
INTRODUCTION

Stroke was the leading cause of death 30 years ago
when hypertensive intracerebral hemorrhage was
the most common cause of stroke deaths. At present,
stroke is the second leading cause of death in Japan ;
it ranks behind only cancer deaths. The death rate

from stroke was around 120 per 100,000 in 1996,
almost the same as that of heart disease (Fig.1). The
decline in the death rate from stroke over the last
20 years has been attributed to improved control of
hypertension and advances in the management of
cerebral hemorrhage in the acute stage. However,
the incidence of cerebral infarction resulting in
disability in the survivors of ischemic stroke appears
to be on the increase, at a time when the proportion
of elderly individuals is rapidly increasing in Japan.
Of all types of stroke, the incidence of hemorrhagic
cerebrovascular disease, including subarachnoid

Pathophysiology and treatment of cerebral ischemia

Shinji Nagahiro＊, Masaaki Uno＊, Koichi Sato＊, Satoshi Goto†, Motohiro Morioka†,
and Yukitaka Ushio†
＊Department of Neurological Surgery, The University of Tokushima School of Medicine, Tokushima,

Japan ; and †Department of Neurosurgery, Kumamoto University Medical School, Kumamoto, Japan

Abstract : This article describes the pathophysiology of, and treatment strategy for,
cerebral ischemia. It is useful to think of an ischemic lesion as a densely ischemic core
surrounded by better perfused“penumbra”tissue that is silent electrically but remains
viable. Reperfusion plays an important role in the pathophysiology of cerebral ischemia.
Magnetic resonance imaging (MRI) and histological studies in rat focal ischemia models
using transient middle cerebral artery (MCA) occlusion indicate that reperfusion after
an ischemic episode of 2- to 3-hour duration does not result in reduction of the size of the
infarct. Brief occlusion of the MCA produces a characteristic, cell-type specific injury in
the striatum where medium-sized spinous projection neurons are selectively lost ; this
injury is accompanied by gliosis. Transient forebrain ischemia leads to delayed death of
the CA1 neurons in the hippocampus. Immunohistochemical and biochemical investi-
gations of Ca2+/calmodulin-dependent protein kinase II(CaM kinase II) and protein
phosphatase (calcineurin) after transient forebrain ischemia demonstrated that the
activity of CaM kinase II was decreased in the CA1 region of the hippocampus early (6-
12 hours) after ischemia. However, calcineurin was preserved in the CA1 region until 1.5
days after the ischemic insult and then lost ; a subsequent increase in the morphological
degeneration of neurons was observed. We hypothesized that an imbalance of Ca2+/
calmodulin dependent protein phosphorylation-dephosphorylation may be involved in
delayed neuronal death after ischemia. In the treatment of acute ischemic stroke, immediate
recanalization of the occluded artery, using systemic or local thrombolysis, is optimal
for restoring the blood flow and rescuing the ischemic brain from complete infarction.
However, the window of therapeutic effectiveness is very narrow. The development of
effective neuroprotection methods and the establishment of reliable imaging modalities for

an early and accurate diagnosis of the extent and degree of the ischemia are imperative.

J. Med. Invest. 45 : 57-70, 1998

Key words : cerebral ischemia, penumbra, selective neuronal death, reperfusion, excitotoxicity

Received for publication July 17, 1998 ; accepted July 31, 1998.
１ Address correspondence and reprint requests to Shinji
Nagahiro, M.D., Ph.D., Department of Neurological Surgery,
The University of Tokushima School of Medicine, Kuramoto-cho,
Tokushima 770-8503, Japan and Fax : +81-886-32-9464.

The Journal of Medical Investigation Vol.45 1998

５７

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tokushima University Institutional Repository

https://core.ac.uk/display/197209336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


hemorrhage and intracerebral hemorrhage, is about
20-25% ; the incidence of ischemic stroke is 75-80%.
The increase in the number of individuals with mental
and physical handicaps after stroke presents con-
siderable problems in terms of quality of life and
socioeconomic costs.

Despite recent medical and surgical advances, e.g.
antiplatelet agents, anticoagulant therapy, carotid
endarterectomy, bypass surgery and endovascular
treatment, the general approach to preventing acute
ischemic brain damage resulting in irreversible
cerebral infarction remains inadequate. The term

“brain attack”has come into use to denote the sim-
ilarity of stroke to myocardial infarction (heart attack)
with respect to the need to receive immediate medical
attention.

