タングステンジルコニウム水酸化物結晶脱水過程の XRD/XAFS 観察およびその酸触媒特性

山本 孝^{a,b*},近藤真季^b,入江智章^b,谷間直人^b

Structural Transformation of Tungsten-Zirconium Hydroxide Crystals Upon Calcination Characterized by XRD, XAFS and Acid Catalyzed Reaction

Takashi YAMAMOTO^{a,b*}, Maki KONDO^b, Tomoaki IRIE^b and Naoto TANIMA^b

^a Department of Natural Science, Division of Science and Technology, Tokushima University 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan

^b Department of Mathematical and Material Sciences, Faculty of Integrated Arts and Sciences, Tokushima University

1-1 Minamijosanjima-cho, Tokushima 770-8502, Japan

(Received 25 October 2016, Revised 7 January 2017, Accepted 8 January 2017)

Tungsten zirconium hydroxides (ZWOH) with the molar ratio of W/Zr=2 were synthesized by a hydrothermal process at 453 K for 6-72 h. Structure of the hydroxides with different crystallinity and the transformation upon calcination were characterized by XRD, XAFS, UV-vis spectroscopic techniques. The ill-crystallized ZWOH with large surface area $(>100m^2 \cdot g^{-1}; \text{ phase-I})$ was formed via hydrothermal treatment till 12 h, and well crystallized $ZrW_2O_7(OH)_2(H_2O)_2$ (< 2 m²·g⁻¹; c-ZWOH) was formed after 24 h. W L-edge XAFS, optical bandgap and thermal gravity analyses gave direct evidence to support the previous suggestion about dehydration process of c-ZWOH to ZrW₂O₈, where ZrW₂O₈ polymorphism with low crystallinity (phase-II) and cubic ZrW₂O₈ crystal formed after calcination in the range of 573-773 and 823-873 K, respectively. The ZWOH phase-I was found to promote alkylation of benzylalcohol with anisole, and the activity exhibited the maximum after calcination at 873 K. The c-ZWOH and ZrW₂O₈ polymorphisms were catalytically inert for the reaction. Existence of active phase-I as a minor species in ZrW₂O₈ little influence on XRD pattern, but surface area measurements and the catalytic performance might help to evaluate fraction of phase-I in the Zr-W-O system. The ZWOH phase-I was candidate for a model catalyst of tungstated zirconia strong solid acid to investigate the acidity generation mechanism.

[Key words] Tungsten zirconium hydroxide, ZrW2O8, Dehydration process, XAFS, Solid acid

W:Zr比が2:1の二元系水酸化物を水熱合成法にて調製し、水熱処理の保持時間および焼成温度の異なる物質の構造をX線回折、X線吸収分光法で検討し、酸触媒特性を評価した.453 K での水熱処理では12 時間

a 徳島大学大学院理工学研究部 徳島県徳島市南常三島町 2-1 〒 770-8506 *連絡著者: takashi-yamamoto.ias@tokushima-u.ac.jp b 徳島大学総合科学部総合理数学科 徳島県徳島市南常三島町 1-1 〒 770-8502

までは高表面積かつ結晶性の低い化学種(I相)が生じ,24時間以降で結晶性の高い水和物(ZWOH 結晶)が得られた.ZWOH 結晶は573-773K で結晶性の低いZrW2O8 多形(II相),823-873K で立方晶ZrW2O8 へ変化することをX線分析,UV-Vis分光法および熱重量分析で確認した.I相はアニソールのベンジルアルコールによるアルキル化を促進する固体強酸触媒として機能し,873K 焼成体が最高活性を示した.ZWOH 結晶およびZrW2O8 はアルキル化活性を示さなかった.立方晶系ZrW2O8 の結晶性の低いI相が混在しても通常のXRD解析では検出困難であるが,表面積測定および活性試験を併用すると混在の推定が可能であった. [キーワード]タングステンジルコニウム水酸化物,ZrW2O8,脱水過程,XAFS,固体酸性

