings aaa, aabc, acb, acbab, and bbab.1 The node IDs are arranged as satisfying
1These strings are used throughout the examples in this chapter. Note that the character values are

a = 0, b = 1, and c = 2.
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b a b $

0 1 2 3 4 5 6 7 8
BASE 1 3 0 6 8 3 5 4 2
CHECK 0 0 1 5 1 3 3 4
LEAF 0 0 1 0 0 0 1 1 1

TERM 0 0 1 0 1 0 1 1 1
0 1 5 4

2

3 7

6

a

b

c b

a

ba

8
a

0 1 2 3 4 5
TAIL b a b $ c $

c $

Figure 3.2: Double-array representation of an MP-trie. The shaded elements indicate to store
tail links.

Equation 3.1. The string IDs over aaa, aabc, acb, acbab, and bbab are assigned by

Rank1(term, 6) = 2, Rank1(term, 7) = 3, Rank1(term, 4) = 1, Rank1(term, 8) = 4,

and Rank1(term, 2) = 0, respectively. The common suffixes are shared in tail such as

bab and b.

Lookup(aabc) is performed as follows. We first start to traverse nodes from root 0

and obtain the child ID 1 indicated with the first character a by base[0]+a = 1+0 = 1 and

check[1] = 0. Subsequently, we obtain the child ID 3 indicated with the second character

a by base[1] +a = 3 + 0 = 3 and check[3] = 1, and the child ID 7 indicated with the third

character b by base[3] + b = 6 + 1 = 7 and check[7] = 3. Since node 7 is a leaf from

leaf[7] = 1, base[7] = 4 indicates the link to tail. We can see that the query string is

registered because tail[4] is the same as the last character c and tail[5] has the terminator

$. As a result, the string ID for aabc is Rank1(term, 7) = 3.

In contrast, Access(3) = aabc is performed as follows. We first obtain the correspond-

ing leaf ID as Select1(term, 3) = 7. We then traverse nodes to the root in reverse by

check[7] = 3, check[3] = 1, and check[1] = 0. At the same time, we extract the edge

labels by 7− base[check[7]] = b, 3− base[check[3]] = a, and 1− base[check[1]] = a.

The target prefix aab is obtained by concatenating the labels in reverse. Next, we can see

that the target suffix exists in tail because of leaf[7] = 1; thus, we append the suffix

tail[base[7]] = c to the prefix. As a result, the target string for ID 3 is aabc.

3.1.2 Construction Algorithm

The double array is built by arranging node IDs to satisfy Equation 3.1. Let Edge(s)

be a set of edge characters from node s. The child IDs from node s are arranged as

base[s]← XCheck(Edge(s)), where XCheck(E) returns an arbitrary integer base such

that node IDs base⊕c are unused for each character c ∈ E. Along with defining base[s], the

child IDs t are also defined as t← base[s]⊕ c and check[t]← s for each character c ∈ E.

In other words, arranging node IDs implies searching base values satisfying Equation 3.1.



28 Chapter 3. Static Compressed Double-Array Tries

b a b $

0 1 2 3 4 5 6 7 8 9
BASE 1 4 0 5 8 2 2 5 4
CHECK 0 0 6 1 3 1 4 4
LEAF 0 0 1 0 0 1 0 0 1 1

TERM 0 0 1 1 0 1 0 0 1 1
0 1 6 3

2

4 9

8

a

b

c b

a

ba

5
a

0 1 2 3 4 5
TAIL b a b $ c $

c $

ℓ ℓ

Figure 3.3: Double-array representation of an MP-trie, based on Equation 3.2.

3.1.3 Artful Implementation

Aoe defined the left part of Equation 3.1 using a PLUS operation (+) in the original

literature [2], whereas recent double-array implementations, such as Darts-clone [138] and

Cedar [148], commonly use an XOR operation (⊕) instead. In other words, Equation 3.1

is replaced into

base[s]⊕ c = t and check[t] = s. (3.2)

Probably, this technique was formally presented by Yata et al. [144] for the first

time. In this literature, the technique is proposed to efficiently check the target cache line

during node arrangement. The advantage of using the XOR operation is to enable block

management of double-array elements. When locating child t indicated with character c

from node s, we define base[s] such that node IDs t = base[s] ⊕ c are unused, and then

store check[t] = s. Let ` = 2dlog σe, bbase[s]/`c = bt/`c is satisfied due to the XOR

operation. That is, the children from the same parent are located within the same block.

The feature will be utilized to element compression in Section 3.3 and fast rearrangement

in Section 6.2.

Example 3.2. Figure 3.3 shows an example of a double-array dictionary based on Equa-

tion 3.2. Compared to the double array in Figure 3.2, the node arrangement differs

because of the XOR operation. As ` = 4 from σ = 3, the elements are partitioned into

blocks of size 4. The children from the same parent are located within the same block, such

as nodes 3 and 5 from node 1. We can find the child indicated with character c from node

1 as base[1]⊕ c = 4⊕ 2 = 6 and check[6] = 1.

3.1.4 Compact Double Array

The main bottleneck of double arrays is that base and check are pointer-based arrays

whose each element uses dlogNe bits. To solve it, Yata et al. [142] proposed the compact

double array (CDA) that reduces the space usage of check. CDA uses a new array lcheck
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b a b $

0 1 2 3 4 5 6 7 8 9
BASE 1 3 0 6 7 5 4 9 2
LCHECK a b a c a b b a
LEAF 0 0 1 0 0 0 1 1 0 1

TERM 0 0 1 0 0 0 1 1 1 1
0 1 5 8

2

3 7

6

a

b

c b
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ba

9
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0 1 2 3 4 5
TAIL b a b $ c $

c $

Figure 3.4: Compact double-array representation of an MP-trie.

such that lcheck[s] stores the edge label between node s and its parent, instead of check.

In other words, CDA changes Equation 3.1 into the following equations:

base[s] + c = t and lcheck[t] = c. (3.3)

Note that base[s] 6= base[s′] has to be satisfied for any distinct internal nodes s and s′.

Each lcheck element can be represented in dlog σe bits. Since practical applications

often use byte characters, log σ ≤ 8 is much smaller than logN , basically 32 or 64. However,

CDA cannot support Access because lcheck does not indicate parents. Moreover, dy-

namic update cannot be supported because nodes are frequently relocated by using check

values, although this chapter focuses on static dictionaries. Therefore, its applications are

limited.

Example 3.3. Figure 3.4 shows an example of a compact double-array representation

of an MP-trie. lcheck keeping characters is used instead of check. The node IDs are

arranged depending on Equation 3.3. We can find the child from node 1 with character c

as base[1] + c = 3 + 2 = 5 and lcheck[5] = c.

3.2 Double Array through Linear Functions

CDA achieves the compression of check, but base is uncompressed; thus, the funda-

mental problem in space is not improved. In this section, we propose a data structure

that compresses the base array of CDA, namely the double array through linear functions

(DALF). DALF represents each base element in arbitrary ∆ bits in the three steps:

1. Define a linear function f(s) = as+ b for node IDs s.

2. Determine base[s] approximating f(s).

3. Use a new array dbase such that dbase[s] = base[s]− f(s), instead of base.2

2Strictly speaking, we round down the result of f(s) as bf(s)c, but the floor function is omitted for
legibility throuhghout this thesis.
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Figure 3.5: Illustration of scatter diagrams for CDA and DALF.

Figure 3.5 shows simple examples of scatter diagrams with node IDs on the x-axis and

base values on y-axis. DALF is built by determining base values approximating linear

function f and using the differences instead of the original base values. When base values

are determined such that base[s]− f(s) can be represented in ∆ bits for all nodes s, each

dbase element can be represented in ∆ bits.

However, the approach has a problem that it is difficult to arrange node IDs while

determining such base values, because Equation 3.3 must be satisfied. If we cannot deter-

mine such base values during construction, it is necessary to rearrange the node IDs by

resetting linear function f from scratch; however, the construction speed becomes slow. It

is difficult to define appropriate linear function f in the first place. To solve this problem,

we partition the arrays into blocks of size ` and defines linear functions fb(s) = abs + bb

for each block 0 ≤ b ≤ dN/`e, where b = bs/`c. In case of failure during construction, we

only need to rearrange node IDs for the target block. Furthermore, we can easily define

appropriate linear functions fb.

In this section, we first describe rules on construction and then definitions of linear

functions.

3.2.1 Rules on Construction

For discussion, we define the range of child IDs indicated from nodes in block b as Cb, such
that Cb = ∅ if block b does not include any internal nodes. In addition, we define

C0...b :=

b⋃
k=0

Ck.
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Figure 3.6: Illustration of a scatter diagram when Rules 3.1 and 3.2 are kept.

Note that C0...b 6= ∅ holds for any b because the first block b = 0 always includes the root

node. To represent the range of node IDs in block b, we define Nb = [b · `, (b+ 1) · `).
In our discussion, constructing the double array of block b indicates defining base

values in Nb. The construction of DALF is proceeded block by block in block ID order,

while keeping the following rules:

Rule 3.1. max C0...b−1 < min Cb for 0 < b.

Rule 3.2. For any node with a non-zero block IDs, its children have strictly larger block

IDs.

In this regard, we do not consider the case that block b does not include internal nodes.

By keeping Rule 3.1, the following equation is satisfied;

Cb ∩ Cb+1 = ∅. (3.4)

Due to Rule 3.1, we can easily rearrange node IDs. This is because we only need to initialize

base values in Nb and lcheck values in Cb for node rearrangement in block b. Moreover,

we can simply define linear function fb without depending on nodes in other blocks. Rule

3.2 is kept by satisfying minNb+1 ≤ min Cb (b > 0) to determine BASE values block by

block. Figure 3.6 shows the scatter diagram by keeping the rules such as Figure 3.5.

The details of Figure 3.6 are described below.
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3.2.2 Definition of Linear Functions

First of all, we define cheadb to discuss definitions of linear functions as the following;

cheadb =

0 (b = 0)

max{max C0...b−1 + 1,minNb+1} (b > 0).
(3.5)

The rules can be kept by defining node IDs s traversed from block b such that cheadb ≤ s.
We divide double-array elements into blocks of ` elements and construct the double

array for each block in ascending order of block ID, like Figure 3.6. During the construc-

tion, we define linear functions fb as a line through point (minNb, cheadb). Here, we show

the definitions of ab and bb. Note that we suppose block b always includes internal nodes.

To define linear function fb, it is important to be able to determine base values in

block b approximating it. Let Bb be a range of base values in block b. If base values in

block b are determined approximating fb, Bb ' [cheadb,maxNb] will be satisfied. Then,

Bb ' Cb since we can consider base[s] + c = t as base[s] ' t in N � σ. In other words,

Cb ' [cheadb, fb(maxNb)]. (3.6)

If slope ab is too large, fb(maxNb), or |Cb|, become too large. As a result, Cb includes many

unused node IDs. If slope ab is too small, |Cb| becomes too small and we can not determine

base values in block b approximating fb. When Cb does not include unused node IDs and

we can determine base values in block b near linear function fb, the slope ab is the best

parameter. Suppose that Cb does not include unused node IDs ideally, then

|Cb| = sumdegb, (3.7)

where sumdegb denotes the sum of degrees of nodes in block b. Because Equation 3.4 holds

by keeping Rule 3.1, Equation 3.7 holds. From Equation 3.6, fb becomes appropriate in

|[cheadb, fb(maxNb)]| = sumdegb. Consequently, slope ab is defined as following equation;

ab =
sumdegb

`
(b > 0). (3.8)

While sumdegb is not changed after fb is defined from Rule 3.2, sumdeg0 can not be

calculated because the rule omits the first block b = 0. Thus, we define a0 by using the

average degree in a trie. Let avedeg be the average degree of internal nodes, we consider

sumdeg0 as avedeg · `. Slope a0 is defined as

a0 =
avedeg · `

`
= avedeg. (3.9)
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Y-intercept bb is defined by using slope ab and the point (b · `, cheadb) as

bb = cheadb − ab · b · `. (3.10)

Reconstruction If base[s] cannot be determined such that base[s]−fb(s) is represented
in ∆ bits, it is necessary to redetermine base values onNb after slope ab increases to expand
Cb. Slope ab is updated as the equation;

ab = âb + gain · rb, (3.11)

where gain is the addition value to slope ab, rb is the number of reconstructions in block

b, and âb is the initial parameter defined by Equations 3.8 or 3.9. If parameter gain is

too large, Cb expands too much and the number of empty elements in block b increases. If

parameter gain is too small, Cb expands little and rb increases. As a result, the construction
speed becomes slow. Therefore, parameter gain needs to be defined as an appropriate value.

Furthermore, we give the proof that the reconstruction using Equation 3.11 can always

terminate for any tries. Here, the upper bound of rb is shown by discussing the upper

bound of slope ab. To discuss the upper bound of slope ab, suppose the following cases;

Case 3.1. In terms of the number of trie nodes and the size of dbase element, the worst

cases for block b are shown the follows;

• Block b does not include an unused node ID, and the nodes are all internal nodes.

• The degree of each node is σ.

• ∆ = 1, that is, base[s] = fb(s).

The slope ab for this case is the upper bound. In the case, the number of internal

nodes in the block is ` and each internal node has σ children. Node IDs can be arranged

freely without depending on nodes in other blocks from Equation 3.4. Since the children

traversed from block b are consecutive, Cb does not include unused node IDs and |Cb| = ` ·σ
is satisfied. Therefore, the slope ab satisfying the equation in ∆ = 1 is the upper bound.

If base values are arranged in ascending order, such values for the worst case satisfy

base[minNb + i] = cheadb + i · σ (0 ≤ i < `). (3.12)

The slope ab and y-intercept bb to satisfy Equation 3.12 in ∆ = 1 (or base[s] = fb(s)) are

as follows;

ab = σ and bb = cheadb −minNb · σ. (3.13)
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Figure 3.7: Illustration for ranges of base values in block b.

From ab = σ in Equation 3.13, the number of reconstructions in a block is always as

rb ≤
⌈
σ − âb
gain

⌉
. (3.14)

The discussion shows that reconstruction processing can always terminate in any case.

From 3.14, the number of reconstructions does not depend on that of trie nodes; therefore,

reconstruction using Equation 3.11 is practical for a large trie.

3.2.3 Ranges of BASE values

Here, we show ranges of base values to represent dbase values in ∆ bits. The range of

base[s] is defined as

base[s] ∈ (Ms ∪ Ls), (3.15)

where Ms and Ls are ranges of base values. Figure 3.7 shows an example for ranges

of base values in block b. Higher and lower base values than fb(s) are Ms and Ls,
respectively. Note that fb(s) ∈ Ls.
Ms and Ls are adjusted by using parameter adj (0 ≤ adj < 2∆−1). Ms is represented

as

Ms = [fb(s) + 1, fb(s) + 2∆ − 1− adj). (3.16)

To represent empty elements using dbase, Ms does not include fb(s) + 2∆ − 1 − adj.

In other words, dbase[s] = 2∆ − 1 indicates that element s is an empty element. Ls is
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represented as

Ls = [fb(s)− adj, fb(s)]. (3.17)

In terms of values in Ls smaller than cheadb, many unusable base values can be

included because of the following reasons;

• To keep the rules, DALF determines node ID t traversed from block b such that

cheadb ≤ t. Because base[s] + c = t from Equation 3.3, cheadb ≤ base[s] + c. From

the equation, base values smaller than cheadb − c can not be used in block b.

• When base values smaller than cheadb are used in block b′ < b, the base values can

not be used in block b.

Therefore, Ls can include many unusable values when adj is big and |Ls| is large. On

the other hand, when |Ls| decreases with decreasing adj, BASE values become big and

|Cb| becomes large, that is to say, the number of empty elements increases. Therefore,

parameter adj requires to be defined as appropriate value.

3.2.4 Data Structure

In DALF, Equation 3.3 is changed as follows:

dbase[s] + fb(s) + c = t and lcheck[t] = c. (3.18)

Note that dbase[s] + f(s) 6= dbase[s′] + f(s′) has to be satisfied for any distinct inter-

nal nodes s and s′ because DALF is based on CDA. The node-to-node traversal can be

performed in constant time.

For space usage, dbase and lcheck use ∆ and dlog σe bits for each element. Represen-

tation of the linear functions (i.e., ab and bb) uses 2w bits for each block, where w denotes

the word length. The overall space usage is N(∆ + dlog σe) + 2wdN/`e bits. The com-

pression efficiency of DALF depends on parameters ∆ and `, but we cannot theoretically

compare the space usage with other double arrays, because the number of empty elements

is greatly affected from the parameters ∆, `, adj and gain, empirically. Therefore, we

evaluate the space efficiency through experiments.

As for dictionary implementation, we apply the MP-trie to DALF in the same manner

as the conventional double-array dictionaries. Although tail links cannot be represented

in ∆ bits, we can easily solve the problem. We first construct an FID to leaf to support

Rank, and then introduce a new integer array link. By using these arrays, a link value a

of leaf s is stored as dbase[s] = a mod 2∆ and link[Rank1(leaf, s)] = ba/2∆c. Let M

be the length of tail, link uses dlogMe −∆ bits for each element. The length of link is

the same as the number of leaves.