This review article describes the pathophysiology,
and treatment strategy for, acute cerebral ischemia.
The discussion is based on the results of our exper-
imental studies (1-20) and a review of the literature.

PATHOPYSIOLOGY OF CEREBRAL ISCHEMIA

Cerebral metabolism and blood flow
Neuronal function and cerebral metabolism are crit-

ically dependent on a sufficient oxygen and glucose
supply and the production of adenosine triphosphate
(ATP) from adenosine diphosphate (ADP). An adequate
cerebral blood flow (CBF) is essential for maintaining
this critical supply of oxygen and glucose. The CBF
is regulated by the metabolic demands of the brain
to adjust to its functional needs (flow-metabolism
coupling). The brain requiresmore oxygen and glucose
on a weight basis than do the other organs. In human

adults, the brain weighs approximatelyl 1400g
and represents only about 2 % of the total
body weight. However, it uses about 25 % of
total body oxygen and glucose per minute.
Since the brain is unable to store energy, any
interruption of the blood supply easily and
quickly results in neuronal dysfunction and
neuronal damage.

Focal cerebral ischemia and penumbra
Focal cerebral ischemia is most often

brought about by interruption of the blood
supply to a part of the brain. Embolic or
atherothrombotic occlusion of the cerebral
artery is a primary event that occasionally
progresses to cerebral infarction in humans.

Focal ischemia due to middle cerebral
artery (MCA) occlusion encompasses a densely is
chemic core of tissue where CBF decreases markedly
and a marginally better perfused area, the so-called

“ischemic penumbra”(21,22) (Fig.2). Perfusion of
the penumbral tissue is dependent on the degree
of collateral circulation coming from the anterior-
or the posterior cerebral artery. CBF is normally
about 50ml/100g/min. Electrical activity in cerebral
tissue ceases at flow rates below 16 to 18 ml/100 g/
min (23). This degree of ischemia represents a
threshold for neuronal and electrical dysfunction.
Although silent electrically, cerebral tissue in the
penumbral area remains viable and the ion pump
mechanism remains functional until CBF falls below
10-12 ml/100 g/minm (22, 23) (Fig.3). If profound
ischemia lasts for a certain time, there is consequent
depletion of ATP and failure of the membrane ion
pump, involving the efflux of cellular potassium and
the intracellular influx of calcium, sodium, chloride
and water. This disturbance results in lactate acidosis
and membrane depolarization and leads to irrevers-
ible degeneration of the neurons and glia cells in the
ischemic core (pan-necrosis or complete infarction).

In the penumbra as well as in the ischemic core,
neuronal viability is time dependent ; that is, the
more profound the degree of ischemia, the less time
before the establishment of irreversible damage
(24).

Reperfusion
Reperfusion is essential for saving the ischemic

brain tissue from irreversible infarction. If occlusion
of the artery is corrected immediately and reperfusion
is successful, the ischemic tissue at risk of irreversible
infarction and the tissue in the penumbra can re-

Fig.1. Trends in death rates for three major diseases in Japan, 1950-1996.
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cover completely (Fig.4). However, if reperfusion
occurs after the establishment of moderate
cerebral ischemia, incomplete infarction or
selective neuronal death may result (25). The
degree and extent of the resulting infarction
or neuronal damage depend on the duration
and degree of the ischemic insult (Fig.5). On
the other hand, reperfusion can be harmful
to the ischemic brain if it is performed very
late after the insult. Reperfusion injury to the
ischemic brain, e.g. aggravation of vasogenic
edema or hemorrhagic infarction, may be the
result of reactive hyperemia with loss of
vasoreactivity, disruption of the blood-brain
barrier (BBB), free radical- and toxic oxygen
production, the release of inflammatory medi-
ators, and leukocyte adhesion to endothelial
cells in ischemic brain tissue (Fig.4).

To elucidate the relationship between the
timing of reperfusion and the degree of ischemic
brain damage, we subjected rats to transient MCA
occlusion and studied the sequential and regional
changes of ischemic edema and BBB permeability,
using magnetic resonance imaging (MRI) with
Gd-DTPA enhancement (5, 10, 16). In addition, we
performed behavioral and immunohistochemical
studies to determine the pathophysiological mecha-
nism underlying ischemic injury of the cerebral
cortex and the striatonigral system (2-4, 6-9, 11-14).