1. 緒 言

ZrW2O8 は実用的な広い温度範囲で等方的な 負の熱膨張を示す物質であり、ゼロ熱膨張材料 の原料として注目されている材料である¹⁻⁵⁾.本 物質は1378-1530 K で安定であることが ZrO2-WO3 系状態図⁶⁾により示されており、この温 度領域から急冷することで得ることが可能であ る. 近年 ZrW₂O₇(OH)₂(H₂O)₂ 結晶 (以下 ZWOH 結晶)をおよそ 873-923 K で焼成することで単 相のZrW2O8を準安定相として得る手法が開発 され^{7,8)}, 簡便にナノロッド状の単結晶が得ら れるようになった. ZWOH 結晶の加熱に伴う ZrW2O8 結晶への構造変化は Xing らにより検討 されている^{9,10)}. 彼らは XRD, TG-DTA およ び FTIR 解析を行い, 473-565 K で脱水が進行 しており、573 K 焼成体はすでに単相の ZrW₂O₈ 結晶が形成されていることを提案している.し かし 673 K 焼成体の XRD 強度は 773-873 K 焼 成体である立方晶系のものと比較して著しく弱 く、かつ回折パターンも異なっている、このた め 673 K 焼成体の空間群や局所構造は立方晶系 ZrW2O8と異なることが考えられるもののその 詳細は不明である.また近年ではZrW2O8が温 和な条件下で大気中の水分と反応して水和物へ 戻る逆反応が進むことが観察されている¹¹⁾な ど, 脱水および結晶化過程の検討は十分ではな 61.

非晶質水酸化ジルコニウムに所定量のタング ステン塩を担持,焼成すると100%硫酸に匹敵 する強い酸触媒特性を示すことが知られてい る^{12,13)}.その一方でZrW2O8結晶の触媒作用 は犠牲剤存在下での水光分解に利用されてい る¹⁴⁾以外に報告例はなく,機能性材料として の検討はほとんど行われていない.本研究では タングステンジルコニウム水酸化物の調製条件 を検討し,焼成に伴う脱水結晶化過程およびそ の触媒機能について評価した.

2. 実験

タングステンジルコニウム水酸化物 (ZWOH) 合成は既報¹⁰⁾を参考とし、母ゲルを453 K で 所定時間水熱処理することで行った。母ゲルは オキシ塩化ジルコニウム (ナカライ, GR) 0.25 M 水溶液 50 ml とメタタングステン酸アンモニウ ム (ストレムケミカル、AMT と略す) 0.25 M 水 溶液 100 ml を 333 K で混合、2 h 撹拌後、6 M HCl を 50 ml 加えてさらに 5 h 撹拌後に水熱処 理を施した。得られた白色沈殿はろ液中に塩 化物イオンが硝酸銀テストで検出されなくな るまで蒸留水で繰り返し洗浄し、383 K で 12 h 乾燥後、空気気流下、所定温度で 3 h 焼成し た. ZWOH およびその焼成体のキャラクタリ ゼーションは XRD, XAFS, 拡散反射 UV-Vis 分

光法および窒素吸着等温線測定により 行った. 粉末 XRD パターンは Minifilex (リガク)で測定した.X線吸収スペ クトルは実験室系装置 R-XAS Looper (リガク)¹⁵⁾を用い、室温下、透過法 で測定した.分光結晶として W L1 殻 XANES および W L3 殻 EXAFS 測定に はそれぞれ Si(620) および Ge(220) を 用いた. XANES スペクトルは Tanaka らの手法^{16,17)}に基づき, Igor Pro で抽 出した. EXAFS スペクトルの解析は REX2000¹⁸⁾を用いた.ジルコニウム 化合物にはハフニウムが混在している ため、EXAFS スペクトルのフーリエ 変換範囲は Hf L2 殻吸収端までのおよ そ 2.5-10.8 Å⁻¹ までとした. 窒素吸着

等温線測定は BELSORP-mini (マイクロトラッ ク・ベル)を用いて 77 K で行い, BET 法で解析 することにより比表面積を求めた.

触媒機能はアニソールのベンジルアルコール による Friedel-Crafts アルキル化^{13,19)}をテスト 反応として用い,固体酸性質を評価した.前処 理として触媒 100 mg を 473 K で 2 h 排気し,窒 素雰囲気下,353 K で反応に供した.標準試料 として,触媒学会提供タングステン酸ジルコニ ア (JRC-WZ-1)を空気中 1073 K で 3 h 焼成した もの (45 m²·g⁻¹)および非晶質シリカアルミナ (JRC-SAL-2;526 m²·g⁻¹)を用いた.