36 Chapter 3. Static Compressed Double-Array Tries

3.3 XOR-Compressed Double Array

DALF can implement a double array algorithm in compact space (although depending on

the parameters), but there is a fundamental problem that lcheck cannot obtain parent

IDs. In other words, DALF cannot support Access in common with CDA. To implement

string dictionaries supporting Access, it is necessary to directly compress the original

double array.

In this section, we attempt to compress the base and check arrays using DACs;

however, simply representing an array of many large integers using DACs is inefficient in

space and time. In our work, we solve this problem by transforming base and check into

arrays of many small integers. Moreover, we propose a fast version of DACs not to sacrifice

the traversal speed.

3.3.1 XOR Transformation

It is a technique that compresses an array of integers by using differences between its

values and indices. An array of integers P is transformed into an array P ′ such that

P ′[i] = P [i]⊕ i. We can extract P [i] from P ′[i] as P ′[i]⊕ i = (P [i]⊕ i)⊕ i = P [i] because

i ⊕ i = 0. Suppose that P is partitioned into blocks of length ` that is a power of 2, we

give the following theorem for P ′.

Theorem 3.1. Integer P ′[i] can be represented in log ` bits for P [i] such that bP [i]/`c =

bi/`c.

Proof. When ` is a power of 2, bi/`c denotes to right shift (i)2 by log ` bits. In bP [i]/`c =

bi/`c, (P [i])2 and (i)2 consist of the same bits except for the lowest log ` bits. Therefore,

(P [i] ⊕ i)2 except for the lowest log ` bits becomes zero, that is, P ′[i] = P [i] ⊕ i can be

represented in log ` bits.

Example 3.4. Let P [23] = 21 in ` = 4. Function b23/4c = 5 denotes to right shift

(23)2 = 10111 by log 4 = 2 bits as (5)2 = 101. Similarly, b21/4c = 5 denotes to right shift

(21)2 = 10101 by 2 bits. Binaries 10111 and 10101 consist of the same bits except for the

lowest 2 bits because b23/4c = b21/4c. Therefore, P ′[23] = 21⊕ 23 = 2 can be represented

in 2 bits as 10111⊕ 10101 = 00010.

3.3.2 Construction Algorithm

As described in Section 2.2.3, DACs can efficiently represent an array including many b-bit

integers because such integers are represented by using only the first array A1. Let P

include many integers satisfying the condition of Theorem 3.1 in ` = 2b, most P ′ values

are in log ` = b bits. For base and check, the values can be freely determined as long as
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Figure 3.8: Relation between node s and its children t1 and t2. Suppose that base[s] = base
satisfies bbase/`c = bs/`c, bcheck[t1]/`c = bs/`c = bt1/`c is also satisfied in c1 ∈ [0, `).

Equation 3.1 is satisfied. Therefore, we can obtain base and check values satisfying the

condition in ` = 2b.

We present a function YCheck` that attempts to determine base values satisfying

the condition. Let E be a set of edge characters from node s, we define base values as

base[s]← YCheck`(E, s).

Algorithm 3.1 YCheck`(E, s)

1: for all base← [bs/`c · `, (bs/`c+ 1) · `) do
2: if Node IDs base⊕ c are unused for each c ∈ E then
3: return base . bbase/`c = bs/`c
4: end if
5: end for
6: return XCheck(E) . bXCheck(E)/`c 6= bs/`c

Function YCheck`(E, s) targets to determine base[s] such that bbase[s]/`c = bs/`c.
This loop searches such base[s] satisfying Equation 3.1 on the block bs/`c. If the loop

cannot find it, base[s] is determined in the same manner as the conventional algorithm.

Function YCheck`(E, s) is effective for characters c ∈ [0, `) as the following reason.

Let t be the child of node s with such character c, the following equation is satisfied;

bbase[s]/`c = b(base[s]⊕ c)/`c = bt/`c. (3.19)

When bbase[s]/`c = bs/`c is satisfied, Equation 3.19 and the right part of Equation 3.1

give bs/`c = bt/`c = bcheck[t]/`c. That is to say, we only have to search base[s] such

that bbase[s]/`c = bs/`c in order to obtain base[s] and check[t] satisfying the condition

of Theorem 3.1 (see Figure 3.8).

In practice, σ ≤ 256 always holds because byte characters are used to edge labels.

Therefore, YCheck` can obtain base and check values satisfying the condition in ` =

28 = 256. In other words, the function is compatible with the byte-oriented DACs with

b = 8. The effectiveness will be shown in Section 3.4.
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3.3.3 Data Structure

We call our data structure the XOR-compressed double-array (XCDA). Let xbase and

xcheck be arrays such that xbase[i] = base[i] ⊕ i and xcheck[i] = check[i] ⊕ i,

respectively. XCDA is built by representing xbase and xcheck using the byte-oriented

DACs. Since YCheck` can provide xbase and xcheck including many 8-bit integers,

XCDA can provide compact trie representations.

On the other hand, it is necessary to discuss how to represent empty elements and

tail links. General DAs represent empty elements by using invalid values such as negative

integers. The links are determined randomly corresponding to tail positions. These values

will be large by using the XOR transformation. Therefore, XCDA represents the values as

follows.

• As check[t] = s means that the parent of node t is node s, inequation s 6= t always

holds. We can consider check[i] = i as empty elements. The xcheck values always

become zero because of xcheck[i] = check[i] ⊕ i = i ⊕ i = 0. If base[s] is empty,

check[s] is also empty. Therefore, we do not have to identify if base elements are

empty. XCDA sets base[i] = i for empty elements.

• XCDA represents tail links by using the first array A1 and an additional array link,

in the same manner as DALF. Suppose base[s] = a in leaf[s] = 1, A1[s] = a mod 2b

and link[Rank1(leaf, s)] = ba/2bc. XCDA supports fast extraction of tail links

because only A1 and link are used.

Example 3.5. Figure 3.9 shows an example of XCDA for the double array of Fig-

ure 3.2. The shaded elements denote tail links. Except for the links, xbase and xcheck

are built by using the XOR transformation. For example, xcheck[3] is transformed by

check[3]⊕3 = 6⊕3 = 5. Empty xbase[7] and xcheck[7] become zero by setting base[7] =

7 and check[7] = 7. For the tail link base[9] = 4, the lowest b bits of (base[9])2 = (4)2 =

100 and the rest bits are stored in xbase[9] and link[Rank1(leaf, 9)] = link[3], respec-

tively. Let b = 2, xbase[9] = 00 and link[3] = 1. XCDA is built by representing the

xbase and xcheck using DACs.

It is very easy to extract original base and check values from the XCDA. Value

check[3] = 6 is extracted by xcheck[3]⊕3 = 5⊕3 = 6. From base[7] = 0, we can identify

that this element is empty. From leaf[9] = 1, the link (base[9])2 = (4)2 = 100 is extracted

by concatenating the bits link[Rank1(leaf, 9)] = link[3] = 1 and xbase[9] = 00.

3.3.4 Pointer-based Fast DACs

We introduced the technique to transform base and check into xbase and xcheck

including many small integers, respectively. XCDA represents xbase and xcheck by
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0 1 2 3 4 5 6 7 8 9
BASE 1 4 0 5 8 2 2 7 5 4
CHECK 0 0 0 6 1 3 1 7 4 4
LEAF 0 0 1 0 0 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9
XBASE 1 5 0 6 12 2 4 0 1 0
XCHECK 0 1 2 5 5 6 7 0 12 13
LEAF 0 0 1 0 0 1 0 0 1 1

0 1 2 3
LINK 0 0 1 1

DAC	representation

Rank1(LEAF,	𝑖)

BASE 𝑖 	⨁	𝑖	
CHECK 𝑖 	⨁	𝑖	

XBASE 𝑖 	⨁	𝑖	
XCHECK 𝑖 	⨁	𝑖	

Figure 3.9: Transformed arrays in b = 2 from the double array of Figure 3.3.

using DACs. On the other hand, all xbase and xcheck values will be not represented

in b bits because of Equation 3.1. Although DACs extract such values by using Rank in

constant time, many bit operations are used in practice; therefore, the retrieval speed of

XCDA using DACs will be not competitive to that of double arrays using plain pointers.

This section presents new pointer-based DACs called fast DACs (FDACs), supporting

directly extraction without Rank.

For simplicity, we introduce FDACs corresponding to DACs in Section 2.2.3. More

precisely, P [i] is extracted through the same path, i1, i2, . . . , iki . Figure 3.10 shows an

example of a FDAC representation. In this figure, as Figure 2.1, P [5] is extracted by

following the 5 and 3 positions on the first and second arrays, respectively. Such FDACs

consist of the following arrays:

• Arrays A′1, A′2, . . . , A′L with b1, b2, . . . , bL bit integers, where b1 = b, b2 = 2·b, . . . , bL =

L · b.

• Bit arrays B′1, B′2, . . . , B′L−1 including the same bits as B1, B2, . . . , BL−1 in Sec-

tion 2.2.3.

• Arrays F1, F2, . . . , FL−1 whose each element corresponds to each block, assuming

that A′j and B
′
j are partitioned into blocks of length rj = 2bj .

On the path i1, i2, . . . , iki , values A′j [ij ] for 1 ≤ j < ki indicate the next positions

ij+1 by keeping the results of Rank1(B
′
j , ij), and value A′ki [iki ] keeps P [i] directly. In

order that A′j [ij ] can indicate ij+1 in bj bits, arrays Fj keep the results of Rank for each
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0 1 2 3 4 5 …
P p(0,2),p(0,1) p(1,1) p(2,2),p(2,1) p(3,3),p(3,2),p(3,1) p(4,1) p(5,2),p(5,1) …

FDAC	representation

0 1 2 3 4 5 …
𝐴;< 0 p(1,1) 0 1 p(4,1) 0 …
𝐵;< 1 0 1 1 0 1 …
F1 0 1 3 …

0 1 2 3 …
𝐴>< p(0,2),p(0,1) p(2,2),p(2,1) 0 p(5,2),p(5,1) …
𝐵>< 0 0 1 0 …
F2 0 …

0 …
𝐴?< p(3,3),p(3,2),p(3,1) …

Figure 3.10: FDAC representation corresponding to the DACs of Figure 2.1. We assume the
DACs with b = 1 and the FDACs with b1 = 1, b2 = 2 and b3 = 3, that is, r1 = 2 and r2 = 4.

head of blocks on A′j , as Fj [x] = Rank1(B
′
j , rjx). Arrays A′j store the differences as

A′j [ij ] = Rank1(B
′
j , ij)−Fj [bij/rjc]. Each element of A′j can be represented in bj = log rj

bits because A′j [ij ] ∈ [0, rj) is always satisfied. FDACs change Equation 2.1 into

ij+1 = A′j [ij ] + Fj [bij/rjc] (B′j [ij ] = 1). (3.20)

We explain how to carry out the extraction using the example of Figure 3.10. When

P [5] is extracted, the first position 5 of A′1 is given in the same manner as DACs. From

B′1[5] = 1, we can see that the second position exists. While DACs get the second position

by Rank1(B1, 5) = 3, FDACs can get it without Rank as A′1[5] + F1[b5/r1c] = A′1[5] +

F1[2] = 0 + 3 = 3. Thanks to F1[2] keeping Rank1(B
′
1, 2r1) = Rank1(B

′
1, 4) = 3, A′1[5]

can represent the results of Rank in b1 = 1 bit. We can see that A′2[3] directly keeps P [5]

because of B′2[3] = 0, and the extraction is done.

FDACs can represent an array of integers P when every integer can be represented in

any arrays A′1, . . . , A′L. Although the extraction time of FDACs is equal to that of DACs

in O(L), FDACs can follow the path i1, . . . , iki at high-speed without Rank.

On the other hand, the space efficiency becomes low when using arrays A′2, . . . , A′L
frequently, because each A′j element uses j · b bits while each Aj element uses b bits.

Fortunately, we can obtain many xbase and xcheck values represented in A′1 because of

YCheck. Therefore, FDACs is excellent with XCDA.
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Byte-oriented FDACs We do not have to separately manage A′j and B′j because B′j
does not use Rank. Therefore, FDACs can improve the cache efficiency of DACs by

allocating A′j [i] and B′j [i] on contiguous space. The byte-oriented FDACs define b1 =

7, b2 = 15, . . . so that A′j [i] and B
′
j [i] are represented on the same byte space.

On the other hand, YCheck works for characters c ∈ [0, 128) when using the byte-

oriented FDACs with b1 = 7 = log (128) bits. There are no problems for ASCII characters

because σ ≤ 128 always holds, but byte characters generated by splitting multi-byte ones

such as UTF-8 in Japanese and Chinese often satisfy 128 < σ. We can simply solve

this problem by assigning code values to characters in descending order of frequency of its

appearance in the dataset. In reality, the distribution of characters is often heavily skewed.

Therefore, most of characters are represented in range [0, 128). For example, in all page

titles of the Japanese Wikipedia of Jan. 2015 [133], 99.7% characters are represented in

range [0, 128) although σ = 189.

3.4 Experimental Evaluation

This section analyzes practical performances of DALF and XCDA through real-world

datasets. We compare them with other string dictionaries and give evaluations in practice.

3.4.1 Settings

We carried out the experiments on Quad-Core Intel Xeon 2 x 2.4 GHz, 16 GB RAM. All

string dictionaries were implemented in C++. They were compiled using Apple LLVM

version 7.0.2 (clang-700.1.81) with optimization -O3.

Datasets We used the six real-world datasets:

• geonames: Geographic names on the asciiname column from GeoNames dump [51].

• nwc: Japanese word N -grams in the Nihongo Web Corpus 2010 [141].

• jawiki: All page titles from the Japanese Wikipedia of Jan. 2015 [133].

• enwiki: All page titles from the English Wikipedia of Feb. 2015 [133].

• uk: URLs of a 2005 crawl by the UbiCrawler [22] on the .uk domain [82].

• dna: All substrings of 12 characters found in the Gene DNA data set from Pizza&Chili

corpus [121].

Table 3.1 summarizes the statistics about each dataset: the raw size in MiB, number

of different strings, average number of characters per string when including a terminator,
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Table 3.1: Information about datasets.

Size Strings Ave. length σ # of nodes |tail|

geonames 106.1 6,784,722 15.6 96 11,378,833 8,733,434
nwc 460.8 20,722,756 22.2 180 52,047,795 548,133
jawiki 33.9 1,518,205 22.3 189 3,516,248 5,234,145
enwiki 238.2 11,519,354 20.7 199 25,749,451 23,108,877
uk 2,855.5 39,459,925 72.4 103 117,568,967 289,826,785
dna 198.5 15,265,943 13.0 16 20,688,222 39,244

number of different characters used in the dictionary, number of nodes, and length of tail

in the MP-trie.

Data structures We compared performances of our dictionaries to previous double-

array tries and state-of-the-art compressed string dictionaries. For DALF parameters, we

chose ∆ = 8, ` = 512, adj = 128 and gain = 1.0 from preliminary experiments [74]. For

XCDA-tries, we tested the four patterns:

• XCDA-x using the byte-oriented DACs and XCheck.

• XCDA-y using the byte-oriented DACs and YCheck256.

• FXCDA-x using the byte-oriented FDACs and XCheck.

• FXCDA-y using the byte-oriented FDACs and YCheck128.

For previous double arrays, we tested the original double array (DA) [2] and CDA

[142], representing the MP-trie. Note that DALF and CDA can not support Access.

We implemented XCheck using fast algorithms proposed in [99]. All the double-array

implementations are available at https://github.com/kampersanda/cda-tries. We can

get more technical details from the library.

As for the state-of-the-art, Cent is the centroid path-decomposed trie and Cent-rp is

the compressed version with Re-Pair [83], from [57]. We also tested PFC, HTFC-rp and

HashDAC-rp from [95]. PFC is a plain Front-Coding dictionary. HTFC-rp is a Hu-Tucker

[65] Front-Coding dictionary compressed with Re-Pair. HashDAC-rp is a hashing dictio-

nary compressed with Re-Pair and DACs. For the Front-Coding dictionaries, we chose

bucket size 8 as the best space/time trade-off in the same manner as [8, 57]. In addi-

tion, we tested bucket sizes 2 and 4 for HTFC-rp in order to observe faster operations. For

HashDAC-rp, Martínez-Prieto et al. [95] evaluated 5 load factors. Since their performances

do not change significantly, we chose load factor 0.5 (i.e., half slots are empty) support-

ing the fastest Lookup. Although LZ-compressed string dictionaries [8] are effective for

https://github.com/kampersanda/cda-tries
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Table 3.2: Experimental results about percentages of values on each level in DACs and FDACs.

