
INTRODUCTION

Marijuana, prepared from the plant Cannabis
sativa L ., has long been used for therapeutic and
recreational purposese (1). A major psychoactive
component in marijuana was isolated and identified
as Δ9-tetrahydrocannabinol (Fig.1a) in 1964 (2).
Its structurally related compounds are collectively

referred to as cannabinoids. Synthetic compounds
with more potent cannabimimetic activities were
later developed, leading to the discovery of a
seven-transmembrane G protein-coupled receptor
specific for cannabinoids in the brain (3). A cDNA
for this cannabinoid receptor was then cloned from
rat brain in 1990 (4), and another isoform of the
receptor from human leukemia HL-60 cells in 1993
(5). The former receptor is now referred to as CB1
and the latter as CB2 (5). CB1 is expressed mainly
in the brain and to a lesser extent in various periph-
eral tissues while CB2 is expressed mostly in
immune systems like tonsil, spleen, macrophages
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and lymphocytes (6). When cannabinoids bind to the
receptors, they inhibit forskolin-stimulated adenylyl
cyclase activity and N- and P/Q-type calcium chan-
nels through pertussis toxin-sensitive G protein
(7). Agonists and antagonists specific for either CB1
or CB2 are now being developed for a variety of clinical
applications (8). Particularly, CB2-specific agonists
are expected to be effective as anti-inflammatory,
immunosuppressive and analgesic agents and active in
the treatment of glaucoma and chemotherapy-induced
emesis.
In 1992 an endogenous agonist for the receptor was
isolated from porcine brain, and its chemical struc-
ture was determined as arachidonoylethanolamide
(Fig.1b) (9). The compoundwas termed as anandamide,
which was derived from“ananda”meaning bliss in
Sanskrit (9). Anandamide was reported to show
cannabimimetic activities in various pharmacological
and behavioral experiments (for review, 10 -12). Later,
2-arachidonoylglycerol was also found to be an
endogenous ligand for the cannabinoid receptors
(Fig.1c) (13, 14).
Anandamide loses its biological activities when
it is enzymatically hydrolyzed to arachidonic acid
and ethanolamine (Fig.2a). The enzyme responsible
for this hydrolysis is referred to as anandamide
amidase (15), anandamide amidohydrolase (16) or
fatty-acid amide hydrolase (17). In this article we will
discuss recent progress in the research on this
enzyme including our experimental results.

PARTIAL PURIFICATION AND CHARACTERIZA-
TION OF ANANDAMIDE AMIDOHYDROLASE

In 1993 Deutsch and Chin first reported the enzy-
matic hydrolysis of anandamide by the membrane
fractions of several rat tissues and cells, especially
brain (15). Later other groups also reported this
enzyme activity in various mammalian tissues and
cell lines (16, 18-22). We were interested in the
metabolism of anandamide in porcine brain from
which anandamide was first isolated (9).
When the homogenate of porcine brain was incu-
bated with [arachidonoyl-1-14C]anandamide, the
production of [1-14C]arachidonic acid was observed
as analyzed by thin-layer chromatography (TLC)
(23). Sequential centrifugation revealed the highest
enzyme activity in the 105,000 x g pellet (microsomal
fraction), and its specific activity was about 7.5 nmol/
min/mg protein at 37℃. The enzyme could be
solubilized from the microsomes with 1% Triton
X-100. In order to purify the enzyme we attempted
several column chromatographies. However, prob-
ably due to hydrophobicity of the enzyme protein,
yield of the enzyme activity was low in most cases.
The preparation with the highest specific activity
was obtained by hydrophobic chromatography
with a Tosoh Phenyl-5PW column. By this method
anandamide amidohydrolase was purified 22-fold (a
specific enzyme activity, 0.37 μmol/min/mg protein,
Peak II in Fig.3) from the solubilized enzyme prepa-

Fig.2. Reversible reactions catalyzed by anandamide amidohydrolase. Hydrolase and
synthase activities for the substrates as indicated were determined by the use of the
particulate fractions of COS-7 cells overexpressing anandamide amidohydrolase of rat
liver (32, 35). *Products were not identified.