3. 結果

3.1 XRD

Fig.1 に水熱処理時間の異なる ZWOH 未焼成体の XRD パターンを示す. この試料の BET 比表面積を図中に合わせて示した. 12 h までは数本の幅広い回折線が観察され,24 h 以降では新た

Fig.1 XRD patterns of zirconium tungstene hydroxides with different hydrothermal treatment time at 453 K, and the surface area.

な鋭い回折線が出現した. この回折パターンは 既報の ZrW₂O₇(OH)₂(H₂O)₂^{10,20)} と同一であり, 何らかの結晶相が生成後, 24 h 以降に結晶化が 進行して二元系水酸化物結晶 (ZWOH 結晶) が 生成することが確認された. 水熱処理時間 12 h までに出現した相の回折パターンは合成時に加 える HCl 濃度が低い条件で得られる非晶質相と されているもの¹⁰⁾ と同一であり,以下未同定 相 I (phase-I) と称する. I 相は結晶性が低く 100 $m^2 \cdot g^{-1}$ 以上の表面積を有するが, ZWOH 結晶 の表面積は 2 $m^2 \cdot g^{-1}$ 以下であった.

ZWOH 結晶を所定温度で焼成したときの XRD パターンを Fig.2 に示す. 473 K までは構 造を保持していたが 573 K 焼成後は異なる相へ 変化した. 焼成温度 823-973 K では既往の研 究と同様に立方晶系 ZrW2O8 結晶が生成するこ と, 1073 K 以上では熱力学的に安定な ZrO2 と WO3 に分解することが確認された. 573-773 K 焼成で観察された幅広い回折線は,水熱処理時

۲	ZrW ₂ O ₈
0	$ZrW_2O_7(OH)_2(H_2O)_2$
\bigtriangleup	t/c-ZrO ₂
Ж	m-ZrO ₂
\diamond	UK2 (phase-II)

Fig.2 XRD patterns of calcined $ZrW_2O_7(OH)_2(H_2O)_2$ crystals.

Fig.3 XRD patterns of calcined ill-crystalline ZWOH (phase-I).

間 12 h までに観察された I 相とは異なっており, 以降未同定相 II (phase-II) と称する. ZWOH 結 晶を 473 K で処理した際の構造は空気中での焼 成後も維持されるものの, 10⁻³ Pa 下で排気す ると II 相へ変化した. 一方 I 相は 673-873 K で 焼成しても XRD パターンに変化はなく, 1073 K 焼成後は WO₃ および ZrO₂ へと相分離した (Fig.3).

3.2 XAFS

Normalized absorption

3.2.1 W L1 殻 XANES

対称性の異なる WO4 または WO6 ユニットを 有するタングステン化合物の W L1 殻 XANES スペクトルを Fig.4 に示す. 12110 eV 付近に観

CaWO₄

 $Y_{2}(WO_{4})_{3}$

APT

AMT

WO₂

In₆WO₁₂

Sr₂CaWO₆

12200

察されるプリエッジピーク (PP) はタングステ ン原子が酸素正八面体中央に位置する In₆WO₁₂ および Sc₂CaWO₆ では痕跡程度,酸素四面体を 形成する CaWO₄, Y₂(WO₄)₃ では明瞭に観察さ れるのに対し,歪んだ酸素八面体を形成する WO₃, AMT, パラタングステン酸アンモニウ ム (APT) では中程度の強度となっている.こ のは PP 2 $p_{3/2}$ から 5*d*-6p 混成軌道の p 成分への 電気双極子遷移に帰属されるものである ^{21,22)}. *d*-p 混成軌道は T_d では形成されるものの O_h で は混成不可であることを利用し, PP 強度は未 知試料に含まれるタングステン種の局所構造の 指標として広く利用されている ²²⁻²⁴⁾.

Fig.5 に ZWOH 結晶およびその焼成体の W

Fig.4 W L1 edge XANES spectra of tungsten compounds with different symmetry.