(a) geonames

1st 2nd 3rd 4th

XCDA-x 86.04 13.58 0.38 0.00
XCDA-y 88.94 10.67 0.39 0.00
FXCDA-x 78.21 21.16 0.63 –
FXCDA-y 83.88 15.45 0.68 –

(b) nwc

1st 2nd 3rd 4th

XCDA-x 92.07 7.72 0.21 0.00
XCDA-y 93.74 6.05 0.21 0.00
FXCDA-x 87.32 12.33 0.35 –
FXCDA-y 90.89 8.76 0.36 –

(c) jawiki

1st 2nd 3rd 4th

XCDA-x 88.20 11.51 0.29 0.00
XCDA-y 90.75 8.97 0.28 0.00
FXCDA-x 81.00 18.55 0.45 –
FXCDA-y 86.00 13.48 0.52 –

(d) enwiki

1st 2nd 3rd 4th

XCDA-x 88.62 10.98 0.39 0.01
XCDA-y 90.81 8.79 0.39 0.01
FXCDA-x 82.37 17.01 0.62 –
FXCDA-y 86.42 12.94 0.65 –

(e) uk

1st 2nd 3rd 4th

XCDA-x 92.88 7.02 0.10 0.00
XCDA-y 94.25 5.66 0.10 0.00
FXCDA-x 88.00 11.83 0.17 –
FXCDA-y 90.44 9.40 0.16 –

(f) dna

1st 2nd 3rd 4th

XCDA-x 94.04 5.90 0.06 0.00
XCDA-y 94.55 5.38 0.06 0.00
FXCDA-x 90.09 9.80 0.11 –
FXCDA-y 90.80 9.09 0.11 –

synthetic datasets containing many often repeated substrings, Cent-rp outperforms the LZ-

dictionaries for real-world datasets from previous experiments; therefore, our experiments

did not include them. Cent and Cent-rp were implemented by using the software path_-

decomposed_tries [116]. PFC, HTFC-rp and HashDAC-rp were implemented by using the

software libCSD [93].

3.4.2 Results

We first observe DACs and FDACs using XCheck and YCheck. Next, we evaluate the

practical performance of our data structures.

Construction Algorithms Table 3.2 shows the percentages of values for each level

of DACs and FDACs using XCheck and YCheck. In DACs, Aj can represent 8j-bit

integers and the maximum level is 4. In FDACs, A′1, A′2 and A′3 can represent 7-, 15- and

32-bit integers, respectively. Each column represents the percentages of represented values

in each level, that is, the sum of percentages in each row becomes 100%.

From the table, the 1st level for all cases can represent many values, while values on

the 2nd or deeper levels always arise to satisfy Equation 3.1. Function YCheck provides
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better results than XCheck, especially in FDACs whose allocation of the 1st level is

smaller. Therefore, YCheck can contribute to improvement of XCDAs.

String Dictionaries Tables 3.3–3.8 show the experimental results about the construc-

tion time, percentage of compression ratio between the data structure and the raw data

sizes, and average running times of Lookup and Access. To measure the running times

of Lookup, we chose 1 million random strings from each dataset. The running times of

Access were measured for 1 million IDs corresponding to the random strings. Each test

was averaged on 10 runs. We could not build HashDAC-rp for uk because the construction

complexity exceeded the memory resources of our computational configuration. Moreover,

it did not complete the construction on dna in 6 hours; hence we had to kill the process.

When comparing the construction algorithms in XCDA, using YCheck slightly out-

performs using XCheck because more values are represented in the 1st level. Function

YCheck provides better compression ratios in all cases because they obediently depend

on the percentages in Table 3.2. The Lookup and Access times also depend largely on

the percentages; therefore YCheck provides faster operations in most cases. There are no

significant problems in construction. Therefore, using YCheck is a better choice.

When comparing the XCDA tries using YCheck, FXCDA-y provides faster operations

than XCDA-y in all cases because of removing Rank and improving cache efficiency. For

the compression ratios, FXCDA-y is superior in nwc, uk and dna while XCDA-y is

superior in geonames, jawiki and enwiki. Although FDACs use more space in the 2nd

or deeper levels to embed Rank information, the 1st level A′1 consists of 7-bit integers, less

space than 8 bit integers on A1 in DACs, because A′1 and B′1 are not managed separately.

Therefore, FXCDA-y becomes compact when the percentage in the 1st level is high. On

all aspects, FXCDA-y excels in the XCDA tries.

We compare FXCDA-y with DALF. DALF provides competitive compression ratios,

and faster Lookup in geonames, jawiki, and dna; however, the Lookup becomes slow

for large datasets such as uk because DALF is built by arranging nodes block by block. The

construction algorithm can locate parent and child nodes far away on the array; therefore,

cache misses can occur frequently in node-to-node traversal, that is, the Lookup can

become slow especially for a long query in a large trie. On the other hand, FXCDA-y

supports stable and fast Lookup and Access. In what follows, we compare it to other

data structures.

Compared to the previous double-array tries, FXCDA-y is 1.7–2.6x smaller than DA

and solves the problem that we cannot apply the previous double-array tries to the com-

pressed string dictionaries. CDA always provides the fastest Lookup because of improve-

ment of the cache efficiency from check compaction, but the scalability of base is a

problem. DALF provides competitive compression ratios, but the Lookup becomes slow
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Table 3.3: Experimental results about string dictionaries for geonames.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 9.5 52.8 0.80 –
XCDA-x 5.7 51.8 1.12 1.52
XCDA-y 5.8 51.2 1.10 1.51
FXCDA-x 5.5 55.1 0.96 1.32
FXCDA-y 5.7 52.8 0.93 1.29
Previous double-array tries
DA 4.9 95.8 0.61 0.95
CDA 5.0 63.7 0.49 –
State-of-the-art dictionaries
Cent 13.6 51.5 2.01 2.13
Cent-rp 33.8 31.5 2.10 2.17
PFC 0.6 60.5 1.61 0.47
HTFC-rp (2) 51.5 59.0 2.39 0.82
HTFC-rp (4) 211.9 42.7 2.80 1.14
HTFC-rp (8) 125.1 34.4 3.50 1.79
HashDAC-rp 298.9 48.0 1.28 0.92

Table 3.4: Experimental results about string dictionaries for nwc.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 35.4 34.2 1.88 –
XCDA-x 16.9 36.6 1.92 2.58
XCDA-y 17.0 36.2 1.91 2.59
FXCDA-x 16.0 37.3 1.61 2.22
FXCDA-y 16.2 35.7 1.57 2.20
Previous double-array tries
DA 13.7 92.4 1.00 1.58
CDA 14.7 58.5 0.83 –
State-of-the-art dictionaries
Cent 39.7 42.2 2.73 2.89
Cent-rp 76.4 16.9 2.66 2.81
PFC 1.9 38.2 2.10 0.51
HTFC-rp (2) 201.3 49.3 3.04 0.88
HTFC-rp (4) 343.2 30.7 3.34 1.14
HTFC-rp (8) 423.2 21.5 3.77 1.63
HashDAC-rp 1456.6 29.1 1.72 1.08
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Table 3.5: Experimental results about string dictionaries for jawiki.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 2.6 56.1 0.61 –
XCDA-x 1.5 53.5 0.85 1.24
XCDA-y 1.5 53.0 0.83 1.22
FXCDA-x 1.4 55.9 0.70 1.04
FXCDA-y 1.5 54.0 0.66 1.02
Previous double-array tries
DA 1.3 100.3 0.52 0.90
CDA 1.3 69.1 0.40 –
State-of-the-art dictionaries
Cent 3.5 92.0 1.57 1.81
Cent-rp 9.9 32.4 1.67 1.89
PFC 0.2 61.0 1.35 0.49
HTFC-rp (2) 22.5 57.0 2.12 0.85
HTFC-rp (4) 43.4 41.0 2.68 1.32
HTFC-rp (8) 69.5 32.6 3.62 2.25
HashDAC-rp 110.0 35.3 1.33 0.85

Table 3.6: Experimental results about string dictionaries for enwiki.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 23.3 51.5 1.39 –
XCDA-x 12.6 50.6 1.58 2.09
XCDA-y 12.8 50.1 1.56 2.10
FXCDA-x 12.1 52.8 1.33 1.82
FXCDA-y 12.5 51.1 1.31 1.82
Previous double-array tries
DA 11.0 98.1 0.82 1.31
CDA 11.3 65.7 0.67 –
State-of-the-art dictionaries
Cent 24.5 52.4 2.40 2.48
Cent-rp 73.5 31.6 2.62 2.65
PFC 1.2 59.6 1.97 0.62
HTFC-rp (2) 930.1 56.9 2.87 1.00
HTFC-rp (4) 712.3 40.8 3.40 1.50
HTFC-rp (8) 936.7 32.6 4.49 2.51
HashDAC-rp 780.7 41.0 1.66 1.31
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Table 3.7: Experimental results about string dictionaries for uk.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 110.1 24.1 6.00 –
XCDA-x 72.0 25.4 3.42 4.36
XCDA-y 73.3 25.3 3.41 4.29
FXCDA-x 70.2 25.6 2.66 3.50
FXCDA-y 71.7 25.2 2.70 3.54
Previous double-array tries
DA 65.9 43.8 1.95 2.93
CDA 68.0 31.5 1.63 –
State-of-the-art dictionaries
Cent 129.5 27.7 3.59 4.14
Cent-rp 472.7 17.5 4.02 4.47
PFC 6.1 37.3 3.04 0.67
HTFC-rp (2) 5908.9 42.3 5.44 2.05
HTFC-rp (4) 7765.0 26.3 6.39 2.90
HTFC-rp (8) 12598.4 18.3 7.96 4.41
HashDAC-rp – – – –

Table 3.8: Experimental results about string dictionaries for dna.

Constr. (sec) Cmpr. (%) Lookup (µs/str) Access (µs/ID)

New double-array tries
DALF 7.8 33.0 0.54 –
XCDA-x 5.5 38.0 1.29 1.65
XCDA-y 4.0 38.0 1.30 1.64
FXCDA-x 5.2 37.8 1.21 1.33
FXCDA-y 3.9 37.7 1.03 1.33
Previous double-array tries
DA 4.5 87.4 0.58 0.88
CDA 6.0 55.3 0.46 –
State-of-the-art dictionaries
Cent 22.9 21.2 3.24 3.47
Cent-rp 24.4 14.2 3.18 3.26
PFC 1.0 38.4 1.68 0.42
HTFC-rp (2) 12.2 43.3 2.01 0.55
HTFC-rp (4) 10.0 27.5 2.23 0.78
HTFC-rp (8) 9.3 20.6 2.38 0.98
HashDAC-rp – – – –
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for large datasets such as uk because of technological factors as follows. DALF is built by

arranging nodes in breadth-first order while general double-array tries are built by arrang-

ing nodes in depth-first order. In DALF, cache misses can occur frequently in parent-child

traversal, that is, the Lookup can become slow especially for a long query in a large trie.

On the other hand, FXCDA-y supports stable and fast Lookup and Access.

Compared to Cent and PFC not compressed by Re-Pair, FXCDA-y provides competi-

tive or smaller space except for Cent on dna. Moreover, it provides the fastest Lookup.

The running time of FXCDA-y is up to 3x and 2x faster than those of Cent and PFC,

respectively. For Access, PFC is the fastest while FXCDA-y is faster than Cent. For the

construction cost, PFC is much faster, yet both FXCDA-y and Cent are practical as static

string dictionaries.

Compared to Cent-rp, HTFC-rp and HashDAC-rp, FXCDA-y is larger because of the

powerful Re-Pair compression. FXCDA-y is up to 2.6x, 1.8x and 1.5x larger than Cent-rp,

HTFC-rp and HashDAC-rp, respectively. On the other hand, FXCDA-y can provide much

faster Lookup because the compressions pose a decrease in speed. The running time of

FXCDA-y is up to 3.1x and 2.0x faster than those of Cent-rp and HashDAC-rp, respec-

tively. Compared to HTFC-rp, FXCDA-y is up to 5.5x faster in bucket size 8. For smaller

bucket sizes, FXCDA-y maintains faster Lookup while the compression ratio becomes

competitive. In addition, using the Re-Pair compression devotes large construction costs.

Therefore, the speed differences can overcome the disadvantage of FXCDA-y in space.
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Chapter 4

Static Dictionary Compression Using

Dictionary Encoding

Chapter 3 presented novel compressed string dictionaries based on improved double-array

tries. They can provide very fast search operations based on the double-array algorithms,

but their space usages are larger than those of existing dictionaries compressed using pow-

erful text compression techniques. In particular, Re-Pair offers very compact dictionary

structures as presented in [57, 95]; however, the construction costs are very large. There-

fore, more lightweight but powerful compression approaches are required.

In this chapter, we propose an alternative compression strategy that applies dictionary

encoding (a.k.a. domain encoding) to dictionary compression rather than using Re-Pair.

Dictionary encoding replaces strings into integers using a string dictionary. This is a

widely used technique for compression and query acceleration as in column-store database

systems [1, 85, 102, 151]. Actually, such a strategy has already attempted as in [4, 113,

139]. The existing data structures compress trie structures using the same structures,

recursively. As our work is inspired by the existing studies, we present how to apply

our strategy to the state-of-the-art string dictionaries compressed by Re-Pair at present in

Section 4.1. Moreover, we develop novel dictionary structures suited to dictionary encoding

in Section 4.2.

4.1 String Dictionaries and Compression Strategies

Encoding strings x1, x2, ..., xn into integers i1, i2, ..., in using a string dictionary is referred

to as dictionary encoding. Basically, the space required to store integers is less than that

needed to store strings. In our work, we attempt to improve existing string dictionaries

by applying dictionary encoding to strings appearing in them. This section describes data

structures of existing string dictionaries based on the path-decomposed trie (PDT) [57]

and Front Coding [95], while presenting how to apply dictionary encoding to these.



50 Chapter 4. Static Dictionary Compression Using Dictionary Encoding

In this section, we show examples for each string dictionary using a set of strings ideal,

ideas, ideology, tea, techie, technology, tie, and trie.

4.1.1 Path-Decomposed Trie Dictionaries

A PDT is a tree structure constructed by recursively decomposing a trie into node-to-leaf

paths. Each node of the PDT corresponds to each path in the trie. We introduce a succinct

PDT representation proposed in [57].

The tree in Figure 4.1b is a PDT constructed by decomposing the trie in Figure 4.1a

into node-to-leaf paths connected by a solid line. The nodes and edges have string labels

and branching characters, respectively. Such a PDT is constructed as follows. First, we

choose a root-to-leaf path π in the trie. Second, we create a string by concatenating edge

characters along path π, interleaved with special characters 1,2, . . . that indicate how many

subtries branch off that point along path π. Third, we associate the string with root node

uπ of the PDT. The children of root node uπ are recursively defined as the root nodes of

PDTs corresponding to each subtrie hanging off the path π.

Although a strategy of choosing a path is arbitrary, the example chooses the heavy path

[46]. The heavy path always follows a heavy child, which is the one whose subtrie has the

most leaves. This strategy is called centroid path decomposition. The height of the resulting

tree is bounded by O(log |X |) and the average retrieval time is bounded by O( log |X |
log σ ). In

other words, centroid path decomposition can reduce the number of node-to-node random

accesses. The centroid path decomposition is a default setting in our work.

For PDT representation, each node s is represented by three sequences: Ls stores

the node label, Es stores the branching characters from node s in reverse, and Bs is the

DFUDS representation of node s. The node IDs are assigned in depth-first order. The

PDT is represented by sequences L, E, and B obtained by concatenating Ls, Es, and Bs
in order of node ID. The boundaries of the node labels are maintained using the Elias-Fano

representation [42, 43]. We do not describe how to perform Lookup and Access because

of be complex. The interested reader can refer to the original literature [57].

Compression Strategies Grossi and Ottaviano [57] compressed the sequence of node

labels L using a variant of Re-Pair based on the approximate Re-Pair [29]. This version

can support scanning labels in constant time per character. In other words, the decoding

and construction costs are reduced, while some space efficiency is sacrificed.

On the other hand, our strategy replaces node labels with integer IDs using dictionary

encoding. As shown at the bottom of Figure 4.1b, the sequence of IDs L′ is generated from

L. Note that the node labels consist of characters drawn from Σ′ = Σ∪{1,2, . . . , σ−1}. In
practice, Σ′ = [0, 511) because Σ = [0, 256). We encode the characters into byte characters



4.1. String Dictionaries and Compression Strategies 51

1

1

7

5 6

3

2

1

4

2

0

1

t

r
i

e

a c

h

i n

i
d

e

a

l s

o

l

o

g

y

1

o

l

o

g

y

e

e
i

e1

(a) Trie

Dictionary	encoding

GFADCBAEL’

01234567

1t2e1ch1ie|ology||ie|e|de1a1l||logyL 

0__________1____2_3__4_5_____6_7

de1a1l
e
ie
logy
ology
1t2e1ch1ie

A
B
C
D
E
F
G

irianos
((((((()))))))(()))

E 
B

0123456789012345678

2| 5|de1a1l1|ology

in
a r

7|logy

os

i

3|e 4|ie

6|

0|1t2e1ch1ie

(b) PDT

Figure 4.1: String dictionaries based on a trie and PDT.



52 Chapter 4. Static Dictionary Compression Using Dictionary Encoding

ideal
ideas
ideology
tea
techie
technology
tie
trie

ideal
4 s
3 ology
0 tea
techie
4 nology
1 ie
1 rie

ideal
4 E
3 C
0 F
techie
4 B
1 A
1 D

Dictionary	encoding

Front
Coding

ideal$techie$
17
4E3C0F4B1A1D

H
P
L

0123456789012

ie
nology
ology
rie
s
tea

A
B
C
D
E
F

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Figure 4.2: String dictionary based on Front Coding with b = 4.

using VByte coding [134] to use dictionary encoding. To shorten the length of the byte

sequence, we assign character code values from zero in order of frequency of appearance.