Fig.1. Cannabinoid receptor agonists. (a)
Δ9-tetrahydrocannabinol, (b) anandamide
and (c) 2-arachidonoylglycerol.
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ration.
According to previous reports (15, 24, 25), the
enzyme preparation of brain catalyzed not only the
anandamide hydrolysis but also its reverse reaction,
namely, the anandamide synthesis by the conden-
sation of arachidonic acid and ethanolamine (Fig.2
a). When we allowed the Triton X-100-solubilized
proteins of porcine brain microsomes to react with
[14C]arachidonic acid in the presence of ethanolamine,
[14C]anandamide was formed. This“anandamide
synthase”was co-purified to a specific enzyme activ-
ity of 0.16 μmol/min/mg protein along with the
anandamide amidohydrolase by the Phenyl-5PW
column (Peak II in Fig.3). The hydrolase and synthase
were also co-eluted from a Tosoh DEAE-5PW column.
The hydrolase and synthase reactions catalyzed
by the partially purified enzyme proceeded linearly
up to 20 min, and the activities were dependent on
the amount of the enzyme protein. Optimal pH
was 7.5-9.0 for both the reactions. As compared at
300 μM, the enzyme hydrolyzed ethanolamides of
linoleic acid, oleic acid and palmitic acid at 44%,
27% and 19% the rate of the anandamide hydrolysis.
Such a wide specificity for fatty acid species suggests
that anandamide amidohydrolase is identical to
N-acylethanolamine amidohydrolase, which was
earlier shown to be capable of reacting with various
fatty acid ethanolamides (26). When the synthase activ-
ity was examined in the presence of ethanolamine,
the enzyme converted arachidonic, linoleic, oleic,
and palmitic acids to their ethanolamides, and the
reaction rates differed little among these fatty acids.
We tested inhibitory effects of several com-
pounds on the hydrolase and synthase activities
(Fig.4). Arachidonyl trifluoromethyl ketone (ATFMK),

whichwas reported originally as an inhibitor for cytosolic
phospholipase A2 and later as that for anandamide
amidohydrolase (27), inhibited the hydrolase and
synthase activities in parallel with IC50 values of
about 1 μM. p -Chloromercuribenzoic acid (PCMB),
a sulfhydryl-reactive agent, and phenylmethylsulfonyl
fluoride (PMSF) and diisopropyl fluorophosphate
(DFP), serine hydrolase inhibitors, also inhibited
both the activities almost in parallel. All these results
suggest that the anandamide hydrolase and synthase

Fig.3. Partial purification of anandamide amidohydrolase from
the microsomes of porcine brain by hydrophobic chromatography.
Triton X-100-solubilized proteins of the porcine brain microsomes
were applied to a Phenyl-5PW column. Each fraction was assayed
for the anandamide hydrolase and synthase activities.

Fig.4. Inhibition of the anandamide hydrolase and synthase
activities by various compounds. The enzyme partially purified
from porcine brain was used.
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activities are derived from a single enzyme protein
(23).
We considered the possibility that the anandamide
hydrolase activity was attributable to other known
amidohydrolases. A possible involvement of ceramidase,
which is an enzyme hydrolyzing ceramide to sphingosine
and fatty acid, was ruled out since the partially purified
enzyme was essentially inactive with [14C]ceramide
(N -oleoylsphingosine) as a substrate. In addition,
several artificial hydrophobic substrates for proteases
(peptidyl 4-methyl-coumaryl-7-amide substrates ob-
tained from Peptide Institute, Osaka) were inactive
with the enzyme preparation (23).

CHARACTERIZATION OF RECOMBINANT
ANANDAMIDE AMIDOHYDROLASE

Primary amide of oleic acid (oleamide) (Fig.2b)
was identified as an endogenous sleep inducer, and
was shown to be hydrolyzed enzymatically (28). In
1996 Cravatt et al . cloned a cDNA for an enzyme
hydrolyzing oleamide from a rat liver cDNA library
(17). The enzyme was composed of 579 amino acids,
and its molecular weight was calculated as 63 kDa.
Later, human and mouse homologues of this enzyme
were also cloned by the same group (29). They
found that the recombinant enzyme expressed in
COS -7 cells hydrolyzed not only oleamide but also
anandamide, and referred to the enzyme as fatty-acid
amide hydrolase (17). Maurelli et al . reported that
an anandamide amidohydrolase of N18 mouse
neuroblastoma cells was active with oleamide (30),
and we also showed that the partially purified por-
cine enzyme could hydrolyze oleamide as well as
anandamide (31). Thus, fatty-acid amide hydrolase
seems to be identical to anandamide amidohydrolase.
Based on the reported cDNA sequence, we pre-
pared a cDNA for the coding region of fatty-acid
amide hydrolase by reverse-transcriptase polymerase
chain reaction using rat liver mRNA as a template (32).
The cDNA was inserted to an eukaryotic expression
vector pcDNA 3.1(+) (Invitrogen), and COS-7 cells
were transfected with the recombinant vector. After
3 days the cells were harvested, sonicated, and centri-
fuged at 267,000 x g. The resultant pellet (particulate
fraction) was used as the recombinant enzyme prepa-
ration in the following experiments.When the enzyme
was allowed to react with [14C]anandamide, radio-
active arachidonic acid was produced depending on
the concentrations of anandamide (Fig.5a). The
specific enzyme activity was 132 nmol/min/mg protein