Experimental focal ischemia and MRI studies
We used a rat model of reversible focal ischemia.

The rats were subjected to unilateral occlusion of
the MCA using a method of intraluminal vascular
occlusion that mimicks human embolic stroke (26-
28). Briefly, a nylon thread was introduced into the
right internal carotid artery of Wistar rats weighing
240-270 g so that the tip of the thread reached the
proximal segment of the anterior cerebral artery
and obliterated the origin of the MCA. MCA blood
flow was restored by removing the thread embolus

Fig. 2. A stroke lesion with MCA occlusion, consisting of a densely ischemic core (black area) surrounded
by better perfused penumbral tissue.

Fig.3. Ischemic thresholds for functional and electrical failure, and for
metabolic andmembrane failure. The diagram is modified fromAstrup (22).
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15 or 30 minutes, or and 1, 2, 3, or 5 hours after
occlusion. Paresis of the left limb and circling
movement to the left were observed prior to resto-
ration of the blood flow.

MRI was obtained 6 hours, 24 hours (day 1), and
7 days (day 7) after the onset of ischemia. In all rats

that had been subjected to 1-5 hours of
ischemia, T2-weighted images obtained
at 24 hours post-insult demonstrated
high-signal intensity areas representing
ischemic edema in the lateral striatum
and/or the cerebral cortex. These areas
were larger and detected earlier in rats
subjected to longer-lasting ischemia
(Fig.6). Sequential MRI revealed that
the size of the high-signal intensity area
on T2-weighted images was largest at
day 1 in all rats that had been subjected
to 1-5 hours of ischemia. Even brief isc
hemia (15 to 30 minutes) resulted in
transient T2 high-signal intensity areas
in the dorsolateral part of the striatum
at day 1.

On Gd-DTPA-enhanced MRI, parenchymal
enhancement of the striatum and the
cerebral cortex on the ischemic side,
due to BBB disruption, was seen following
reperfusion after 1 to 5 hours of ischemia.
This was detected earlier in rats subjected

to longer periods of ischemia (16). Enhancement
of the lateral ventricle due to disruption of the
blood-cerebrospinal fluid barrier at the choroid
plexus appeared in the early reperfusion stage
(6 hours and day 1) in rats subjected to 15-minute- to
5-hour ischemia (6). The exact mechanisms and the

Fig.4. Diagram illustrating the mechanisms of cerebral ischemic damage and the effects of reperfusion.

Fig.5. Graph showing the time-intensity relationship of ischemia and degree
of tissue damage. The continuum from normal condition to incomplete
infarction and complete infarction is illustrated. Even profound ischemia is
reversible if its duration is very brief. The curves are modified from Jones et
al. (24) and Garcia et al. (25).
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significance of the finding that blood-cerebrospinal
fluid permeability transiently increased after transient
ischemia remain unclear. The increased perme-
ability of the BBB and the blood-cerebrospinal
fluid barrier may exacerbate the progress of brain
edema following reperfusion after transient ischemia.

Immunohistochemical studies
Immunohistochemical studies were performed on

10- or 20 μm thick vibratome sections using antibodies
to calcineurin (CaN), Ca2+/calmodulin-dependent
protein kinase II (CaM II), parvalbumin, choline
acetyltransferase, glutamic acid decarboxylase (GAD),
72-kD heat shock protein (HSP 72), and glial fibrillary
acidic protein (GFAP). Calcineurin, a Ca2+/calmodulin
dependent protein phosphatase, was used as a
marker for striatal projection neurons (2, 6, 11).
HSP72 was used as a marker for stress response

in the neurons to ischemic insult (8, 29).
Histologically, the striatal lesion in rats

subjected to brief (15 to 30 minutes) ischemia
showed a characteristic, cell type-specific
injury ; a marked reduction in medium-sized
spinous neurons expressing CaN, and a
selective sparing of parvalbumin-positive
medium-sized aspiny neurons and choline
acetyltransferase-positive giant neurons (2).
This cell-type specific injury was accompanied
by marked gliosis showing strong GFAP
immunolabeling (Fig.7). Scattered or laminar
damaged neurons with reactive gliosis were
observed in the cortex at 3 to 28 days after
short-term MCA occlusion ; this was called

“slowly progressive neuronal damage”by
Nakano et al. (25).