The Elias-Fano representation is not needed because L′ is a fixed-length array.

4.1.2 Front Coding Dictionaries

Front Coding [134] is a technique to compress lexicographically sorted strings. As explained

in Section 2.5.2, we can apply the technique for dictionary implementation by dividing the

strings into buckets. The top of Figure 4.2 shows an example of front coding with b = 4.

Compression Strategies Martínez-Prieto et al. [95] compressed PFC by applying Re-

Pair to the internal strings.1 The authors used a public implementation of Re-Pair based

on the original one [107]. Therefore, the compression rate was very high, but so was

construction cost.

On the other hand, our strategy replaces internal strings with integer IDs using dictio-

nary encoding. The bottom of Figure 4.2 shows an example. Our front coding dictionary

consists of three arrays: H stores the header strings with a special terminator $, P stores

the header initial addresses, and L interleaves the shared lengths and the IDs.
1 Although they also proposed a header-compressed version namely HTFC, we intend to compare

Re-Pair compression with dictionary encoding; therefore, we do not evaluate header compression.



4.2. Auxiliary String Dictinoaries 53

4.2 Auxiliary String Dictinoaries

To avoid confusion, we refer to a string dictionary used for dictionary compression as an

auxiliary string dictionary. As described in Section 4.1, it encodes strings appearing in

the PDT and front coding dictionaries into integer IDs. Note that we do not restrict the

integer range of the IDs. The auxiliary string dictionary supports the following operations:

• Extract(i) returns the string with ID i.

• Compare(i, w) returns the comparison result between strings Extract(i) and w.

Although Extract is the same as Access, we redefine it to avoid notational confusion.

Compare is called during Lookup. It is always supported when Extract is supported;

however, Compare can stop decoding when a mismatch occurs. The auxiliary string

dictionary does not need string search operations such as Lookup because its role is to

decode the stored strings.

In this section, we propose several auxiliary string dictionaries, considering the follow-

ing:

• For each Lookup or Access, Extract and Compare are called multiple times;

therefore, decoding speed is especially important.

• As tries and front coding merge prefixes, the likelihood that the target strings for

compression have many similar suffixes is high; therefore, we implement auxiliary

string dictionaries by merging the suffixes.

We show examples for each auxiliary string dictionary using strings ch, faggy, ide, ie,

nology, ology, and rie mapped to IDs A, B,. . ., and G, respectively.

4.2.1 Plain Concatenation and Sharing

The simplest data structure to implement an auxiliary string dictionary concatenates the

strings with a terminator. Each starting address is obtained as an ID. When a string is

included in the suffix of another, the suffix can be shared. Such an array is generally called

TAIL [145, 70]. Figure 4.3 shows an example of TAIL. Strings ie and ology are shared

by rie and nology, respectively. Compared to other auxiliary string dictionaries described

below, its compression rate is low but its decoding speed is the fastest.

4.2.2 Reverse Trie

A reverse trie is constructed by merging suffixes rather than prefixes. The root corresponds

to string terminations. The strings are decoded by traversing nodes to the root. That is
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G ch$faggy$ide$rie$nology$L 

A__B_____C___GD__EF

Concatenation	and	Sharing

Figure 4.3: Auxiliary string dictionary using TAIL.
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Figure 4.4: Auxiliary string dictionaries using a reverse trie and RPDT.

to say, we can perform Extract and Compare by maintaining the starting node IDs.

Figure 4.4a shows an example of a reverse trie. For the purpose of illustration, the reverse

trie has a super root with a special terminator $.

Several dictionary structures using reverse tries have been proposed [4, 139] and imple-

mented as open-source software, such as the UX [113] and MARISA [140] libraries. These

structures implement reverse tries using the double array and LOUDS. The double array is

a pointer-based data structure that can provide the fastest trie representation; however, its

space efficiency is low. LOUDS is a succinct tree that can construct very small dictionaries;

however, its node-to-node traversal is slow.

To solve the trade-off problem, the use of path decomposition is a workable alternative,

but the existing representation [57] cannot immediately detect mismatches in Compare

because the node label must be scanned from the head. Therefore, we propose a novel

reverse trie representation with path decomposition, namely the reverse path-decomposed

trie (RPDT).

Reverse Path-decomposed Trie An implementation of RPDT is simpler than that

in [57] because the reverse trie for auxiliary string dictionaries does not require finding
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children. Figure 4.4b shows an example of the RPDT constructed from the reverse trie of

Figure 4.4a. The example RPDT is constructed by applying centroid path decomposition

to the reverse trie and assigning node IDs in breadth-first order. The node labels do not

contain the special characters 1,2, . . . because it is not necessary to find children.

To represent the RPDT, we use three sequences: L stores strings obtained by con-

catenating pairs of branching characters and node labels in order of node ID, B is a bit

sequence such that B[i] = 1 if L[i] stores a branching character, and P stores addresses of

L where each edge branches off in order of node ID. As P becomes a non-decreasing se-

quence, we can use the Elias-Fano representation. We perform Extract on the sequences

as in Algorithm 4.1.

Algorithm 4.1 Extract(i) in RPDT
1: Initialize x to an empty string
2: while L[i] 6= $ do
3: x← x+ L[i]
4: if B[i] = 1 then
5: i← P [Rank1(B, i)]
6: else
7: i← i− 1
8: end if
9: end while
10: return x

Theoretical Analysis We assume that the number of nodes in a reverse trie is n. L

and B use ndlog σe bits and n + o(n) bits, respectively. P uses 2m + mdlog n
me + o(m)

bits, where |P | = m. A succinct tree uses 2n+ndlog σe+o(n) bits to represent the reverse

trie. In roughly 2m+ dlog n
me < n, the RPDT representation is smaller than the succinct

tree representations. Note that m is the number of leaves in the reverse trie minus one.

As shown in Figure 4.4, m becomes considerably smaller than n. Therefore, its space

efficiency can outperform that of the succinct tree representation. Moreover, its cache

efficiency is high because of centroid path decomposition.

4.2.3 Back Coding

We implement an auxiliary string dictionary by applying front coding to suffixes. In this

paper, we refer to the technique as Back Coding. The left part of Figure 4.5 shows an

example of Back Coding. In the same manner as the Front Coding dictionaries, we divide

strings into buckets of size b and encode them from each header. Since auxiliary string

dictionaries need fast operations, we implement the Back Coding dictionary using PFC.



56 Chapter 4. Static Dictionary Compression Using Dictionary Encoding

ide
ie
rie
ch
faggy
ology
nology

C
D
G
A
B
F
E

ide
i1
r2
ch0
faggy
olo2
n5

C
D
G
A
B
F
E

ide
i1
ri1
ch0
faggy
olo2
nolo2

C
D
G
A
B
F
E

Back
Coding FBC

Figure 4.5: Auxiliary string dictionaries using Back Coding with b = 4.

Faster Decodable Implementation To support faster decoding, we introduce an al-

ternative implementation using the differences among headers instead of predecessors [102].

We refer to the technique as Fast Back Coding (FBC). The right part of Figure 4.5 shows

an example of FBC. The technique does not need to decode internal strings other than the

target string. In other words, the maximum number of memory copies for each Extract

or Compare is 2. However, some space efficiency is sacrificed because the number of

shared characters decreases.

4.3 Experimental Evaluation

This section analyzes the practical performance of string dictionaries compressed by the

proposed dictionary encoding on real-world datasets.

4.3.1 Settings

We carried out the experiments on Intel Xeon E5540 @2.53 GHz, with 32 GiB of RAM (L2

cache: 1 MiB; L3 cache: 8 MiB), running Ubuntu Server 16.04 LTS. The data structures

were implemented in C++ and compiled using g++ (version 5.4.0) with optimization -O9.

The runtimes were measured using std::chrono::duration_cast.

Data Structures We applied the auxiliary string dictionaries described in Section 4.2

(i.e., TAIL, RPDT, back coding, and FBC) to the string dictionaries described in Sec-

tion 4.1 (i.e., PDT and Front Coding). For Back Coding and FBC, we tested two bucket

sizes of 4 and 8. The dictionaries are referred to as BC4, BC8, FBC4, and FBC8.

We also evaluated Re-Pair compression. Although some Re-Pair implementations are

available, we used those used by each proponent described in Section 4.1. Note that we can

choose other lightweight compression techniques, such as Huffman coding [66] and online

grammar compression [96, 97]; however, Re-Pair is the most popular compression tool at

present because its compression rate is very high and its decoding speed is fast.

To implement PDT and front-coding dictionaries, we used the path_decomposed_tries

[116] and libCSD [93], respectively. We set the bucket size of front coding to 8 based on
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Table 4.1: Information about datasets.

Size Strings Ave. length Chars

geonames 101.2 6,784,722 15.6 96
nwc 439.4 20,722,756 22.2 180
enwiki 227.2 11,519,354 20.7 199
indochina 612.9 7,414,866 86.7 98
uk 2,723.3 39,459,925 72.4 103
dbpedia 3,326.5 64,626,232 54.0 95

past experiments [57, 8, 70]. To implement the basic tools described in Section 2.2, we

used the Succinct library [56].

Datasets We used the following real-world datasets:

• geonames: Geographic names on the asciiname column from GeoNames dump [51].

• nwc: Japanese word N -grams in the Nihongo Web Corpus 2010 [141].

• enwiki: All page titles from the English Wikipedia of Feb. 2015 [133].

• indochina: URLs of a 2004 crawl by the UbiCrawler [22] on the country domains

of Indochina [82].

• uk: URLs of a 2005 crawl by the UbiCrawler [22] on the .uk domain [82].

• dbpedia: URIs extracted from the dataset generated by the DBpedia SPARQL

Benchmark [101], obtained from [98, DS2].

Table 4.1 summarizes relevant statistics for each dataset, where Size is the total

length of strings (i.e., the raw size) in MiB, Strings is the number of different strings, Ave.

length is the average number of characters per string, and Chars is the number of different

characters in the dataset.

Table 4.2 summarizes statistics of target strings of the auxiliary string dictionaries,

where Size is the total length of strings in MiB, Strings (before) is the number of strings,

Strings (after) is the number of strings obtained by removing duplication (i.e., the string

set size), Reduction is its reduction rate in percentage, Ave. length is the average number of

characters per string in the string set, and Ave. calls is the average number of Compare

calls for each Lookup (or Extract calls for each Access). From the table, we can

considerably reduce the number of strings by removing duplication. In front coding, the

average number of calls is essentially 3.5 because the number of internal strings for each

bucket is 7.
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Table 4.2: Information about strings.

Size Strings Strings Reduction Ave. Ave.
(MiB) (before) (after) (%) length calls

geonames
PDT 36.4 6,784,722 1,670,795 24.6 11.5 6.16
Front coding 34.6 5,936,631 1,354,818 22.8 10.9 3.50

nwc
PDT 77.8 20,722,756 1,873,988 9.0 18.5 6.59
Front coding 69.6 18,132,411 202,058 1.1 8.5 3.50

enwiki
PDT 90.3 11,519,354 3,762,531 32.7 14.4 6.26
Front coding 83.0 10,079,434 2,921,168 29.0 13.5 3.50

indochina
PDT 134.6 7,414,866 1,299,775 17.5 44.7 6.61
Front coding 121.6 6,488,007 1,204,600 18.6 42.5 3.50

uk
PDT 655.4 39,459,925 11,957,102 30.3 35.2 6.96
Front coding 591.7 34,527,434 10,756,301 31.2 34.2 3.50

dbpedia
PDT 1423.3 64,626,232 12,199,056 18.9 30.1 7.41
Front coding 1274.8 56,547,953 9,969,214 17.6 30.3 3.50

4.3.2 Results

Tables 4.3 and 4.4 show the experimental results for the construction time in seconds

(Constr), percentage of compression ratio between the data structure and the raw data size

(Cmpr), and average running times of Lookup and Access in microseconds (Lookup and

Access). The top two results are highlighted. To measure the running times of Lookup,

we chose one million random strings from each dataset. The running times of Access were

measured for one million IDs corresponding to the random strings. Each test was averaged

over 10 runs.

Results for PDT (Table 4.3) All auxiliary string dictionaries yield short construction

times. Compared to Re-Pair, our strategy provides up to 8.2x faster construction. The

compression rate of Re-Pair is the lowest, except for indochina and uk. In indochina and

uk, BC8 and RPDT construct slightly smaller dictionaries. For the runtimes of Lookup

and Access, TAIL is the fastest in all cases. Compared to Re-Pair, TAIL respectively

provides up to 1.7x and 1.5x speed up on Lookup and Access; however, its compression

rate is the worst.
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Table 4.3: Results of PDT.

geonames nwc
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 26.6 31.5 2.17 2.11 58.0 16.9 2.73 2.72
TAIL 4.0 44.4 1.51 1.54 11.0 26.7 2.10 2.04
RPDT 5.8 34.9 1.92 1.90 16.0 23.0 2.68 2.53
BC4 5.4 38.5 3.51 3.66 14.2 22.9 5.14 5.11
BC8 5.2 36.6 3.91 4.05 14.8 22.2 5.58 5.80
FBC4 5.3 39.1 1.93 2.12 14.2 23.2 2.48 2.62
FBC8 5.3 38.0 2.11 2.11 14.1 22.8 2.72 2.90

enwiki indochina
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 62.1 31.6 2.59 2.50 55.0 11.8 3.70 3.61
TAIL 8.3 41.7 1.72 1.76 7.8 13.5 2.19 2.40
RPDT 11.8 32.4 2.40 2.26 9.3 10.7 3.32 3.38
BC4 10.6 36.0 4.56 4.66 8.6 10.9 6.41 6.91
BC8 10.5 33.8 5.13 5.33 8.6 10.3 7.50 8.05
FBC4 10.6 37.0 2.29 2.38 8.6 11.3 2.74 3.03
FBC8 10.6 35.9 2.49 2.62 8.6 11.2 3.20 3.44

uk dbpedia
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 437.2 17.5 4.00 3.98 798.9 14.7 2.30 2.32
TAIL 55.7 20.7 2.59 2.94 102.8 18.5 1.59 1.82
RPDT 58.6 16.4 4.16 3.91 158.3 15.8 2.40 2.52
BC4 63.4 16.9 7.02 7.60 124.8 15.9 6.26 6.68
BC8 53.3 15.9 7.93 8.45 122.1 15.2 6.69 7.16
FBC4 53.5 17.3 3.24 3.55 133.2 16.2 2.17 2.41
FBC8 53.5 16.9 3.66 3.91 132.8 15.9 2.56 2.78

Overall, RPDT and FBC appear to be good data structures taking into account all

aspects. RPDT altogether outperforms Re-Pair on indochina. FBC altogether outper-

forms Re-Pair on indochina and uk. In the other datasets, RPDT and FBC provide

much shorter construction times than Re-Pair with the competitive compression rates and

operation times. Back coding is compact but requires long operation times. If fast Lookup

and Access operations are needed, TAIL becomes a viable alternative.

Results for Front Coding (Table 4.4) Since this Re-Pair implementation is based

on the original, its compression rates are better than those of the PDT results, but its

construction and decoding costs are higher. On uk and dbpedia, Re-Pair respectively

takes approximately 3.5 and 3 hours because the size of the target strings is very large.

These times are impractical. On the other hand, all auxiliary string dictionaries provide

practically short construction times as well as satisfactory PDT results. When comparing
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Table 4.4: Results of Front Coding.

geonames nwc
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 83.6 38.4 2.09 1.25 289.2 25.4 2.16 1.09
TAIL 2.7 48.3 1.24 0.53 7.7 28.3 1.47 0.50
RPDT 4.7 41.6 1.65 0.85 14.2 27.7 1.64 0.58
BC4 4.3 44.5 1.80 0.98 13.8 27.4 1.84 0.87
BC8 4.4 43.0 2.07 1.15 13.8 27.3 1.95 0.90
FBC4 4.5 45.0 1.57 0.82 13.7 27.4 1.68 0.70
FBC8 4.3 44.2 1.68 0.93 13.7 27.4 1.82 0.85

enwiki indochina
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 667.2 36.5 2.63 1.59 2042.8 18.2 3.88 2.25
TAIL 6.1 45.3 1.51 0.66 4.3 25.0 2.03 0.71
RPDT 9.6 38.7 2.23 1.21 6.7 22.3 2.60 1.17
BC4 8.6 41.9 2.16 1.19 5.9 22.5 2.71 1.32
BC8 10.0 40.2 2.29 1.33 5.9 22.0 3.05 1.65
FBC4 8.6 42.7 2.00 1.09 5.9 22.9 2.45 1.14
FBC8 8.8 42.0 2.04 1.13 6.1 22.7 2.73 1.30

uk dbpedia
Constr Cmpr Lookup Access Constr Cmpr Lookup Access

Re-Pair 11835.2 22.3 4.28 2.41 10774.6 22.6 4.27 2.85
TAIL 28.0 31.4 2.32 0.77 55.3 28.6 1.53 0.74
RPDT 50.0 27.1 3.64 1.73 123.1 27.0 2.02 1.28
BC4 42.6 27.7 3.18 1.59 94.0 27.0 2.17 1.40
BC8 43.4 26.8 3.60 1.97 92.2 26.4 2.41 1.61
FBC4 43.3 28.1 3.02 1.47 91.6 27.3 2.05 1.34
FBC8 43.4 27.7 3.04 1.51 96.6 27.0 2.16 1.45

TAIL and Re-Pair, the differences are from 30.8x to 422.5x. In terms of compression rate,

Re-Pair is the smallest in all cases. Compared to the second smallest dictionaries, Re-Pair

is up to 4% smaller. However, its Lookup and Access times are slower.