at 37℃, and the Km value for anandamide was about
20 μM. The particulate fraction of the control cells,
transfected with the insert-free vector, did not show
the hydrolase activity. The enzyme also converted
[14C]arachidonic acid to [14C]anandamide in the pres-
ence of ethanolamine. This activity depended on the
concentrations of arachidonic acid and ethanolamine
(Figs.5b and 5c), and the Km values for arachidonic
acid and ethanolamine were 190 μM and 36 mM,
respectively. The specific synthase activity was 177
nmol/min/mg protein. The control cells did not

Fig.５. Dependency of the anandamide hydrolase and synthase
activities on the substrate concentration. The particulate fraction
of COS -7 cells overexpressing anandamide amidohydrolase of
rat liver was allowed to react (a) with different concentrations
of [14C]anandamide or (b) with different concentrations of
[14C]arachidonic acid in the presence of 250 mM ethanolamine
or (c) with different concentrations of ethanolamine in the presence
of 200 μM [14C]arachidonic acid.
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synthesize anandamide. These results confirmed the
reversibility of the enzymatic anandamide hydrolysis.
Deutsch’s group also showed the reversibility of
this reaction with the recombinant enzyme (33).
However, due to the extremely high Km value for
ethanolamine, the enzyme appears to function as the
hydrolase rather than the synthase under physiological
conditions.
We also examined the reactivity of the recombi-
nant enzyme with other fatty acid derivatives (32).
Oleamide was hydrolyzed by the recombinant enzyme
as reported by Cravatt et al. (17) (Fig.2b). We found
that the same enzyme preparation could form
oleamide from oleic acid in the presence of as high
as 1 M ammonium chloride. In agreement with this
finding, a recent report showed the oleamide synthesis
through this pathway by brain microsomes (34).
Arachidonamide was also hydrolyzed by the same
enzyme, and in its reverse reaction this compound
was formed from arachidonic acid and ammonium
chloride (Fig.2c). Furthermore, methyl ester of
arachidonic acid (Fig.2d) was hydrolyzed by this
enzyme, but not by the control cells. In the reverse
reaction, arachidonic acid was converted to its methyl
ester in the presence of 2 M methanol. It should
be noted that this ester formation preferred acidic
pH around 5 although alkaline pH was optimum
for the amide synthesis. As compared between the
substrates at 100 μM, the hydrolase activity was by
far the most active with arachidonamide (Fig.2).
Oleamide and methyl arachidonate were as active
as anandamide. For the synthase reaction with 200 μM
fatty acid as a substrate, the anandamide synthesis
proceeded much faster than the syntheses of primary
amides and ester (Fig.2).
Considering that anandamide amidohydrolase
acted as an esterase for methyl arachidonate, we
were interested to know whether or not the enzyme
hydrolyzed 2-arachidonoylglycerol, another endog-
enous ligand for the cannabinoid receptor (Fig.2e)
(35). The recombinant enzyme was allowed to react
with 2-arachidonoylglycerol for 1 min at 37℃. When
the ethereal extract was analyzed by reverse-phase
high-performance liquid chromatography monitoring
absorption at 205 nm, arachidonic acid was detected.
In contrast, this hydrolytic reaction did not occur
with the control cells. The enzymatic hydrolysis of
2-[14C]arachidonoylglycerol was also observed by
TLC. The hydrolysis of 2-arachidonoylglycerol pro-
ceeded about 4-fold faster than the anandamide
hydrolysis with a Km value as low as 6 μM and an
optimal pH of 10. PMSF and methyl arachidonyl