In the ipsilateral cortex of the rats sub-
jected to 30 minutes ischemia, strong HSP72
immunoreactivity appeared in the lower
supragranular layer and laminas IV and V
in the acute phase. There was an increase
in GAD-immunoreactivity in lamina IV at 3
to 14 days after MCA occlusion (8). GAD is
a limiting enzyme of γ-aminobutyric acid
(GABA) synthetase, and is enriched in the
GABAergic neurons. The enhanced expression
of GAD in the ipsilateral cortex may reflect
some adaptive functional changes in GABA
transmission with slowly progressing cortical
ischemic damage. The neuronal injury accom-
panied by gliosis may also correspond to a
state of incomplete infarction.

In rats subjected to 1-hour MCA occlusion,
incomplete infarct areas in the cortex and striatum
were encompassed by a small pan-necrotic area
(complete infarction) in the center of the lesion
(Fig 7 c, d). In rats subjected to 2-hour ischemia,
there was massive, extensive ischemic damage in
the striatum and the cerebral cortex. Almost all
striatal cells were degenerated on the affected side.
Total tissue necrosis was seen in the striatum and
the cerebral cortex of the MCA territory in all rats
that had been subjected to 3 - 5-hour ischemia.

Ischemic damage and timing of reperfusion
The extent and the size of the infarctions and the

incomplete infarctions detected by MRI and histo-
logical studies in rats subjected to various ischemia
durations are schematically summarized in Figure 8.
Reperfusion earlier than 1 hour after the onset of
ischemia significantly reduced the size of the infarc-

Fig.6. Sequential T2-weighted images obtained at 6 hours (left), day 1
(middle) and day 7 (right) in rats subjected to 1-hour, 2-hour, 3-hour
and 5-hour ischemia. The high-intensity areas in the striatum (arrows) and
cortex are larger and detected earlier as the duration of the ischemia
increases.
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tion area, although incomplete infarction with
selective neuronal loss and gliosis was frequently
seen in the dorsolateral part of the striatum. Func-
tionally, all rats subjected to 15- to 30-minute ischemia
recovered from paresis of the contralateral limbs
within a few hours after restoration of the MCA blood
flow. The hemiparesis persisted for more than one
day, but disappeared by day 7, in all rats subjected
to 1-hour ischemia.

However, reperfusion after ischemia lasting longer
than 2 or 3 hours may not be beneficial. In the 3-
and 5-hour ischemia groups there was no significant
difference in the size of complete infarction area in
the striatum and the entire neocortex of the MCA.
However, the size and degree of the ischemic lesions
varied among rats subjected to 2-hour ischemia.

Ito et al . (30) measured the water content in the
ischemic brain of Mongolian gerbils after restoration
of CBF following temporary ischemia. They found
that recirculation after less than 1 hour of ischemia
markedly reduced the degree of brain edema, but
recirculation performed after more than 3 hours of
ischemia greatly exacerbated brain edema.Mamezawa
et al . (31) investigated ischemic brain damage in
rats subjected to MCA occlusion of various duration.

They found that reperfusion after 2 hours of ischemia
failed to salvage penumbral tissue. These results
suggest that embolic stroke patients with proximal
MCA occlusion should receive fibrinolytic therapy
within 2-3 hours after the onset. Recirculation later
than 3 hours after onset may not only be useless,
but may actually be harmful. The poor collateral
circulation in the discussed experimental reversible
focal ischemia models may result in more severe
and extensive ischemic damage than would be
expected in larger animals or humans.