Photon energy /eV

12160

12120

crystals calcined at different temperature.

12080

Fig.6 W L1 edge XANES spectra of ill-crystalline zirconium tungsten hydroxide (phase-I) calcined at different temperature.

L1 XANES スペクトルを示す. PP は 573-773 K 焼成体 (II 相) では ZWOH 結晶より大きく, XRD にて ZrW₂O₈ 結晶の生成が確認されている 823-973 K 焼成体ではさらに少し大きくなり, 四面体 WO4 種を有する化合物と同等となった. ZWOH 結晶および 1073 K 以上の焼成温度では WO₃ と同程度であった. 一方 I 相の XANES ス ペクトル形状および PP 強度は 1073 K までの焼 成後もほとんど変化せず, WO₃ と類似してい た (Fig.6).

3.2.2 W L3 殻 EXAFS

ZWOH 結晶, 未同定 I, II 相, およびタング ステン化合物の W L3 殻 EXAFS およびその動 径構造関数を Fig.7 (a) に示す. 未同定 I 相の焼 成体に対応するスペクトルは Fig.7 (b) にまとめ た. II 相の EXAFS スペクトルの形状は ZWOH 結晶とは異なっており, むしろ ZrW₂O₈ 結晶と 近く, その動径構造関数には第二配位圏に相当 する W-W 対のピークは観察されなかった. II 相では焼成温度 873 K までのスペクトル形状は タングステン酸ジルコニウム触媒と類似してお り, 1073 K 焼成体は WO₃ と近かった.

3.3 活性試験

近年水熱合成法で調製された複合酸化物や特 異な形状を有する酸化物ナノチューブの酸触媒 特性が見いだされつつある 25-27). そこで種々の ZWOH およびその酸触媒特性を評価するため、 テスト反応として強い Brønsted 酸点により促進 される Friedel-Crafts アルキル化反応^{13,19)}を行っ た結果を Fig.8 に示す. 403 K では ZWOH 結晶, II相, ZrW2O8および典型的な固体強酸である シリカアルミナ(SA)は不活性であったが、I相 上ではアルキル化が進行した.この1相の触媒 特性には焼成温度依存性があり,873 K 焼成体 が最高活性を示した.既往の手法で調製された タングステン酸ジルコニア(WZ)は、363 K で も本反応を促進するが²⁸⁾,同温でI相およびそ の焼成体は不活性であった.したがって未同定 I相は、最高酸強度はタングステン酸ジルコニ アより低いものの非晶質シリカアルミナより高 い酸性度を有する強酸触媒であることが確認さ れた.

Fig.7 W L3 edge EXAFS spectra of tungsten compounds and their Fourier transforms (a), and those of illcrystalline zirconium tungsten hydroxide (phase-I) calcined at different temperature (b). Fourier range, ca. Δk : 2.5-11.0 Å⁻¹.

X線分析の進歩48

Fig.8 Results of alkylation of anisole with benzylalcohol. Catalyst: 0.1 g; benzyl alcohol: 0.64 mL (6.18 mmol); anisole: 10 mL; reaction temperature: 403 K; reaction time: 45 min. I-X: Phase-I sample calcined at X K. SA: amorphous silica-alumina. WZ: conventional WO_x-ZrO₂ (12 wt% as WO₃).