fluorophosphonate (MAFP) inhibited the enzymatic
hydrolysis of both anandamide and 2-arachidonoyl-
glycerol in parallel. Furthermore, the hydrolysis of
radioactive 2-arachidonoylglycerol and anandamide
was competitively inhibited by non-radioactive
anandamide and 2-arachidonoylglycerol, respec-
tively. 1(3)-Arachidonoylglycerol was as active as
2-arachidonoylglycerol, but 1(3)-oleoylglycerol was less
active. In contrast to monoacylglycerol, diacylglycerols
such as 1-stearoyl-2-arachidonoylglycerol were totally
inactive. Although monoacylglycerol lipase and other
esterases were reported to hydrolyze monoacyl-
glycerols including 2-arachidonoylglycerol (36), our
results suggest that anandamide and 2-arachidonoyl-
glycerol can be inactivated by the same enzyme.
Recently Di Marzo et al . reported that anandamide
amidohydrolase partially purified from mouse
neuroblastoma cells N18TG2 and rat basophilic
leukemia cells RBL-2H3 could hydrolyze 2-arachidonoyl-
glycerol (37).

DISTRIBUTION OF ANANDAMIDE AMIDO-
HYDROLASE IN ANIMAL ORGANS

In order to examine the organ distribution of
anandamide amidohydrolase in rats, we screened both
the anandamide hydrolase and synthase activities in
homogenates of various rat organs (38). As presented
in Fig.6a, liver showed by far the highest specific
activities of the hydrolase and synthase (4-5 nmol/
min/mg protein). Considerable activities were also
detected in cerebrum, cerebellum, testis and parotid
gland. In most of the organs tested, the synthase
activity was comparable to the hydrolase activity.
However, in the case of small intestine, the synthase
activity was much higher than the hydrolase activity.
Since the homogenate of small intestine inhibited
the hydrolase activity of rat liver microsomes, we
presumed the presence of endogenous inhibitory
factors in the small intestine homogenate. The factors
were heat-stable and extractable with acetone. In
order to identify the inhibitory factors, we subjected
the acetone extract of the homogenate to TLC, and
scraped various lipid bands from silica gel. Then,
we eluted the lipids from silica gel with methanol,
and tested for their inhibitory effects. The bands
corresponding to free fatty acids, monoacylglycerols
and polar lipids inhibited the hydrolase and synthase
activities. In agreement with this result, when
pure free oleic acid, 2-arachidonoylglycerol or
phosphatidylcholine was included in the reaction
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mixture, the anandamide hydrolase and synthase
activities of the liver microsome were reduced
depending on the concentrations of these lipids. It
should be noted that the hydrolase activity was
inhibited more potently than the synthase activity.
In consideration of such endogenous lipid inhibi-
tors, we treated the homogenate of small intestine
with 90% cold acetone, and the resultant pellet was
assayed for the enzyme activities. As we expected,
the specific hydrolase activity of the homogenate
was increased about 10-fold by the acetone precipi-
tation. We then reexamined the organ distribution
of the hydrolase and synthase activities with the
acetone-treated homogenates. As shown in Fig.6b,
small intestine had a high specific activity of the
hydrolase (2.0 nmol/min/mg protein), second only
to liver. Stomach and colon also showed considerable
activities of the hydrolase. Furthermore, we exam-
ined distribution of the anandamide amidohydrolase
mRNA in rat organs. As analyzed by Northern
blotting using 25 μg of total RNA prepared from
various organs, an intense band around 2.5 kb was
detected in small intestine and stomach as well as
liver. Faint bands at the same position were observed
with brain, testis, parotid gland, kidney, submaxillary
gland and spleen.
Previously, Desarnaud et al. reported that the

hydrolase activity of rat was high in liver, brain and
testis, and low in small intestine (16). Our results
demonstrated considerable activities of anandamide
amidohydrolase in the gastrointestinal tract like
small intestine, stomach and colon. The enzyme in
gastrointestinal tract may play a role in detoxifying

exogenous bioactive fatty acid amides such as
anandamide and oleamide. Alternatively, small in-
testine is a target organ of cannabinoid as shown
by the experimental result that electrically-evoked
contractions of the myenteric plexus-longitudinal
muscle preparation are inhibited by various cannabinoids
(39). Therefore, the enzyme may be involved in the
regulation of anandamide concentration in the small
intestine.
Since anandamide reduced intraocular pressure