Striatonigral involvement following ischemia
The substantia nigra plays a key role in basal

ganglia function. The substantia nigra pars compacta
sends dopaminergic fibers mainly to the striatum.
The substantia nigra pars reticulata (SNr) receives
numerous afferent fibers that contain GABA origi-
nating from the striatum. As was noted above, a
group of medium-sized spiny neurons expressing
CaN immunoreactivity were characteristically lost
in the dorsolateral part of the striatum. These
neurons in this area project to the SNr neurons.
Therefore, massive striatal ischemic lesion produced
by MCA occlusion lasting longer than 2 hours resulted

Fig.7. Coronal sections from rats subjected to 30-minute (a,b) and 1-hour (c,d) ischemia were stained immunohistochemically for
calcineurin (a,c) and GFAP (b,d). Calcineurin-immunoreactivity is markedly reduced in the striatum (open arrow, a) and is
accompanied by strong gliosis (b). This is indicative of incomplete infarction in a rat subjected to 30-minute ischemia. Complete
infarct areas surrounded by gliosis are noted in the cortex and striatum (arrows, d) of a rat subjected to 1-hour ischemia.
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in a marked reduction of CaN immunolabeling of
the SNr with degeneration of the SNr neurons and
gliosis. Notably, the substantia nigra was a distant,
non-ischemic area. In humans and in experimental
animals, anterograde trans-synaptic degeneration
occurs in the substantia nigra following the estab-
lishment of striatal or striatopallidal lesions. Tamura
et al. (32) demonstrated prolonged hyperemia,
hypermetabolism, a decrease in the GABA content,
and neuronal loss and gliosis in the substantia nigra
following permanent MCA occlusion. The trans-
neuronal regression of nigral neurons is thought
to result from hyperexcitation of the cells due to a
loss of inhibitory GABAergic inputs (deafferentation)
(2, 29, 32).

Massive striatal ischemic injury produced by
2-hour MCA occlusion induced the expression of
HSP72 (29) and an increase in the synthesis of
growth-associated protein-43 in the SNr (9, 12).
Neuronal induction of HSP occurs in response to
stress, e.g. ischemia/hypoxia, hyperthermia, status
epilepticus, and excitotoxin injection. In addition,
growth associated protein-43 is synthesized at high
level during axonal outgrowth in neural develop-
ment and during regeneration responses to certain cell
injuries (9). These findings suggest that deafferentation
of the striatal inputs represents a harmful stress for
SNr neurons. The GABAergic agonist mucimor
prevents degeneration of SNr neurons following
deafferentation (33, 34).

Selective damage of the striatonigral pathway in
response to dopamine receptor stimulation produces
a motor control abnormality. Contralateral hemiparesis
recovered rapidly in rats subjected to brief ischemia
and no functional abnormality can be detected without
pharmacological stimulation. Rats exhibited ipsiversive
rotational behavior elicited by the systemic admini-
stration of the dopamine receptor agonist apomorphine
in a dose-dependent manner (6). The number of
rotations significantly increased as the duration of
ischemia increased from 15 to 60 minutes (Fig.9).
Even in rats subjected to 15-minutes ischemia, the
number of apomorphine-induced ipsiversive rotations
increased during the first 3 days, thereafter it gradually
decreased until the 30 th day after MCA occlusion
(19).

Delayed Selective Neuronal Death
Transient cerebral ischemia leads to delayed and

selective degeneration of certain populations of
neurons, including hippocampal pyramidal cells
(35, 36), striatal medium-sized neurons described
above, neocortical neurons, and cerebellar Purkinje
cells. The so-called“delayed neuronal death”was
first reported and named by Kirino (35) and many
studies have been carried out to elucidate the
mechanisms underlying selective delayed neuronal
death.

Excitotoxic mechanisms triggered by excitatory
amino acids such as glutamate are a major factor in

Fig.8. Schematic drawing of the coronal sections of rat brains. Incomplete infarction (shaded area) and complete infarction
(black area) resulting from ischemia of varying duration are shown.
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ischemic neuronal damage. It has been suggested
that glutamate neurotoxicity is mediated by an influx
of extracellular Ca2+ and the formation of free radicals
(37). In ischemia, calcium influx occurs via multiple
pathways. The initial entrance of Ca2+ through
glutamate-receptor gated channel may be augmented
by other sources of Ca2+ influx or release such as
via the Na+/Ca2+ exchanger, membrane leak conduct-
ance, or inositol triphosphate receptor-operated
channels. The increase of Ca2+ is a pivotal event
leading to irreversible cell damage during the
reperfusion phase and to delayed neuronal death
(35, 38, 39, 40). How does an abnormal increase in
intracellular Ca2+ lead to neuronal death? Why are
some neurons more vulnerable than others and why
do they die as late as 3 to 4 days after ischemia and
reperfusion (35) ? There may be nonphysiological
activation of Ca2+-dependent enzymes such as proteases,
phospholipases, protein kinases, protein phosphatases,
guanyal cyclases, and endonucleases. Proteases such
as calpains can break down the neuronal cytoskeleton,
resulting in membrane blebing and inhibition of the
axonal transport (41). Proteases may exacerbate the
deteriorious effects of ATP depletion on the cell
skeleton.