4. 考察

4.1 タングステンジルコニウム水酸化物結晶 の脱水過程

ZrW₂O₈系材料に関する研究では、多元系水 酸化物を前駆体としてその焼成体を用いる場合 が多い. 本研究において焼成温度 823-973 K で は、XRD パターンには立方晶 ZrW₂O₈ に帰属 される回折線のみが観察され、W L1 殻 XANES スペクトル中のプリエッジピーク (PP) 強度も ほぼ同一であった. ZWOH 結晶の 573-773 K 焼 成体(II相)の XRD パターンは Xing らにより報 告されている 573 K 焼成体のもの⁹⁾ と同じであ る. 彼らは重量変化および FTIR スペクトルに て W-O 結合に起因する指紋的なピークが存在 することを根拠とし、該当する相をZrW2O8結 晶によるものであると提案している.本研究に おいて II 相の EXAFS スペクトル形状は ZrW2O8 と類似しており、XANES スペクトル中に観察 された PP 強度は酸素四面体ユニットを有する タングステン六価化合物と同程度である. その 一方で II 相の PP 強度は立方晶系 ZrW₂O₈ より わずかに小さく、拡散反射 UV-Vis スペクトル を解析することで求めた光学バンドギャップ 値 (3.4 eV) は ZrW₂O₈ 結晶のもの (823-873K 焼 成体: 2.8 eV) と異なっていた (Fig. 9). 3.1 項 で述べた通り ZWOH 結晶を真空下で 473 K 処 理するとII相へ変化することを確認しており, このときの重量減少は8.6%であった.ここで ZWOHをZrW₂O₈・*n*H₂Oとして表し、473K排 気で水和水がすべて脱離したすればn=3.1に 相当する (n=3のとき ZrW₂O₇(OH)₂(H₂O)₂ に相 当). 空気下 ZrW2O7(OH)2·2H2O を加熱すると 565 K までに 8-10% 重量減少することが熱分析 により示されており^{9,29)},我々の結果は既往の 報文を再現していた.以上よりⅡ相中のタング ステン種は主に WO4 種である ZrW2O8 を形成 しているものの, 立方晶系である 823-973 K 焼 成体とは異なる空間群をもつ多形であることが 推察された. プリエッジピーク強度およびバン ドギャップが焼成により変化する温度は、XRD パターンにより確認される ZWOH 結晶が II 相

Fig.9 Calcination temperature dependences on optical bandgap energy of $ZrW_2O_7(OH)_2(H_2O)_2$ crystals and preedge peak intensity for W L1 edge XANES.

(ZrW2O8 多形),立方晶 ZrW2O8,熱分解する境 界と連動していた.その一方で立方晶 ZrW2O8 が存在することが確認されている温度領域の光 学バンドギャップ値は 823-873 K 焼成体と 923, 973 K 焼成体とでは異なっていた.これは 923 K 焼成で一部の ZrW2O8 が WO3 と ZrO2 への 分解が起こり,UV-Vis スペクトルから求めら れたバンドギャップが WO3 種を反映した値と なっているものと考えられる.以上,水熱処理 により得られる ZWOH および所定温度での焼 成による出現する結晶相について,フロー図と して Fig.10 にまとめた.

4.2 低結晶性タングステンジルコニウム水和物 の構造と酸性質

ZWOH結晶の水熱処理時間が短い時間に観 察されたI相は、活性試験結果より非晶質シリ カーアルミナより最高酸強度が高いことは明ら かである. この相に対応する XRD パターンは Xing らが低い酸濃度で水熱処理を行ったときに 得られたパターン¹⁰⁾ と類似している. 彼らは この相は ZrW₂O₈ の非晶質前駆体であり、773 Kで加熱するとZrO2とWO3に分解すると報告 している. I相と類似の XRD パターンは、すで に AMT と硫酸ジルコニウムを原料として硫酸 酸性雰囲気下 (pH 1-1.5) で水熱処理することで 得られている³⁰⁾. 彼らはこの 673 K 焼成体が Friedel-Crafts 型アルキル化反応に活性を示すこ とをもとに、固体強酸触媒として機能すること をすでに提案している.しかしながら試料調製 は硫酸共存下で水熱処理が行われており、ジル コニウム源も硫酸イオンを含むものが使用され ていることから、超強酸的触媒作用を示すこと で著名な硫酸化ジルコニア^{13,31,32)}が生成して いる可能性も否定できなかった、本研究での調 製過程では硫酸イオンは存在していないため, 我々が得たI相自身が強酸触媒として機能する ことが改めて確認された.