and caused conjunctival hyperemia (40, 41), we investi-
gated the distribution of anandamide amidohydrolase
in ocular tissues. When the homogenates of various
tissues of porcine eyes were assayed, retina, choroid,
iris, optic nerve and lacrimal gland showed high
specific activities of the anandamide hydrolase and
synthase comparable to those in porcine brain (42).
When the subcellular distribution of the enzyme in
retina was examined, the enzyme activity was mostly
recovered in the particulate fractions rather than in
the cytosol in agreement with its distribution in
the brain. Lens did not show either the hydrolase
activity or the synthase activity.

INHIBITORS FOR ANANDAMIDE AMIDO-
HYDROLASE

Since anandamide amidohydrolase is so far known
as the only enzyme capable of hydrolyzing anandamide,
the enzyme is thought to play an important role in
regulating biological activities of anandamide in vivo.
In fact, PMSF capable of inhibiting the enzyme
potentiates the apparent affinity of anandamide for
cannabinoid receptors (43), and anandamide
derivatives resistant to the enzymatic hydrolysis
like (R )-(+)-arachidonyl-1’-hydroxy-2’-propylamide
(termed as R -metanandamide) show more potent
cannabimimetic activities than anandamide (44).
Therefore, potent specific inhibitors for anandamide
amidohydrolase may be useful tools to elucidate the
physiological and pathophysiological significance
of anandamide. As discussed above, generally used
serine hydrolase inhibitors such as PMSF and DFP
and sulfhydryl group blockers like PCMB were
reported to inhibit anandamide amidohydrolase
(15, 23, 26). Later, several fatty acid derivatives such
as ATFMK (27), MAFP (45, 46), palmitylsulfonyl
fluoride (47) and arachidonoyl-diazo-methyl-ketone
(ADMK) (46) were reported to inhibit anandamide
amidohydrolase (Fig.7). MAFP is the most potent
irreversible inhibitor so far reported with an IC50

Fig.６. Organ distribution of anandamide amidohydrolase in rats.
(a) Homogenates prepared from various rat organs were assayed
for the anandamide hydrolase and synthase activities. (b) The
homogenates were treated with 90% cold acetone. The precipitated
proteins were subjected to the enzyme assays. N.D., below detection
limit.
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value of as low as 1- 4 nM. We confirmed the inhib-
itory effects of ATFMK (23), MAFP (35, 46) and
ADMK (46) by the use of the partially purified porcine
enzyme or the recombinant rat enzyme. However,
most of these fatty acid derivatives were originally
developed as phospholipase A2 inhibitors, and are
not strictly specific for anandamide amidohydrolase.
The development of more selective inhibitors is
awaited. The inhibitors may be useful for the
treatment of glaucoma or as analgesic, anti-emetic,
immunosuppressive agents and appetite enhancers
by increasing the endogenous level of anandamide
(8).

OVERALL METABOLISM OF ANANDAMIDE

We summarize here the currently accepted meta-
bolic pathway of anandamide. As mentioned above,
anandamide amidohydrolase is an enzyme catalyzing
a reversible reaction. However, its catalytic properties
suggest that the enzyme is responsible for the
hydrolysis of anandamide under physiological con-
ditions. The most likely biosynthetic pathway of
anandamide is as follows (Fig.8) (48-50). The first step
is the arachidonyl transfer from glycerophospholipids

like phosphatidylcholine to phosphatidylethanolamine
catalyzed by a calcium-dependent transacylase. The
produced N-arachidonoyl-phosphatidylethanolamine
is cleaved by a phospholipase D, and anandamide is
released. It should be noted that N-acylethanolamines
containing various fatty acid species are produced
together with anandamide through this pathway.
Details on the enzymes involved in this synthetic
route are still unclear. Anandamide thus formed is
quickly hydrolyzed to arachidonic acid and ethanolamine
by anandamide amidohydrolase widely distributed
in the animal tissues. In addition, we (51) and others (52)
showed that the arachidonate moiety of anandamide
is oxygenated by 12- and 15-lipoxygenases (Fig.8).
Oxygenation of anandamide by cytochrome P450
(53) and cyclooxygenase (prostaglandin endoperoxide
synthase) (54) was also reported.
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