Overall, our dictionaries are competitive with the Re-Pair dictionaries except in terms

of construction time. Further, our construction times are very short and practical. Back

coding is not very slow compared to the PDT results because the number of calls is small.

TAIL can provide very fast Lookup and Access operations as well as PDT results.
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Chapter 5

Dynamic Path-Decomposed Tries

This chapter discusses dynamic string dictionaries, whereas Chapters 3 and 4 presented

static ones. As described in the previous chapters, a number of compressed static data

structures for implementing string dictionaries in much compact space were developed

inspired by the motivation presented in [26]. On the other hand, dynamic dictionaries

do not still achieve high space efficiency compared to the static ones, although existing

data structures, such as Judy [130] and HAT-trie [10], attempt to improve upon the space

efficiency by reducing pointer overheads.

Related to this topic, we mention also about dynamic compact trie representations.

Several works [6, 68, 104, 127] provided asymptotic worst-case results for dynamic tries.

For example, Arroyuelo et al. [6] introduced succinct representations for dynamic tries

on n nodes, requiring almost optimal 2n + n log σ + o(n log σ) bits, while supporting trie

operations in O(1) time if σ = polylog(n). However, they are not in practice. Darragh

et al. [36] proposed the Bonsai tree, which is a practical trie representation based on

compact hash tables. Recently, Poyias et al. [124, 123] proposed new practical dynamic

tries by improving the Bonsai tree, namely m-Bonsai. It can represent a dynamic trie in

O(n log σ) bits, while supporting trie operations in O(1) expected time. Although both

the representations are compact and practical, there has been no discussion or evaluation

about string dictionary implementation.

Other interests are the packed compact trie [131] and the wavelet trie [58]. The former

is an efficient data structure that dynamically stores a set of strings for online string pre-

cessing; however, its empirical results are provided without memory usage measurements.

The latter is a data structure for a sequence of strings. It can be dynamically imple-

mented in theory, but we do not aware of any implementation of a dynamic wavelet trie.

Consequently, we must address the engineering of more space-efficient dynamic dictionary

structures in practice.

In this chapter, we propose a novel space-efficient dynamic string dictionary, namely

the dynamic path-decomposed trie (DynPDT). Our data structure is based on a trie formed
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by path decomposition [46], which is a trie transformation technique. The path decom-

position was proposed for constructing cache-friendly trie structures and was utilized in

static applications [57, 64]; however, we use it for dynamic dictionary construction with

a different approach. We implement space-efficient dictionaries by applying the m-Bonsai

representation to this approach. From experiments using read-world datasets considering

various applications, we show that our implementation is much more compact than existing

dynamic ones.

5.1 m-Bonsai

The succinct trees can represent a trie in optimal space, but they are limited to static

implementation in practice. For practical compact dynamic tries, [36] proposed the Bonsai

data structure that represents a trie using the compact hash table [30]. Bonsai locates trie

nodes on the table using open address hashing. Recently, Poyias et al. [124, 123] proposed

the improved version, namely m-Bonsai. We describe the m-Bonsai tree as follows.

Let n denote the number of trie nodes. We refer to α = n/m (0 ≤ α ≤ 1) as a load

factor. We assume that n and m are pre-given. Since m-Bonsai locates each node at some

slot, node IDs are assigned using slot addresses. That is, a node with ID s (or node s) is

located on Q[s]. Note that the node locations (or IDs) do not change with time (unless

the hash table is not rebuilt).

Defining a new child from node s with symbol c is implemented in three steps. The

first step creates a hash key 〈s, c〉 of the child. The second step obtains an initial address

of the child, i = h(〈s, c〉), where h is a hush function such that h : {0, . . . ,mσ − 1} →
{0, . . . ,m − 1}. The third step locates the child on Q[t], where t is the first empty slot

address from the initial address i using linear probing. In other words, the new child ID is

defined as t.

For representation of the hash table, if we simply store the hash key 〈s, c〉 in Q[t]

to check for membership, then each slot uses logm + log σ bits. However, this space is

asymptotically the same as that of pointer-based representations. m-Bonsai reduces this

space by using the quotienting technique [79, Exercise 6.13] as follows. The technique

designs the hash function h as h(k) = (ak mod p) mod m, where p is the first prime such

that p > mσ, and a is a multiplier such that 1 ≤ a < p. Then, Q only keeps the quotient

value q(k) = b(ak mod p)/mc corresponding to k. Given h(k) and q(k), we can reconstruct

k to check for membership. In other words, m-Bonsai stores q(〈s, c〉) to Q[t], probed from

the initial address h(〈s, c〉). Since q(〈s, c〉) ≤ 2σ obviously, each slot takes only log σ+O(1)

bits.

In addition, m-Bonsai introduces a displacement array D of length m such that D[t]

stores the distance of t and h(〈s, c〉) (i.e., the number of collisions), because we need to
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know the corresponding initial address h(〈s, c〉) for any Q[t] = q(〈s, c〉). From the pair

Q[t] and D[t], we can obtain both the initial address and its quotient to reconstruct the

original hash key. Although the maximum value of D is m, the array can be represented

in compact space since the average value is very small from [123, Proposition 5]. Poyias

et al. [123] showed how D can be represented with a data structure using O(m) bits and

constant amortized-time operations, by using CDRW arrays [122]. Consequently, m-Bonsai

can represent a dynamic trie in m(log σ + O(1)) = O(n log σ) bits, while supporting tree

operations in O(1) expected time. As α is some constant parameter (where 0 < α < 1), this

space usage closes to the information-theoretic space lower bound of a trie, n log σ+O(n)

bits [17].

5.1.1 Practical Implementation

Actually, the above representation of D is very complex and the tree operations are slow

in practice. Poyias et al. [123] therefore proposed a practical alternate representation of

D. The practical version represents D using three-layered data structures: an array of

fixed-size small entries, a compact hash table [30], and a plain associative array. It tries

to store displacement values to the data structures from the top level layer (i.e., from the

array of fixed-size entries). However, it is difficult to estimate the predefined length of the

compact hash table when adopted to our data structure. We simply modifies the practical

version for our data structure.

In our representation, we first try to store values of D in an array D0 with each entry

using ∆0 bits. If D[i] < 2∆0−1, we set D0[i] = D[i]. Otherwise, we set D0[i] = 2∆0−1 and

store D[i] to an auxiliary associative array implemented using a standard data structure,

such as std::map. In other words, our version omits the compact hash table.

Parameter Test We tested the simple version to search the parameter ∆0 that im-

plements the smallest m-Bosnai structure, as a preliminary experiment. We built the

m-Bosnai tries for a million strings sampled from geonames in Section 5.3.1, and mea-

sured the required memory using the /usr/bin/time command. We tested parameters

4 ≤ ∆0 ≤ 10 on α = 0.8. Figure 5.1 shows the result. From the result, we can see that

the best parameter is ∆0 = 6. We will set this parameter in Section 5.3.1. The source code

of the preliminary experiment is available at https://github.com/kampersanda/bonsais.

5.2 Dynamic Path-Decomposed Trie

This section presents a new dynamic string dictionary through path decomposition, namely,

the dynamic path-decomposed trie (DynPDT).

https://github.com/kampersanda/bonsais
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Figure 5.1: Result of the preliminary experiment for ∆0.

5.2.1 Basic Idea: Incremental Path Decomposition

We present a basic idea called incremental path decomposition. This idea constructs a

path-decomposed trie by incrementally defining nodes corresponding to each registered

string in insertion order. Note that we append a special terminal character $ to every

string in order to give a bijection between nodes and strings. That is, the number of nodes

of the resulting tree is the same as the number of strings. We show the data structure of

the path-decomposed trie while describing the insertion procedure for a query string x as

follows:

• If the dictionary is empty, a root labeled with string x is defined. In this paper, we

denote such a label on node s by Ls.

• If the dictionary is not empty, a search starts from the root with two steps, by setting

s to the root ID. The first step compares x with Ls. If x = Ls, then the procedure

terminates because the query is already registered; otherwise, the second step finds

a child with symbol 〈i, x[i]〉 such that x[i] 6= Ls[i] and x[0, i) = Ls[0, i). If not found,

the query is inserted by adding a new edge labeled with the symbol 〈i, x[i]〉 and a new

child labeled with the remaining suffix x[i + 1, |x|). If found, the procedure returns

to the first step after updating s to the child ID and x to the remaining suffix.

The path-decomposed trie has node labels representing some suffixes of strings. A

search is also performed by that procedure. The feature of the incremental path decom-

position is to locate nodes corresponding to early inserted strings near the root. In other

words, the search cost for such strings is low. However, Section 5.3 evaluates the perfor-

mance of DynPDT for random-ordered strings without considering the feature.

Example 5.1. Figure 5.2 shows insertion process for strings x1 = technology$ and

x2 = technics$. For the first query x1, we simply define the root s1 and attach the string
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Figure 5.2: Incremental path decomposition.

x1 to it as Ls1 = technology$ because the dictionary is empty. For the second query

x2, we first compare x2 with Ls1. As x2[0, 5) = Ls1 [0, 5) = techn, we create a symbol

〈5, x[5]〉 = 〈5, i〉 and add a child s2 indicated with the symbol. We terminate this process

by attaching the remaining suffix x2[6, |x2|) = cs$ to the child.

5.2.2 Implementation with m-Bonsai

To obtain high space efficiency, DynPDT represents the path-decomposed trie using m-

Bonsai; however, this representation has the following problem. As the edge label is a pair

〈i, c〉 composed of node label position i and character c, the edge labels are drawn from an

alphabet of size σ′ = σ · Λ, where Λ denotes the maximum length of the node labels. The

m-Bonsai representation requires the fixing of the σ′ parameter to predefine the allocation

size of each Q slot and the hash function, but Λ, or σ′, is an unfixed parameter in dynamic

applications registering unknown strings.

To solve this problem, we forcibly fix the alphabet size as σ′ = σ ·λ by introducing a new

parameter λ. If position i on Ls is greater than or equal to λ, we create virtual nodes called

step nodes with a special symbol φ by repeating to add child t from node s with symbol

φ, to set s to t, and to decrement i by λ, until i < λ. This solution creates additional step

nodes depending on λ. When λ is too small, many step nodes are created. When λ is too

large, the space usage of Q becomes large because each slot uses dlog σ′e = dlog(σ · λ)e
bits. Therefore, it is necessary to define a proper λ. Section 5.3.1 shows such parameters

obtained from experiments using read-world datasets.

Example 5.2. Figure 5.3 shows an example of DynPDT constructed by inserting strings

technology$, technics$, technique$, technically$, and technological$ in this order,

setting λ = 8. The nodes are defined in order of s1, s2, . . . , s6. We show how to search

technically$ using the example. First, we set x to the query string and compare x with

Lx1. As x[0, 5) = Ls1 [0, 5) = techn, we move to s2 using symbol 〈5, x[5]〉 = 〈5, i〉 and
update x to the remaining suffix cally$. Next, we compare x with Ls2. As x[0, 1) =

Ls2 [0, 1) = c, we move to s4 using symbol 〈1, x[1]〉 = 〈1, a〉 and update x to the remaining

suffix lly$. Finally, we can see that the query string is registered from x = Ls4.
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Figure 5.3: DynPDT when λ = 8.

We also show how to search technological$. In the same manner as above, we set x

to the query string and compare x with Ls1. The result is x[0, 9) = Ls1 [0, 9) = technolog,

but we cannot create symbol 〈9, i〉 because this symbol exceeds the alphabet size from λ ≤ 9.

Therefore, we move to step node s5 using symbol φ. From 9 − λ < λ, i.e., 1 < λ, we can

create symbol 〈1, i〉 and move to node s6 using the symbol. Finally, we can see that the

query string is registered because the remaining suffix cal$ is the same as Ls6.

Remarks Arbitrary values associated with each string can be maintained using the space

of each node label. Deletion can be simply implemented by introducing flags for each node

(i.e., for each string) in a manner similar to closed hash tables. In other words, we add

a bit array of length m such that s-th bit is 1 iff the string corresponding to node s is

deleted. However, this implementation includes two problems. One uses additional m bits.

The other is that the node label corresponding to the deleted string remains after deletion,

because the label may be a part of other strings. Therefore, DynPDT has the disadvantage

for deletion.

To use the m-Bonsai representation, it is necessary to predefine the number of Q slots

depending on the number of nodes and the load factor. In other words, it is necessary to

estimate the number of nodes expected for a dataset. Fortunately, we can roughly estimate

the number of nodes of DynPDT easier than a plain trie because this is the same as the

number of strings and some step nodes depending on a proper λ.

5.2.3 Node Label Management

The node labels are stored separately from the m-Bonsai structure (i.e., the hash table

and the displacement array) because these labels are variable-length strings. The plainest

implementation uses pointer array P of length m such that P [i] stores a pointer to Li.

This implementation can perform to access and append a node label in constant time,

but it uses large space with m pointers, or mw bits, where w denotes the word length.

We call this implementation plain management. Figure 5.4a shows an example of plain

management.
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Figure 5.4: Node label management for DynPDT in Figure 5.3.

We present an alternative compact implementation that reduces the pointer overhead in

a manner similar to sparsetable of Google Sparse Hash [54]. This implementation divides

node labels into groups of ` labels over the IDs. That is, the first group consists of

L0 . . . L`−1, the second group consists of L` . . . L2`−1, and so on. Moreover, we introduce

bitmap B such that B[i] = 1 iff Li exists. The implementation concatenates node labels

Li such that B[i] = 1 in each group, while keeping the ID order. The length of P becomes

dm/`e by maintaining pointers to the concatenated label strings for each group. We call

this implementation bitmap management.

Using array P and bitmap B, accessing Li is performed as follows. If B[i] = 0, Li
does not exist; otherwise, we obtain the target concatenated label string from P [g], where

g = bi/`c. We also obtain bit chunk Bg = B[g · `, (g + 1) · `) over the target group. Let j

be the number of occurrences of 1s in Bg[0, i mod ` + 1). Li is the j-th node label of the

concatenated label string. As ` is constant, counting the bit occurrences in chunk Bg is

supported in constant time using the popcount operation [53]. Therefore, the access time

is the same as the time of scanning the concatenated label string until the j-th node label.

By simply concatenating node labels (e.g., the second group in Figure 5.4a is cal$ue$

in ` = 4), the scan is performed by sequentially counting terminators in O(`·Λ) time, where

Λ again denotes the maximum length of the node labels. We shorten the scan time using

the skipping technique used in array hashing [12]. This technique puts its length in front

of each node label using the VByte encoding [134]. Note that we can omit the terminators

of each node label. The skipping technique allows us to jump ahead to the start of the next

node label; therefore, the scan is supported in O(`) time. Figure 5.4b shows an example

of the bitmap management with the skipping technique.

For space usage, the P uses wdm/`e bits and the B usesm bits. Let ` = Θ(w), the total

space usage becomes O(m) bits, which are smaller than mw bits of the plain management;

however, a node label can be accessed in O(w) time. The other interest is the total length
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of node labels using VByte encoding. The skipping technique can omit the terminators

of each node label, but writes byte codes indicating the lengths instead. Here, we assume

that node labels are practically represented as byte strings. Let node labels be practically

represented as byte strings, there is no overhead from the VByte encoding if all node labels

are shorter than 128, because such a code length is one byte. Fortunately, almost 100% of

the node labels were shorter than 128 in all datasets in Section 5.3; therefore, the VByte

encoding does not become a significant overhead.

5.3 Experimental Evaluation

This section analyzes the practical performance of DynPDT. The source code of our im-

plementation is available at https://github.com/kampersanda/dynpdt.

5.3.1 Settings

We performed experiments on an Intel Xeon E5540 @2.53 GHz with 32 GB of RAM

(L2 cache: 1 MB, L3 cache: 8 MB), running Ubuntu Server 16.04 LTS. The data struc-

tures were implemented in C++ and compiled by g++ (version 5.4.0) with optimization

-O9. We used /proc/<PID>/statm to measure the maximum resident set size. We used

std::chrono::duration_cast to measure the runtimes of operations.

Datasets We selected six real-world datasets:

• geonames: Geographic names on the asciiname column from GeoNames dump [51].

• enwiki: All page titles from the English Wikipedia of Feb. 2015 [133].

• uk: URLs of a 2005 crawl by the UbiCrawler [22] on the .uk domain [82].

• webbase: URLs of a 2001 crawl performed by the WebBase crawler [63, 82].

• lubm: URIs extracted from the dataset generated by the Lehigh University Bench-

mark [59] for 1,600 universities, obtained from [98, DS5].