Protein kinases such as Protein kinase C or Protein
kinase II are enzymes that phosphorylate structural
and regulatory proteins, e.g. cell receptors and mem-
brane channels. Calcineurin, as described above, is
a neuron-specific Ca2+/calmodulin dependent protein
phosphatase, and is abundant in the striatum,
hippocampus, substantia nigra and cerebellum. The
enzyme may be related to several neuronal actions

by utilizing many functionally important
substrates, such as microtubule-associated
protein 2, tau factor, tublin, synapsin I and
tyrosin hydroxylase (42, 43). Recent slice
experiments have shown that CaM kinase II
plays a significant role in long-term potentia-
tion (44). Several proteins are common to
CaM II and calcineurin as substrates for
phosphorylation and dephosphorylation. Both
enzyme may be involved complementarily in
brain functions by forming the cascade of
phosphorylation and dephosphorylation of
common substrates (1).

We investigated regional and temporal
changes in Ca2+/calmodulin-dependent protein
kinase II (CaM kinase II) and calcineurin in
the hippocampus after transient forebrain
ischemia (1). Immunoreactivity and enzyme
activity of CaM kinase II decreased in the

CA1 region of the hippocampus early (6-12 hours)
after ischemia. However, calcineurin was preserved
in the CA1 region until 1.5 days post-insult and
was then lost with the increase in morphological
degeneration of neurons. We hypothesized that an
imbalance of Ca2+/calmodulin-dependent protein
phosphorylation-dephosphorylation may be involved
in the observed delayed neuronal death after ischemia.
This may also pertain to ischemic injury to the striatum,
where, as described above, the medium-sized spiny
projection neurons enriched with calcineurin were
selectively lost following brief ischemia.

Ischemic tolerance and gene expression
The phenomenon that preceding non-lethal ischemic

stress represents a protective effect against CA1
neuronal death of hippocampal neurons following
lethal ischemic insults is known as“ischemic tol-
erance”(45, 46). The expression of a stress gene
followed by the production of stress proteins such
as HSPs may be involved in the mechanisms of
induction of ischemic tolerance (45-47).

The transcription and translation of some groups
of genes increases after ischemia. These include
immediate early genes, stress genes, and gene
encoding growth factors and their receptors. Many
immediate early genes such as c-fos, fos-B, c-jun,
jun-B, jun-D and Zif/268 are induced by cerebral
ischemia (49, 50). The role of gene expression after
ischemia is largely unknown at present, but gene
expression may reflect processes involved in the
death or survival of impaired neurons.

Neurons die after ischemia by necrosis or apoptosis.

Fig.9. Relationship between apomorphine-induced rotational behavior
and duration of ischemia. The total number of ipsilateral turns during a
30-minute period significantly increased with prolongation of ischemia
from 15 minutes to 60 minutes. *p<0.0005 and **p<0.005 in the two-tailed
student t-test
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Apoptosis is defined as cell death upon character-
istic biochemical and morphological changes such as
fragmentation of the nucleus and DNA, chromatin
condensation at the periphery of the nucleus, formation
of apoptotic body, and cell membrane blebing. It is
determined by the transcription of specific genes
and subsequent protein synthesis (51). Clearly, the
predominant process in the ischemic core region
is necrotic cell death, while mild cell injury in the
penumbral tissue may activate gene expression
leading to apoptosis. Mouse over-expression BCL-2,
a gene that prevents programmed cell death (53),
decreases infarct size after focal cerebral ischemia
(54). Several studies demonstrated a DNA ladder
or apoptotic body in the hippocampus after transient
forebrain ischemia and suggested that delayed
neuronal death may actually be apoptosis (55, 56).

TREATMENT OF CEREBRAL ISCHEMIA

Thrombolysis
In the treatment of acute ischemic stroke, imme-

diate recanalization of the occluded artery is the
optimal means of restoring blood flow and rescuing the
ischemic brain from complete infarction or neuronal
death. Intravenous (iv) systemic- or intra-arterial local
thrombolytic therapy with urokinase, streptokinase
or tissue-plasminogen activator (t-PA) has been used
for acute ischemic stroke, however its efficacy has
not been established to date. In Europe and the
United States, two large trials using the systemic
administration of t-PA have been carried out recently.
In the European Cooperative Acute Stroke Study
(ECASS), multi-center, double-blind placebo-controlled
clinical trials were performed to determine the efficacy
of iv thrombolysis using t-PA. In that study, patients
with acute ischemic stroke were treated within 6
hours of the onset of symptoms. The neurologic
recovery at 90 days post-insult was significantly better
in t-PA-treated patients. However, the incidence of
large parenchymal hemorrhage in that group was
also significantly higher than in the other groups
(57). The US National Institute of Neurological
Disorder and Stroke (NINDS) t-PA Stroke Study
Group reported that treatment with iv t-PA within
3 hours of the onset of ischemic stroke improved
the clinical outcome (58). Patients treated with t-PA
were at least 30% more likely to have no- or minimal
disability at 3 months post-insult compared to patients
who had received a placebo. However, symptomatic
intracerebral hemorrhage occurred in 6.4% of the

patients treated with t-PA ; this was the case in only
0.6% of the patients given a placebo (58). Therefore,
the US Food and Drug Administration limits the
use of systemic t-PA to patients whose treatment
can be started within 3 hours of suffering an acute
ischemic stroke.

We retrospectively examined the follow-up out-
comes of 94 Japanese patients who had undergone
intra-arterial local thrombolysis for acute embolic
stroke involving major cerebral artery occlusion
(59). The clinical outcome was better in patients
who had received intra-arterial thrombolysis than
in patients who had been treated conservatively.
Notably, the outcome was excellent in most of the
stroke patients who received thrombolysis therapy
within 2 hours after the ictus, followed immediately
by complete recanalization. The incidence of poor
outcomes increased with time between the insult
and recanalization.

Thus, experimental studies described earlier and
clinical trials point to the importance of the timing
of reperfusion in patients with acute ischemic stroke ;
reperfusion should be achieved within 2 or 3 hours
of the ictus to spare the ischemic brain from irre-
versible infarction and from reperfusion injury. As
the therapeutic time window for the successful
treatment of these patients is very narrow, three
critical factors deserve close attention : (1) the estab-
lishment of effective brain protection methods during
and after the ischemic insult, e.g. hypothermia,
and the development of powerful neuroprotective
agents, so that the therapeutic time window can be
increased and the danger of reperfusion injury can
be reduced, (2) the further development of imaging
systems to evaluate the extent and degree of ischemia
early and precisely so that the indication for
thrombolytic therapy can be determined, and (3) the
establishment of a dedicated emergency system
for stroke patients.

Brain protection
Our current understanding of the pathophysiological

mechanisms underlying focal ischemia and of the
cellular and molecular mechanisms involved therein
suggests that amelioration of ischemic lesions can
be obtained by hypothermia and/or agents that
reduce calcium influx, prevent cellular acidosis, and
suppress the production of free radicals or scavenge
those free radicals that have already formed.

In gerbils, mild hypothermia with a brain tempera-
ture of 31 and 33℃, prevents delayed neuronal
death in the hippocampal CA1 region following
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transient forebrain ischemia (60). Similarly, in rats,
mild hypothermia reduces the size of the infarct
following transient MCA occlusion (61). Just why
mild hypothermia appears to be effective in limiting
ischemic neuronal damage is not well understood.
Each 1℃ reduction in brain temperature reduces
the total brain metabolism by approximately 10%.
However, even a 30-40% reduction in the cerebral
metabolism is thought to be not inadequate for
obtaining brain protection. The mechanisms of brain
protection by mild hypothermia involve suppression
of tissue acidosis (62) and prevention of glutamate
release (63), of free radical production (64) and of
BBB disruption (65). A pilot study of mild hypothermia
in patients with severe cardioembolic stroke revealed
a marked reversal of neurological dysfunction in some
selected patients (66). However, the indications and
the limitations of treatment with hypothermia have
not been fully established.