• dna: All substrings of 12 characters found in the Gene DNA data set from Pizza&Chili

corpus [121].

Table 5.1 summarizes relevant statistics for each dataset, where Size is the total length

of strings in MiB, Strings is the number of distinct strings (or |X |), Nodes is the number of

nodes in a plain trie, NPK is the average number of plain trie nodes per key string, BPK

is the average number of bytes per key string, and BPNL is the average number of bytes

per node label in DynPDT.

https://github.com/kampersanda/dynpdt
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Table 5.1: Information about datasets.

Size Strings Nodes NPK BPK BPNL

geonames 101.2 6,784,722 48,240,884 7.1 15.6 10.1
enwiki 227.2 11,519,354 110,962,030 9.6 20.7 12.6
uk 2,723.3 39,459,925 748,571,709 19.0 72.4 22.0
webbase 6,782.1 118,142,155 1,426,314,849 12.1 60.2 15.1
lubm 3,194.1 52,616,588 247,740,552 4.7 63.7 7.7
dna 189.3 15,265,943 36,223,473 2.4 13.0 5.4

Data Structures We compared the performance of DynPDT with that of m-Bonsai.

For DynPDT, we tested plain and bitmap management denoted by Plain and Bitmap-`,

respectively. For Bitmap-`, we considered that ` is 8, 16, 32, and 64. We set the int data

type to associated values in DynPDT. We tested m-Bonsai based on a plain trie without

maintaining associated values. For both DynPDT and m-Bonsai, we implemented the

auxiliary associative array using std::map.

We also compared some existing dynamic dictionaries. We selected five space-efficient

ones as follows: Sparsehash is Google Sparse Hash that is an associative array with keys and

values of arbitrary data types [54], Judy is a trie implementation developed at Hewlett-

Packard Research Labs [130], HAT-trie is a string dictionary implementation with the

combination of a trie and a cache-conscious hash table [10, 69], ART is a trie imple-

mentation designed for efficient main-memory database systems [84, 35], and Cedar is a

state-of-the-art double-array prefix trie implementation [149]. In common with DynPDT,

we set the int data type to associated values. As Cedar uses 32-bit integers to represent

trie nodes, we could not run the test on webbase.

Parameters Both DynPDT and m-Bonsai have two parameters α and ∆0. We set

α = 0.8 in common with previous settings [36, 123]. We set the number of Q slots to that

of strings divided by 0.8 in DynPDT. Note that the resulting load factor α′ in DynPDT is

increased from α, depending on the number of step nodes. In m-Bonsai, we set the number

of Q slots to that of plain trie nodes divided by 0.8. Note that the difference of the number

of Q slots between DynPDT and m-Bonsai closes with decreasing NPK. We set ∆0 = 6

from the preliminary experiments in Section 5.1.

DynPDT also has parameter λ, which involves α′ and the space usage of hash table

Q and the auxiliary associative array. When λ is large, the allocation size of Q becomes

large. When λ is small, the number of step nodes, or α′, is increased. The latter poses

slow operations and a large auxiliary associative array because the average value of D is

increased. To search a proper λ, we pretested λ = 2a in 2 ≤ a ≤ 7 for each dataset.

Figure 5.5 shows the results. The figures show the sum space usage of Q, D, and the
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Figure 5.5: Results of parameter test for each λ ∈ [2, 128].

auxiliary std::map. The parameter α′ is also shown. We could not construct the dictionary

for λ = 2 on enwiki because α′ became too large. The results of uk and webbase are

also the same. From the results, α′ closes 0.8, and the space usage is moderately increased

from some λ. In the experiments, we chose the smallest λ such that α′ ≤ 0.81 for each

dataset. We set λ to 16, 16, 64, 32, 16, and 4 on geonames, enwiki, uk, webbase,

lubm, and dna, respectively.

5.3.2 Results

We constructed the dictionaries by inserting strings in random order. We measured the

resident set size required for the construction. We measured the insertion and search

runtimes without I/O overheads. The insertion time was averaged on 3 runs. To measure
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Table 5.2: Results of space usage in bytes per key string.

geonames enwiki uk webbase lubm dna

Plain 46.0 46.6 54.4 47.5 45.0 44.8
Bitmap-8 18.7 21.2 31.3 24.0 15.5 13.0
Bitmap-16 16.8 18.8 28.2 21.0 13.8 11.0
Bitmap-32 15.0 17.4 27.1 19.8 12.1 9.8
Bitmap-64 14.5 16.9 26.4 19.2 11.5 9.0

m-Bonsai 17.7 23.6 46.1 29.3 11.4 5.9
Sparsehash 62.3 71.1 131.0 119.0 122.0 43.4
Judy 47.6 50.5 60.3 53.5 33.9 24.3
HAT-trie 35.4 40.2 82.3 68.9 64.7 28.9
ART 87.1 93.1 140.9 126.9 118.9 71.1
Cedar 30.5 41.1 58.4 – 29.7 22.1

the search time, we chose 1 million random strings from each dataset. The search time

was averaged on 10 runs.

Space Usage Table 5.2 shows the results. It is obvious that bitmap management

can reduce the pointer overhead of plain management. Bitmap-64 is up to 5x smaller than

Plain on dna. When BPNL is small, the compression rate is high based on the comparison

analysis in Section 5.2.3. Compared with m-Bonsai, Bitmap-64 is 1.2–1.7x smaller except

for lubm and dna. Bitmap-64 is 1.5x larger on dna because the difference of the Q

lengths is small from NPK. Note that m-Bonsai did not maintain associated values of

the int type. If m-Bonsai maintained those values ideally without any overhead, 4-bytes

space (i.e., sizeof(int)) is added per string. That is, Bitmap-64 becomes smaller than

m-Bonsai on all the datasets. In the existing dictionaries, Cedar is basically small although

32-bit integers are used to represent node pointers. In enwiki and webbase, HAT-trie

and Judy are the smallest. Compared with the smallest existing dictionaries, Bitmap-64

is 2.1–2.8x smaller. On uk and webbase whose BPNL is large, Plain is also smaller than

the existing dictionaries because the pointer overhead is relatively small over the overall

space usage.

Insertion Time Table 5.3 shows the results. In DynPDT, Plain is the fastest and

Bitmap-64 is the slowest essentially, but Bitmap-8 is not much slower than Plain. We

compare Bitmap-8 for the following. Compared with m-Bonsai, Bitmap-8 is faster except

for dna. In particular, the difference is very large on datasets whose BPK is large owing

to the path decomposition. Bitmap-8 is 3.6x, 2.9x and 2.5x faster than m-Bonsai on

uk, webbase, and lubm, respectively. Bitmap-8 is 1.5x slower than m-Bonsai on dna.

Compared with the existing dictionaries, Bitmap-8 is not the fastest but is very competitive
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Table 5.3: Results of insertion time in microseconds per key string.

geonames enwiki uk webbase lubm dna

Plain 1.00 1.14 1.65 2.37 1.65 1.35
Bitmap-8 1.25 1.38 1.99 2.64 1.91 1.58
Bitmap-16 1.37 1.57 2.29 2.93 1.99 1.66
Bitmap-32 1.69 1.93 2.91 3.47 2.29 1.91
Bitmap-64 2.13 2.65 4.12 4.60 2.87 2.30

m-Bonsai 1.62 2.22 7.13 7.69 4.80 1.03
Sparsehash 4.31 5.15 9.13 11.32 8.72 1.99
Judy 0.93 1.06 2.15 2.94 1.53 0.90
HAT-trie 0.96 1.13 1.63 1.75 2.58 0.84
ART 1.07 1.19 2.20 2.98 1.44 0.87
Cedar 1.05 1.07 2.56 – 2.50 0.90

Table 5.4: Results of search time in microseconds per key string.

geonames enwiki uk webbase lubm dna

Plain 1.01 1.13 1.53 2.20 1.12 1.08
Bitmap-8 1.22 1.38 2.15 2.40 1.26 1.26
Bitmap-16 1.38 1.61 2.47 2.74 1.43 1.38
Bitmap-32 1.71 2.06 3.25 3.72 1.61 1.83
Bitmap-64 2.31 3.01 4.88 5.29 2.16 2.18

m-Bonsai 1.47 2.06 6.69 8.30 3.08 0.86
Sparsehash 0.34 0.44 0.67 0.80 0.67 0.29
Judy 0.70 0.88 2.02 2.42 0.79 0.44
HAT-trie 0.31 0.35 0.61 0.80 0.51 0.22
ART 0.81 1.03 1.84 2.68 0.67 0.63
Cedar 0.42 0.69 2.51 – 0.69 0.22

on uk, webbase, and lubm; however, Bitmap-8 is the slowest on the other datasets except

for Sparsehash.

Search Time Table 5.4 shows the results. Like the insertion time results, Plain is the

fastest in DynPDT, and Bitmap-8 is faster than m-Bonsai except for dna. On the other

hand, DynPDT is basically slower compared with the existing dictionaries. Bitmap-8 is

up to 5.7x slower than the fastest HAT-trie. On uk and webbase, Bitmap-8 is close to

Judy, ART, and Cedar.



73

Chapter 6

Practical Rearrangement of Dynamic

Double-Array Tries

In this chapter, we consider rearrangement approaches of dynamic double-array dictionar-

ies. The original double-array trie was proposed to be used in semi-static digital search [2];

therefore, its update time was slow and unstable. However, a number of studies have inves-

tigated fast update algorithms and techniques [99, 105, 129, 147]. A recent double-array

trie implementation [148] enables update times that are close to those of a hashing dic-

tionaries such as the C++ standard library’s std::unordered_map. Consequently, there

have been some applications using dynamic double-array tries such as a full-text search

engine [23] and text-stream processing [149].

On the other hand, the original double array has another problem about space efficiency.

As described in Section 3.1, the double-array structure can include empty elements like hash

tables. The space efficiency depends on the load factor (i.e., the proportion of nonempty

elements to the total elements). The load factor genearlly does not become problematic in

static construction; however, dynamic construction leads to reduction of it, especially in

key deletion. Some works [40, 99, 115, 143] attempted to solve the problem, and enabled

to maintain a high load factor.

Here, we describe how the methods related to the second problem still have practical

problems of time and functionality. We found that maintaining a high load factor with

the methods does not have many advantages. While the simplest solution is to rearrange

a double array structure with arbitrary timing, simply applying these existing methods re-

quires a significant amount of time. Therefore, we propose several rearrangement methods

and evaluate their practical performance through experiments using real-world datasets.

The experimental results demonstrated that the proposed methods provide significantly

faster rearrangement. In addition, the proposed rearrangement methods can shorten basic

dictionary operation runtimes.
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6.1 Dynamic Double-Array Dictionaries

We implement dynamic double-array dictionaries using the MP-trie, based on Equation 3.2.

The MP-trie is the version of using terminal characters. The dictionary is composed of

base, check, leaf and tail arrays, as shown in Section 3.1.3. Note that term is not

needed because the leaves always correspond to the terminal nodes. In tail, common

suffixes of the separated strings are not shared because the structure is frequently changed

during updates.

We give some definitions related to empty elements in the double-array structure. We

define a bit array empty such that empty[s] = 1 iff element s is empty. As empty elements

arise in the internal base and check elements, empty[0] = empty[N − 1] = 0 always

holds, where N is the length of the array. Note that element 0 always corresponds to the

root. A set of addresses of empty elements is denoted as R = {0 ≤ s < N | empty[s] = 1};
i.e., N = n + m holds, where m = |R| is the number of empty elements. The load factor

of base and check is denoted as α = n/N (0 ≤ α ≤ 1). Also in tail, useless spaces

can arise due to key insertions and deletions. We refer to these spaces as empty spaces to

differentiate them from the empty elements of base and check. The load factor of tail

is denoted as 0 ≤ β ≤ 1.

Example 6.1. Figure 6.1 shows an example of an MP-trie dictionary and the DA rep-

resentation for key-value pairs (a$, 0), (abaa$, 1), (abcabc$, 2), (baab$, 3), and (bac$, 4)

from the alphabet {$ = 0, a = 1, b = 2, c = 3}. Note that child and sib are introduced in

Section 6.1.1. In Figure 6.1, the empty elements and spaces are shaded. The load factors

are α = 10/13 = 0.77 and β = 13/17 = 0.76. The empty elements are chained using the

base and check values, as explained in Section 6.1.1.

The example dictionary embeds associated values in a fixed-length space on tail after

the terminator, e.g., tail[11] = 3. If a string is registered without tail, the associated

value is embedded in the corresponding leaf base element, e.g., base[4] = 0. Embedding is

the most practical dictionary implementation using dynamic double-array tries. This is be-

cause node addresses change frequently during updates. Briefly, the three basic dictionary

operations are implemented as follows. Search is implemented by traversing root-to-leaf

nodes and by checking tail. Insert is implemented by defining new nodes for the key and

adding a new suffix to tail. If collisions of elements occur, they are solved by relocating

the elements. Delete is implemented by removing the nodes that correspond to the key.

Example 6.2. Search(abcabc$) = 2 is performed in Figure 6.1, as follows. First, child

1 of root 0 is found as base[0]⊕ a = 0⊕ 1 = 1 and check[1] = 0. Similarly, nodes 6 and

10 are found as follows: base[1]⊕ b = 4⊕ 2 = 6, check[6] = 1, base[6]⊕ c = 9⊕ 3 = 10,

and check[10] = 6. Equation leaf[10] = 1 means that the other characters can be found
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0 1 2 3 4 5 6 7 8 9 10 11 12
BASE 0 4 13 9 0 9 9 15 0 11 4 3 4
CHECK 0 0 0 11 1 12 1 12 6 3 6 9 2
EMPTY 0 0 0 1 0 0 0 0 0 1 0 1 0
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Figure 6.1: MP-trie dictionary and the corresponding double-array representation.

in tail starting from base[10] = 4. From tail[4..7] = abc$, the key is registered and the

value tail[8] = 2 is returned.

Insert(abccb$, 5) is performed in Figure 6.1, as follows. A part of the resulting

dictionary is shown in Figure 6.2. First, new branches labeled a and c from node 10 are

added. Then, a new leaf node labeled a is defined and linked to tail[5]. Consequently,

tail[4] becomes empty. At the same time, another new leaf node labeled c is also defined.

The suffix b$ and value 5 are appended to the end of tail, and the node forms a link to

tail[17].

Delete(abcabc$) is performed in Figure 6.1, as follows. A part of the resulting

dictionary is shown in Figure 6.3. First, node 10 corresponding to the key is removed

by emptying the element. At the same time, node 6 becomes a new leaf for key abaa# as

the structure of the minimal-prefix keys is changed. The new suffix aa$ and value 1 are

appended to the end of tail by transferring the edge label a and tail[0..2]. This process is

completed when base[6] maintains the link to tail[17] and element 8 becomes empty. As

a result, empty elements 8 and 10, and empty spaces tail[0..2] and tail[4..8] are formed.
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… 4 5 6 7 8 … 17 18 19
TAIL b c $ 2 … b $ 5

10

a

c

bc$2
c

b$5
17

5

Figure 6.2: Result of Insert(abccb$, 5) in the dictionary shown in Figure 6.1.

0 1 2 3 4 5 6 7 8 … 17 18 19 20
TAIL … a a $ 1

… 6 7 8 9 10 …
EMPTY … 0 0 1 1 1 …

6 aa$1
17b

Figure 6.3: Result of Delete(abcabc$) in the dictionary shown in Figure 6.1.

6.1.1 Fast Update Methods

Two bottlenecks are typically observed when updating double-array structures. One is the

time taken to scan the empty elements, and the other is the time taken for enumeration of

the edge labels. Below we present well-used methods to improve these bottlenecks.

Empty-Link Method When new nodes are inserted, the empty elements must be

searched to locate the nodes. The original double array [2] performs this search by scan-

ning base and check elements linearly in O(N) time; however, this time turns into a

critical problem for a large dictionary. Therefore, general implementations use the empty-

link method (ELM) [99, 143]. ELM builds a doubly circular linked list of empty elements

called an empty list.

Let R = {r1, r2, . . . , rm}. The ELM builds the empty list using empty base and check

elements as follows:

base[ri] =

ri+1 (1 ≤ i < m)

r1 (i = m)
and check[ri] =

ri−1 (1 < i ≤ m)

rm (i = 1)
.

In other words, the successor and predecessor of ri are obtained from base[ri] and check[ri],

respectively. The ELM can scan R in O(m) time when the first empty element is main-

tained as the list head. For example, in Figure 6.1, empty elements 3, 9, and 11 are
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… 3 … 5 … 9 … 11 …
BASE 9 11 3
CHECK 11 3 9

… 3 … 5 … 9 … 11 …
BASE 9 3 11 5
CHECK 5 11 3 9

… 3 … 5 … 9 … 11 …
BASE 11 3 5
CHECK 5 11 3

Adding	empty	element	5

Removing	empty	element	9

ℎ𝑒𝑎𝑑 CHECK ℎ𝑒𝑎𝑑

BASE[11] ← 5BASE[5] ← 3

CHECK 5 ← 11CHECK[3] ← 5

BASE[3] ← 11

CHECK[11] ← 3

Figure 6.4: Illustration of updates with the ELM.

scanned as base[3] = 9, base[9] = 11, and base[11] = 3. The ELM utilizes empty

elements and thus does not have any disadvantages in terms of space efficiency.