The use of glutamate, calcium antagonists,
and free radical scavengers has produced
encouraging results in experimental ischemia.
However, in human populations, inconsistent
and negative results were obtained in several
well-controlled studies (67). If the hypothesis
proves valid that an imbalance of Ca2+/
calmodulin protein phosphorylation-dephop
horylation leads to selective delayed neuronal
death, calcineurin inhibitors may prevent
ischemic neuronal death. The drug FK506,
an inhibitor of calcineurin in T-lymphocytes
and used as an immunosuppressant, reportedly
reduces the severity of ischemic damage in
the cortex following MCA occlusion (68).
However, further studies are needed to ascer-
tain the appro-priateness of this drug in a
clinical setting. At present, there are no safe
and effective neuroprotective agents that
protect patients with acute ischemic stroke
from ischemic damage.

One reason why post-ischemic, systemic
administration of neuroprotective agents fails
to ameliorate ischemic damage is that occlusion
of the cerebral artery prevents the drug from
reaching the ischemic tissue in sufficiently
high concentration. To overcome this problem,
a new approach, retrograde perfusion of
the cerebral vein, was developed to deliver
cytoprotective agents more efficiently and s
electively to ischemic tissues (20, 69, 70). In
transient or permanent ischemia models, this
approach resulted in a significant reduction

of ischemic damage. While retrograde perfusion of
the cerebral vein to achieve targeted drug delivery
is still in the experimental stage, clinical application
of this method is feasible.

Early diagnosis
The early and accurate diagnosis of stroke has

been facilitated by advances in CT scan- and MRI
technologies. CT scans are useful for detecting
hemorrhagic stroke, i.e. brain hemorrhage or
subarachnoid hemorrhage, but they do not depict
early ischemic lesions. Conventional MRI techniques
are valuable for assessing the extent of the infarct
and its location the first 6 to 24 hours after onset.
However, within the critical first 3 to 6hours, they do
not facilitate assessment of the extent and severity
of ischemia. Recent advances in diffusion-weighted
MRI technology (DWI), which provides physio-
logical information about the self-diffusion of water,

Fig.１０. Diffusion weighted image (DWI) and T2-weighted image obtained
in an 87-year-old man who experienced the onset of left hemiparesis due
to acute embolic occlusion of the right MCA. (a) DWI obtained 2 hours
after onset shows a hyperintense lesion in the right motor area and the
parietal lobe (arrows). (b) T2-weighted image obtained at the same time
shows no definite abnormalities. (c) DWI, obtained after intra-arterial
thrombolytic therapy resulting in recanalization of the right MCA and
marked improvement of his left hemiparesis, reveals a reduction in the
size of the hyperintense area. (d) T2-weighted image obtained one month
after the ictus shows a small infarction in the subcortical area (arrow).
The hyperintense lesion noted in the first DWI obtained during the
superacute phase appears to involve penumbral tissue that was salvaged
by the treatment.
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make it possible to detect ischemic lesions in the
very early phase, i.e. within a few hours after onset
(Fig.10). The area of severe ischemic lesions is
hyperintense on early DWI because of the shift of
water from extracellular to intracellular compart-
ments that results in cytotoxic edema (71). The
hyperintense area on DWI in the acute phase has
a high probability of later becoming irreversibly
infarcted. However, animal experiments indicate
that in the very acute phase, the hyperintense area
may contain penumbral tissue in which the damage
may be reversible (72). At present there is no con-
sensus regarding viability and damage reversibility
in the hyperintense area on DWI images in humans.
Nevertheless, early examination of patients in the
acute phase of ischemic stroke, using DWI, may be
essential for identifying patients with an indication
for local or systemic thrombolysis. DWI may also
be useful for evaluating the prognosis of these
patients.

Finally, despite the establishment of sophisticated
emergency treatment centers, the concept of“brain
attack”is not sufficiently understood by the public.
Many patients with focal neurological deficits attrib-
utable to ischemic stroke are not seen at a hospital
immediately after onset unless their condition mani-
fests as unconsciousness or severe headache. For
stroke victims to be seen in an emergency room
immediately after onset, a campaign to educate the
public is advisable. Also needed is the establish-
ment of a sophisticated emergency system that can
deliver the kind of care necessary to reduce mortality
and morbidity from stroke. These stroke care units
must be staffed by stroke specialists, including neuro-
surgeons, endovascular surgeons, stroke neurologists,
and highly trained support personnel.
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