When updating an empty list, the doubly circular linkage can support the adding and

removing of an empty element in constant time as follows. Adding a new empty element

is implemented by inserting the element between the first and last elements of the list.

Removing an empty element is achieved by re-chaining the previous and next elements.

Example 6.3. Figure 6.4 shows an example of updating a double array where R =

{3, 9, 11}. In this example, element 3 is the first empty element and is kept in the variable

head. The last element, or element 11, is given by check[head]. When a new empty

element 5 is added, it is inserted between the first and last elements as base[5] ← 3,

check[3]← 5, base[11]← 5, and check[5]← 11. Note that the resulting empty elements

are scanned in the order of 3, 9, 11, and 5. In other words, the order of r1, r2, . . . , rm

does not correspond to the address order of base and check. When the empty element

9 is removed from the DA, the previous element check[9] = 3 and the next element

base[9] = 11 are re-chained as base[3] ← 11 and check[11] ← 3. The updates are

performed in constant time.
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Node-Link Method Let Edges(s) be an operation returning a set of edge labels from

node s. For example, Edges(1) = {$, b} in Figure 6.1. A simple implementation per-

forms Edges(s) in O(σ) time by checking the children from node s for all characters in

Σ. The time required for this implementation is not significant as σ ≤ 256 when byte

characters are used. However, the time required can become a critical bottleneck since

Edges is often called during key updates.

This problem can be solved by the node-link method (NLM) [147]. NLM uses additional

child and sib arrays such that child[s] stores the edge label between node s and its

first child, and sib[s] stores the edge label between the next sibling of node s and its

parent. The NLM can obtain the first child and the next sibling of node s in constant

time by base[s] ⊕ child[s] and base[check[s]] ⊕ sib[s], respectively. In other words,

E ← Edges(s) is performed in O(|E|) time. However, the NLM involves a trade-off

between update time and space efficiency on account of its use of 2Ndlog σe additional
bits.

Example 6.4. Figure 6.1 shows child and sib for the trie. Edges(1) = {$, b} is

performed as follows. The first edge label $ is given by child[1] = $; the first child 4 is

calculated by base[1]⊕child[1] = 4⊕$ = 4; the second edge label b is given by sib[4] = b;

and the second child 6 is calculated by base[1]⊕ sib[4] = 4⊕ b = 6. It is evident that node

6 is the last child from sib[6] = $ = child[1].

6.1.2 Improvement of Space Efficiency

Although repeating Insert and Delete reduces load factors α and β, some additional

improvement methods have been proposed for each load factor.

base and check Morita et al. [99] proposed a rearrangement method to improve load

factor α by packing the arrays. This method eliminates empty elements by relocating the

rearmost element and its siblings known as compression elements to the empty elements.

While rearranging the arrays with each Delete operation can help to maintain a high

load factor α, some empty elements always remain. This is because elimination is not

possible if there are fewer empty elements than compression elements. Oono et al. [115]

improved Morita’s method by focusing on single nodes with no siblings. Oono’s method

applies empty elements and single elements to the relocation addresses. This method can

maintain a high load factor α in a normal trie that includes many single nodes; however,

it does not work efficiently in an MP-trie as the many single nodes in a normal trie are

replaced into strings. Therefore, Yata et al. [143] presented an adaptive method that

uses elements with fewer siblings than the rearmost element as well as empty and single
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Algorithm 6.1 Pack

1: while R 6= ∅ do
2: s← check[N − 1]
3: E ← Edges(s)
4: base← EXCheck(E)
5: if base = −1 then
6: break
7: end if
8: s← Shelter(s, base,E)
9: Move(s, base,E)
10: end while

Algorithm 6.2 EXCheck(E) using ELM. E is a set of edge labels.
1: r ← head
2: repeat
3: base← r ⊕ E[0] . E[0] is an arbitrary character in E
4: if IsTarget(base, E) = true then
5: return base
6: end if
7: r ← base[r] . a next empty element
8: until r = head
9: return −1

elements. Available literature [143] shows that this adaptive method can maintain α ' 1.0

in MP-tries from experiments using English and Japanese datasets.

Here, we describe a Yata’s adaptive procedure, namely Pack. The pseudocode for

Pack is shown in Algorithm 6.1. Pack searches the relocation addresses of the compression

elements using EXCheck, which is shown in Algorithm 6.2. EXCheck then returns the

base value indicating the addresses. Note that EXCheck in Algorithm 6.2 uses ELM.

Other operations used in Pack and EXCheck are described as follows.

• Shelter(s, base,E) locates elements in {u ∈ U | empty[u] = 0} and their siblings

to empty elements in R − {u ∈ U | empty[u] = 1}, where U = {base ⊕ c | c ∈ E}.
If element s is located, the located address is returned; otherwise, s is returned.

• Move(s, base,E) locates elements base[s] ⊕ c to empty elements base ⊕ c for all

characters c ∈ E.

• IsTarget(base, E) returns true if addresses s ← base ⊕ c satisfy the conditions

for all characters c ∈ E: 0 < s < N , empty[s] = 1, and |Edges(check[s])| < |E|;
otherwise, it returns false.

Essentially, Pack improves the load factor α by repeating the following steps. EX-

Check obtains the relocation addresses of the compression elements; Shelter solves
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BASE
CHECK

2.	SHELTER

3.	MOVE

compression
elements

1.	The	addresses	are	obtained	from	EXCHECK

Figure 6.5: Illustration of steps of Pack.

collisions during relocation; and Move eliminates empty elements by relocating the com-

pression elements. These steps are depicted in Figure 6.5. EXCheck scans R using

ELM and checks base values calculated from each empty element using IsTarget. Is-

Target checks whether the received base value is appropriate to indicate the relocation

addresses in the adaptive method. Since the algorithm is complex, please refer to the

original literature [143] for more details.

tail Dorji et al. [40] proposed two methods to improve the load factor β. The first

method embeds short suffixes into leaf base elements rather than storing them in tail.

In addition to saving tail space, this method can reduce the number of tail updates.

The second method allows reuse of the empty spaces by searching tail sequentially. How-

ever, simple sequential search requires significant amounts of time; therefore, the method

combines three techniques.

1. A suffix longer than the threshold length is appended to the end of tail in the same

manner as the conventional update.

2. The search begins from the position where the last successful search ended.

3. The search proceeds by skipping every k− 1 elements until an empty space is found.

Here, k denotes the suffix length.

Figure 6.6 shows an example of the second method. This method marks any empty

space with a white space; however, such marking is unsuitable for dictionary implementa-

tion.

6.2 Practical Rearrangement Methods

While the existing methods described in Section 6.1.2 can maintain high load factors α

and β, these methods present practical problems related to time and functionality.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TAIL a $ 1 a b c $ 2 b $ 3 $ 4

skip

When	inserting	suffix	b$5…

skipskip

position	where	the	last	successful	search	ended	
reused	space	for	b$5

Figure 6.6: Illustration of Dorji’s second method demonstrating the insertion of suffix b$ and
value 5.

• The combination of Delete and Pack requires significantly more time compared

to simple Delete since the algorithm is complex and involves many operations. In

addition, empty elements are reused during Insert. Therefore, maintaining the high

load factor α by sacrificing Delete time does not have many advantages.

• Dorji’s first method cannot implement trie dictionaries, such as that shown in Fig-

ure 6.1, as the associated values cannot be embedded. In addition, in Dorji’s second

method, empty marking cannot be used for dictionary implementation since any

character can be used to represent associated values. In other words, the third tech-

nique cannot be used because the empty spaces are not directly identified. Previous

results [40] show that the method presents problems related to time requirements for

large datasets. If the third technique is excluded, the problem becomes much more

critical.

To address these problems, the simplest solution is to rearrange the double array when

necessary, e.g., when a dictionary is written to a file and the load factors exceed the prede-

fined lower limits. This section proposes some efficient rearrangement methods. Sections

6.2.1 and 6.2.2 describe rearranging base and check. tail is simply rearranged by trans-

ferring suffixes for all leaves to a new tail.

6.2.1 Cache-friendly implementation of the ELM

While the ELM supports scanning R in O(m) time, the scan order is random in base

and check, as shown in Figure 6.4. Therefore, cache misses can occur frequently in

EXCheck when there are many empty elements. We solve this problem using the block-

link method (BLM), which implements empty-linkage in the following two steps: the first

step partitions base and check into blocks of size ` and the second step builds empty-

linkages for each block. More precisely, the method builds two types of empty lists for

blocks, which include any empty elements, as well as empty elements in each block. We
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… 4 5 6 7 8 9 10 11 12 13 14 15 …
BASE 9 11 6 14 4 8
CHECK 11 8 14 4 6 9

ℎ𝑒𝑎𝑑

(a) ELM

… 4 5 6 7 8 9 10 11 12 13 14 15 …
BASE 6 4 9 11 8 14
CHECK 6 4 11 8 9 14

… 1 2 3 …
HEAD 4 9 14
NEXT 2 3 1
PREV 3 1 2

ℎ𝑒𝑎𝑑

(b) BLM

Figure 6.7: Illustrations of the ELM and BLM.

refer to the former as the block list. The latter comprises small empty lists obtained using

the ELM for each block.

Let Rb be a set of addresses of the empty elements in block b, that is, R =
⋃
b<dN/LeRb.

The block list consists of three additional arrays: head[b] keeps an arbitrary address in

Rb as the first empty element; next[b] keeps the next linking block address of block b; and

prev[b] keeps the previous linking block address of block b. The block list is also updated

in constant time in the same manner as the ELM. The BLM scans R by visiting each block

b and by scanning Rb. Since the addresses in Rb are in a constant area of memory, the

BLM can improve the cache efficiency of the ELM. Figure 6.7 shows linkage examples

using ELM and BLM with L = 4. While ELM scans R in the order of 4, 9, 14, 8, 6, and

11, BLM can scan R in the order of 4, 6, 9, 11, 8, and 14. Algorithm 6.3 shows EXCheck

using BLM. In Algorithm 6.3, the first loop visits each block using next, and the second

loop scans empty elements in the block using base. The algorithm of the second loop is

the same as in the ELM version; however, the scan area remains constant.
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Algorithm 6.3 EXCheck(E) using BLM. E is a set of edge labels.
1: b← head . head block address
2: repeat
3: r ← head[b]
4: repeat
5: base← r ⊕ E[0] . E[0] is an arbitrary character in E
6: if IsTarget(base, E) = true then
7: return base
8: end if
9: r ← base[r] . next empty element
10: until b = head[b]
11: b← next[b] . next block
12: until b = head
13: return −1

For the block length, ` = 2dlog σe is efficient for the following reasons. For base ←
r ⊕ E[0] in EXCheck, the base is the result of a bitwise XOR operation on the lowest

dlog σe bits of r. In other words, for L = 2dlog σe, both r and base are integers indicating

the same block address since br/`c = bbase/`c. IsTarget searches relocation addresses

using the base; thus, addresses v ← base⊕ c for all characters c ∈ E are also integers that

indicate the same block address. Therefore, when calling IsTarget for arbitrary ri, there

is a strong probability that elements in the block bri/`c will be present in cache memory.

If elements ri+1, ri+2, . . . are in the same block, cache efficiency can be improved. In the

experiments discussed in Section 6.3, our implementation uses L = 2dlog(256)e = 256 for

all datasets since σ ≤ 256 is always satisfied when using single-byte characters, while σ

is frequently not pre-given in practical dynamic applications. For ` = 256, the additional

head, next, and prev arrays use only 3 · 32/256 = 0.375 bits for each base or check

element when assuming 32-bit integers to indicate addresses. This space is negligibly small

compared to the total space of base and check using 64 bits for each element.

Related Studies For block linkage, the previous literature [147] has proposed a similar

method.1 This method implements recommendation of appropriate search areas for query

keys by classifying blocks. This reduces the average number of visiting empty elements.

Other related studies [105, 129] have also proposed methods to reduce the number of visits

using different approaches. However, applying such methods to Pack is difficult as they

are designed for simple key insertion. Therefore, our experiments did not implement such

methods.
1Although the literature [147] is written in Japanese, Yoshinaga and Kitsuregawa [149] have introduced

the proposed methods in English.
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Algorithm 6.4 Rebuild

1: Create empty arrays base′, check′, empty′, leaf′ and tail′ . They are temporal
2: Create an empty stack ST for storing node address pairs
3: Push root pair (0, 0) to ST
4: empty′[0]← 0
5: while ST is not empty do
6: Pop node address pair (s, s′) from ST
7: if leaf[s] = 0 then
8: E ← Edges(s) for the original dictionary
9: base′[s′]← XCheck(E) for the new dictionary

10: for all c ∈ E do
11: t′ ← base′[s′]⊕ c
12: check[t′]← s′

13: empty′[t′]← 0
14: Push child pair (base[s]⊕ c, t′) to ST
15: end for
16: else
17: leaf′[s′]← 1
18: if base[check[s]]⊕ s = $ then . Leaf s has an associated value
19: base′[s′]← base[s]
20: else
21: Transfer the suffix and value from tail[base[s]] at the end of tail′

22: base′[s′]← the start address of the suffix on tail′

23: end if
24: end if
25: end while
26: Swap the temporal arrays base′,check′, . . . and the original ones base,check, . . .

6.2.2 Static Reconstruction

Although Pack improves the load factor α by eliminating empty elements, the algorithm

is complex and includes many operations. On the other hand, rebuilding the double-

array dictionary from scratch is a very simple approach. Generally, this is called static

reconstruction since the double-array dictionary is built on the condition that all registered

keys are pre-given.

Algorithm 6.4 shows the static reconstruction pseudocode. In Rebuild, a new dictio-

nary is built from the original dictionary. The new dictionary registers the same keys and

associated values. The algorithm is described as follows. Rebuild traverses nodes in the

original trie and re-determines the base and check values for each node (lines 8–15). To

determine a new base value, Rebuild uses XCheck(E), which returns an integer base

such that empty[base ⊕ c] = 1 for all characters c ∈ E. XCheck determines the base

value by scanning R in the same manner as EXCheck; however, Rebuild does not require

to solve node collisions using Shelter. When a leaf is reached, the suffix and associated

value are transferred to the new tail array (lines 17–23).
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In the algorithm, node addresses are redefined in the depth-first order using a stack.

Although a queue can be substituted, node addresses are redefined in the breadth-first

order. Generally, such node arrangement causes frequent cache misses in node-to-node

traversal near leaves. Thus, most public implementations of a static double-array trie

define node addresses in the depth-first order. While recursive processing can also define

node addresses in the depth-first order, the algorithm considers stack overflow for large

datasets, especially in the concurrent rearrangement introduced in Section 6.2.3.

An advantage of Rebuild is that a pair of parent and child nodes can be proximally

positioned as it is not necessary to relocate elements to solve collisions. In other words,

Rebuild can improve the cache efficiency of node-to-node traversal. In fact, the exper-

imental results in [147] show that static double-array dictionaries enable faster retrieval

than double-array dictionaries built by sequentially inserting random keys. In addition to

Search, the cache improvement contributes to improved Insert and Delete as they also

retrieve the received key. On the other hand, Rebuild requires a larger working space than

Pack as it uses large temporal structures, such as base′, check′, and ST . Section 6.3.1

provides estimations of each working space.

6.2.3 Concurrent Rearrangement

We can shorten rearrangement time by concurrent processing. The proposed method called

the trie division method (TDM) enables concurrent rearrangement by dividing a trie into a

prefix subtrie and suffix subtries, as shown in Figure 6.8. In the figure, the trie is divided

based on the highlighted nodes, which are referred to as division nodes. The prefix subtrie

has a common root for all registered keys. The leaves corresponding to the division nodes

maintain links to the suffix subtries. The prefix subtrie is built as a normal trie because

the structure with leaves having links overlaps the MP-trie. In the suffix subtries, each

root corresponds to each division node. The suffix subtries are built as the MP-trie.

The TDM sets a rule to determine the division nodes based on the features of the

registered keys. The important consideration for the rule is that many suffix subtries

do not occur. For keys with no special feature in the prefixes, it is only necessary to

determine nodes from the root as division nodes. In other words, a key is separated at the

first character, as shown in Figure 6.8b. As the maximum number of suffix subtries is

σ = 256 in practice, concurrent processing will work efficiently. For keys with any feature

in the prefixes, such as URLs, particular prefixes are should be preregistered. Then, nodes

from the predefined nodes are defined as division nodes. Figure 6.9 shows an example of

a prefix subtrie preregistering http:// and https://. If keys http://a..., http://b...,

and https://c... are registered, the nodes are defined from edges with labels a, b, and c
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Figure 6.8: Illustrations of the TDM for the MP-trie in Figure 6.1.

as division nodes. The TDM is similar to the technique used in the double-array language

models [111, 137] for static tries with a large alphabet.

Since the TDM can implement dictionary operations by traversing nodes in the order

of prefix and suffix subtries, no major changes to the algorithms are required; however,

there are two important minor changes for Insert and Delete in the prefix subtrie.

For Insert, if the key registration is performed within the prefix subtrie, the value is

embedded in a leaf of the prefix subtrie. For example, in Figure 6.9, when Insert(ht$, 1)

is performed, we append a leaf with the label $ from the node reached by ht, and we

embed the value 1 to the base value. For Delete, if a suffix subtrie becomes empty, only

the corresponding division node is removed. Predefined nodes are not removed for future

insertions. Here, suppose that Delete(https://c...) is performed in Figure 6.9. As

the suffix subtrie becomes empty, only the division node with the label c is removed and

the nodes predefined with labels s:// are not removed.
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Figure 6.9: Illustration of a prefix subtrie preregistering http:// and https://.

6.3 Experimental Evaluation

This section analyzes the practical performance of various combinations of rearrangement

methods using real-world datasets. In these experiments, we assessed the rearrangement

times and working spaces for some configuration dictionaries. Furthermore, we measured

the runtimes of Search after rearrangement to evaluate the cache improvement from

Rebuild. The source code is available at https://github.com/kampersanda/ddd.

6.3.1 Settings

We carried out the experiments using Quad-core Intel Core i7 4.0 GHz, with 16 GB RAM

(L2 cache: 256 KB; L3 cache: 8 MB). The methods were implemented in C++ and

compiled using Apple LLVM version 8 (clang-8) with optimization -O3. The runtimes

were measured using std::chrono::duration_cast. To measure the working spaces, we

used the /usr/bin/time command and referred to the maximum resident set size. We

used std::thread for the TDM with eight threads.

Datasets The dictionaries were built from the following real-world datasets.

• geonames: Geographic names on the asciiname column from GeoNames dump [51].

• enwiki: All page titles from the English Wikipedia of Feb. 2015 [133].

• nwc: Japanese word N -grams in the Nihongo Web Corpus 2010 [141].

• indochina: URLs of a 2004 crawl by the UbiCrawler [22] on the country domains

of Indochina [82].

Table 6.1 summarizes each dataset. Here, Size is the raw size in MiB, Keys is the

number of different string keys, Ave. length is the average number of characters per string

including a terminator, Chars is the number of different characters in the dataset, Nodes is

the number of nodes in the MP-trie, Singles is the percentage of single nodes, and Subtries

is the number of subtries with the TDM. All datasets were encoded in UTF-8.

https://github.com/kampersanda/ddd
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Table 6.1: Information about datasets.

Size Keys Ave. length Chars Nodes Singles Subtries

geonames 101.2 6,784,722 15.6 96 12,216,182 19.1 81
enwiki 227.2 11,519,354 20.7 199 27,308,602 36.6 108
nwc 439.4 20,722,756 22.2 180 60,554,010 42.5 115
indochina 612.9 7,414,866 86.7 98 22,572,605 55.2 33

Table 6.2: Possible combinations of rearrangement methods.

ELM ELM + NLM BLM BLM + NLM

Pack PE PEN PB PBN
Rebuild RE REN RB RBN

ELM + TDM ELM + NLM + TDM BLM + TDM BLM + NLM + TDM

Pack PET PENT PBT PBNT
Rebuild RET RENT RBT RBNT

Data structures For rearrangement methods, we evaluated all possible combinations

shown in Table 6.2 (16 patterns in total). This section refers to each combination as the

name composed of the initial letters. PE and PEN are the conventional methods, and the

others are the proposed methods.

For the TDM, since all keys in indochina start with the prefix http://, we preregis-

tered the prefix. In the other datasets, we separated a key at the first character, as shown

in Figure 6.8b. Table 6.3 shows the top 10 results related to the frequency of appearance

of characters for each divided point. For the nwc and indochina datasets, the frequency

of a particular character is very large. The ASCII code 227 is the first byte character

generally used to represent Japanese letters in UTF-8. The ASCII code 119 is the letter

w of http://www.... Thus, a particular suffix subtrie becomes very large. Note that such

imbalance is also an evaluation item.

Table 6.3: Top 10 results in frequency of appearance of characters for each divided point.

geonames enwiki nwc indochina
Rank ASCII % ASCII % ASCII % ASCII %

1 83 9.7 83 8.7 227 51.6 119 62.9
2 66 8.3 67 7.2 229 10.6 115 4.0
3 75 7.2 65 6.9 230 8.1 116 3.1
4 77 6.9 77 6.6 60 7.4 99 2.9
5 67 6.8 84 6.0 231 5.1 109 2.6
6 76 5.4 76 5.6 232 4.6 114 2.4
7 80 5.4 66 5.5 228 4.3 105 2.2
8 84 4.8 80 5.2 233 3.4 100 2.0
9 65 4.6 68 4.1 40 0.7 112 2.0
10 72 4.4 82 3.9 226 0.5 97 1.8
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Figure 6.10: Load factors of PE for each dataset.

We prepared ten patterns of load factors for each dictionary by randomly inserting all

keys and by randomly deleting the keys. Figure 6.10 shows the load factors α and β of

PE for each dataset before rearrangement. The dictionaries become increasingly sparse. In

addition, Figure 6.11 shows that the tail length also becomes increasingly large, similar

to the example shown in Figure 6.3. The length of base and check, or N , was nearly

unchanged because the arrays can shrink only when the rearmost element is removed.

Implementation Details To measure the rearrangement performance precisely, it is

important that no extra memory allocation is made for expanding arrays, especially for

the working space. For tail, both Pack and Rebuild simply transfer non-empty spaces

to a new array. Given an original tail whose length is M and load factor is β, we can

estimate the new tail length asM ·β. Therefore, we only require initial memory allocation.

On the other hand, we cannot accurately estimate the number of elements of base and

check after rearrangement since α depends on the trie configuration and the order of the
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Figure 6.11: tail lengths of PE for each dataset.

defining nodes. Pack does not require this consideration because the node rearrangement

is performed within the original arrays, that is, within N elements. However, Rebuild

must determine the initial memory allocation size of the temporal structures. In the

experiments, we reserved an additional 1024 elements for unknown empty elements as α

was always improved to greater than 0.99 in the preliminary experiments. In other words,

we initially reserved N ·α+ 1024 elements for base′ and check′. Here, N ·α denotes the

number of nodes (= n). Although the number is heuristic, extra memory allocation was

never required in these experiments. For stack ST , we initially reserved sufficient N · α
units since this is necessary to traverse nodes.

We present the estimations of each working space before the final results are shown

in Section 6.3.2. Pack rearranges nodes in O(N) words. Rebuild rearranges nodes in

O(N(1 + α)) words because the original node components use O(N) words and the new

node components use O(N ·α) words. For tail rearrangement, both of Pack and Rebuild

use O(M) +O(M · β) = O(M(1 + β)) words. The above is summarized as follows. Pack

uses O(N + M(1 + β)) words and Rebuild uses O(N(1 + α) + M(1 + β)) words. Here,

0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Although the working space of Pack is obviously smaller than

that of Rebuild, the difference becomes small according to decreasing α.

6.3.2 Results

Figures 6.12, 6.13, and 6.14 show the experimental results for rearrangement times, working

spaces, and search times, respectively.2 The y-axis in Figure 6.12 uses a logarithmic

scale of 2. The search times were measured for all registered keys in each dictionary at

random and were averaged over 10 runs. Figure 6.12 omits the results of combinations
2The figures are located at the end of this chapter.
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using Rebuild and BLM (i.e., RB, RBN, RBT, and RBNT) as there were no distinct

differences compared to the NLM versions. Figure 6.13 omits the results of combinations

using BLM (i.e., PB, PBN, PBT, PBNT, RB, RBN, RBT, and RBNT) since BLM requires

only negligibly small space. Figure 6.14 omits the results of combinations using NLM

and BLM (except PE, PET, RE, and RET) as these methods are not related to Search.

In all cases, the load factors were improved to α ' 1.0 and β = 1.0 after rearrangement.

Pack Time Observations First, we focus on the results obtained with enwiki at a

deletion rate of 50%. Here, the differences are obvious. For the conventional methods, PE

uses 137 s and PEN does not improve the time since Edges time is not the main problem.

On the other hand, PB and PBN significantly improve the time to 7 s and 4 s, respectively.

Thus, the cache inefficiency of ELM and the usefulness of BLM are obvious. TDM also

provides large improvements. PET, PENT, PBT, and PBNT are 35x, 42x, 6x, and 9x

faster compared to each method without TDM, respectively. When comparing the best

cases of the conventional and proposed methods, PBNT performs Pack in 0.5 s that is

260x faster than PEN.

We also focus on the results obtained with indochina at a deletion rate of 50%. The

improvement rates obtained by BLM are obviously smaller compared to the other datasets.

When comparing ELM and BLM, PB is 1.5x faster than PE, PBN is 2.1x faster than PEN,

PBT is 1.4x faster than PET, and PBNT is 1.9x faster than PENT. These results are the

outcome of the rate of single nodes. When Pack relocates a single element where |E| = 1 in

Algorithm 6.1, EXCheck can directly select an empty element r ← head in Algorithm 6.2

or r ← head[head] in Algorithm 6.3 as the relocation address. In other words, EXCheck

does not need to scan R as IsTarget always returns true. Therefore, the improvement

rates obtained by BLM with indochina are smaller compared to those with enwiki.

However, Pack is performed quickly.

Overall, PBNT always provides the best results. The largest improvement rates from

PEN to PBNT with the geonames, enwiki, nwc, and indochina datasets are 218x,

260x, 32x, and 3x, respectively. For nwc and indochina, the ratios are relatively small,

since TDM did not work efficiently as seen from the imbalances in Table 6.3. As for

the absolute runtimes, PBNT performs Pack in up to 0.9, 0.5, 3.0, and 1.3 s with the

geonames, enwiki, nwc, and indochina datasets, respectively. Therefore, the proposed

Pack is useful under any conditions, while the conventional methods require more than a

min under many conditions.

Rebuild Time Observations In all cases, the simplest implementation, namely RE,

is the slowest, and the most complex implementation, namely RENT, is the fastest. At a
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deletion rate of 0% with the geonames, enwiki, nwc, and indochina datasets, the dif-

ferences are 8.4x, 9.2x, 3.4x, and 2.4x, respectively. When comparing RET and REN, RET

is faster than REN with geonames and enwiki; however, the results are reversed with

nwc and indochina. In other words, the advantage of NLM outperforms that of TDM

due to the imbalances. Relative to the absolute runtimes, RENT performs Rebuild in up

to 0.4, 0.8, 4.2, and 2.5 s with the geonames, enwiki, nwc, and indochina datasets,

respectively. Therefore, the enhanced Rebuild is very useful under any conditions, similar

to Pack.

Comparison of Pack and Rebuild Times Here, we compare PBNT and RENT,

which provide the best performance. With the smallest dataset, namely geonames, RENT

is often faster as the number of nodes is small. With enwiki and nwc, the results are

reversed at a deletion rate of approximately 35–40%. With indochina, the result is

reversed at a deletion rate of approximately 50% as Pack is performed quickly. As shown

in Figure 6.10, these reversals occur in approximately 0.5 ≤ α ≤ 0.6.

In conclusion, Rebuild is a good choice for small datasets, such as geonames. For

large datasets, Pack and Rebuild are more effective according to load factor α. It is

difficult to accurately estimate the best threshold load factor; however, both will provide

high performance in approximately 0.5 ≤ α ≤ 0.6.

Working Space Observations All the results appear to be based on estimations. We

have not presented the results obtained by NLM since the additional space of 2Ndlog σe
bits is simply included. When comparing PE and RE, PE is 1.44x, 1.45x, 1.67x, and

1.35x smaller than RE at a deletion rate of 0% with the geonames, enwiki, nwc, and

indochina datasets, respectively. The ratio of nwc is relatively large because the number

of nodes is large, as shown in Table 6.1. On the other hand, the ratios are close to

1.0 according to α. At a deletion rate of 90% with the geonames, enwiki, nwc, and

indochina datasets, the ratios are 1.04x, 1.04x, 1.05x, and 1.05x, respectively.

It is worth noting that TDM contributes to the reduction of working space. TDM

rearranges small subtries in given threads; thus, the temporal spaces for each process are

small. When comparing PE and PET with geonames and enwiki, TDM reduces the

working spaces by up to 1.26x and 1.23x, respectively. When comparing RE and RET

with geonames and enwiki, TDM reduces the working spaces by up to 1.19x and 1.23x,

respectively. On the other hand, the reduction ratios obtained with nwc and indochina

are relatively small due to the imbalances. When comparing PE and PET with nwc and

indochina, TDM reduces the working spaces by up to 1.04x and 1.05x, respectively. When

comparing RE and RET with nwc and indochina, TDM reduces the working spaces by

up to 1.08x and 1.19x, respectively.
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In conclusion, Pack is efficient for saving working space. TDM also contributes to the

saving. For sparse dictionaries, Rebuild using TDM is a good choice.

Search Time Observations There are distinct differences between Pack and Re-

build since Rebuild can contribute to the cache improvement of node-to-node traversal.

When comparing PE and RE, RE performs Search up to 1.5x, 1.8x, 2.1x, and 2.9x faster

than PE with the geonames, enwiki, nwc, and indochina datasets, respectively. The

result obtained with indochina is better because the number of node-to-node traversals

is large. The obtained results are also related to update times since both Insert and

Delete retrieve the received key. Therefore, it is possible to use Rebuild to improve all

dictionary operations.

Synthetic Evaluation Finally, we present a synthetic evaluation of the proposed rear-

rangement methods. Pack and Rebuild should be used as the situation demands. If the

focus is on saving the working space, Pack is a better choice. Rebuild is a better choice

to improve the runtimes of dictionary operations. On the other hand, the working space of

Rebuild is close to that of Pack when the dictionary is sparse. In terms of rearrangement

time, Rebuild is more useful for sparse dictionaries for any datasets.

In all aspects, BLM and TDM provide many advantages without any disadvantage.

Therefore, these methods can be applied as new default components for dynamic DA dic-

tionary implementations. Note that it is necessary to determine appropriate pre-registered

prefixes when using TDM. The results show that it would be better to preregister the

ASCII code 227 when storing Japanese strings and add http://www to the preregistered

prefixes when storing URLs.
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Chapter 7

Conclusion

In this thesis, we have presented novel data structures for implementing efficient string

dictionaries. We conclude our work, and remark future perspectives and tasks for each

chapter, as follows.

Static Compressed Double-Array Tries In Chapter 3, we introduced problems of

double-array tries to implement string dictionaries for large datasets, and developed novel

compressed double-array structures, named DALF and XCDA. DALF is based on CDA

and compresses the base array using linear functions. While the original base array

practically takes 32 or 64 bits for each element, DALF can reduce the space to 8 bits;

however, DALF cannot support the Access operation because of based on CDA. XCDA

solves the problem with a different compression approach. It compresses the original base

and check arrays by using the XOR transformation and directly accessible codes. XCDA

can implement both the Lookup and Access operations, while experimentally achieving

the same space efficiency with DALF.

Although we discussed string dictionary implementation, the double array is a versatile

data structure and can be used to various applications such as multiple string matching

[110, 146], lexical analyzers [87], and N -gram language models [137]. Essentially, the idea

of XCDA will contribute to implementing the applications in compact space.

Static Dictionary Compression Using Dictionary Encoding In Chapter 4, we in-

troduced alternative strategy for string dictionary compression using dictionary encoding,

instead of the existing strategy with powerful text compression such as Re-Pair. Moreover,

we proposed several dictionary structures for the dictionary encoding, denoted as auxiliary

string dictionaries. Our strategy and dictionary structures were evaluated through exper-

iments using real-world datasets. The results have shown that our strategy can construct

high-performance string dictionaries in a short time. In particular, using the proposed

auxiliary string dictionaries, named RPDT and FBC, is comprehensively superior to using

Re-Pair. On the other hand, since efficient techniques of Re-Pair compression have been

proposed [19, 20], the new techniques should be also evaluated in the future.



98 Chapter 7. Conclusion

Whereas we addressed string dictionary compression in this work, our strategy and

the auxiliary string dictionaries can be used to compress other data structures partly

containing strings. The future tasks will investigate such data structures and conduct

application experiments.

Dynamic Path-Decomposed Tries In Chapter 5, we presented DynPDT, which is

a new data structure of space-efficient dynamic string dictionaries through incremental

path decomposition. Our experimental results showed that DynPDT uses much smaller

space than existing dynamic string dictionaries, but its time performance is not very high.

The main cause is that the node-to-node traversal using m-Bonsai is slow compared with

pointer-based representations. Another disadvantage is that the hash table cannot be easily

resized owing to open addressing. Those disadvantages will be improved by engineering an

alternative trie representation.

A remaining issue is that succinctness of DynPDT is not provided in this thesis. Un-

fortunately, we are not aware of any succinct dynamic string dictionary, and implementing

such data structures is an open problem [117].

Practical Rearrangement of Dynamic Double-Array Tries In Chapter 6, we have

discussed practical rearrangement approaches of dynamic double-array dictionaries and

presented some efficient methods. Our experimental results demonstrated that the pro-

posed methods can support much faster rearrangement compared to existing methods. Our

rearrangement requires a few seconds for large datasets; thus, the time will not become a

problem in practical applications.

Whereas the improvement of our methods is very large, we have not shown any contri-

bution to real systems. The future tasks will investigate applications of the rearrangement.
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