この短時間の水熱処理で得られた」相は、 873 K 焼成後も元の構造を保持していることが XAFS および XRD 解析より確認されている. I 相が相分離した結晶性の低い WO3 と ZrO2 の 混合物であれば、先の報文と同様に 873 K 焼成 によりそれぞれが結晶化すると予想される。 そ の一方で我々が測定した I 相の W L 殻 XANES/ EXAFS スペクトルは固体強酸として知られる タングステン酸ジルコニア(WZ)のものと類似 している. したがって 453 K での水熱処理時間 12hまでのI相中には、固体強酸触媒 WZ の活 性種と同様の化学種が形成している可能性があ る. 一般的な WZ は、非晶質水酸化ジルコニウ ムにタングステン塩をWO3として13-15 重量 % 含浸担持させ、1073 K 焼成することで再現 性良く調製可能である^{12,13)}.またこの活性種 は正方晶系酸化ジルコニウム表面上に形成され た WO₃ ナノクラスターであることが提案され ている^{13, 24, 33-36)}. 我々の実験における XANES スペクトルの PP 強度も、I 相がひずんだ WO₆ ユニットを有することを示しており、両者のタ ングステン種が類似していることと矛盾しな 11.

最後に ZWOH 結晶を 873 K 焼成すると ZrW₂O₈ 結晶体が得られるが,水熱処理条件に よりその表面積は最大 60 m²·g⁻¹ と変化した.2 m²·g⁻¹程度である ZrW₂O₈ は不活性であるにも かかわらずその高表面積試料は酸触媒活性を示 し,その表面積と活性には相関が見いだされた (Fig.11).この現象は X 線回折強度が低く高表 面積かつ高活性である低結晶性 I 相が ZrW₂O₈ 結晶と共存することで説明可能である.

X線分析の進歩48

Fig.11 Relation between surface area of calcined ZWOH samples with different crystalline phase and the catalytic performance. Calcination temperature: 873 K. Catalyst 0.1 g; benzyl alcohol (BA) 0.64 mL (6.18 mmol); anisole 10 mL; reaction temperature 403 K; reaction time 45 min.

5. 結 言

塩酸共存下タングステン-ジルコニウム水酸 物のゲル状前駆体を 453 K で水熱処理すると、 12 h までは結晶性が低く高表面積 (100-170 m² ·g⁻¹)の化学種 (I 相)が生成し、24 h 以降は結 晶性の高い二元系水酸化物 ZWOH (<2 m²·g⁻¹) が生成した. ZWOH 結晶を焼成すると 823-973 K 焼成で結晶性の高い立方晶系 ZrW₂O₈ へ変化 することの既往の研究を再確認するとともに、 573-773 K 焼成体 (II 相)が ZrW₂O₈ の多形であ ることを XRD および W L 殻 XAFS 解析より明 らかにした. この結果は Xing らが提案する機 構 9,10 を裏付けるものである.

このI相は固体強酸として機能し,酸触媒特 性に対して顕著な焼成温度依存性を示すことが 見出された. XAFS 解析より,I相を形成する タングステン種は既往のタングステン酸ジルコ ニア触媒 (WZ) に含まれる化学種と類似構造を 持つ可能性が示された.既往の高活性 WZ では Zr/W 比がおよそ 10.6 とジルコニウム大過剰で あり,ジルコニウム側から見たタングステン種 との局所構造は未解明である.今後,本試料の Zr K 殻 XANES/EXAFS 解析等を行うことによ り,WZ 固体強酸触媒の活性点構造が明らかに される可能性がある.

ZWOH 結晶および ZrW₂O₈ 結晶を含むその焼 成体は強酸触媒活性を示さなかった.結晶性が 低く表面積が 2 桁大きい I 相が共存すると XRD 解析では ZrW₂O₈ 結晶であると思われる試料で も活性を示した.非晶質物質を含む回折線強度 の低い成分の共存は簡便な XRD 解析のみでは 見落とす可能性がある.結晶化度は内部標準を 用いた XRD 解析により評価される.固体触媒 では低焼成温度,小粒子径,高表面積など低結 晶性および非晶質材料を使用する場合も多い. 常に指摘されることであるが,触媒材料の評価 には XRD だけでは不十分であり表面積測定も 不可欠であることが改めて確認された.

謝 辞

標準試料として使用した触媒は触媒学会参照触媒部会より提供された.本研究の一部は JSPS 科学研究費補助金(25630369)の支援のも とに行われた.

参考文献

- 1) C. Martinek, F. A. Hummel: J. Am. Ceram. Soc., 51, 227 (1968).
- J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian, A. W. Sleight: *Chem. Mater.*, 8, 2809 (1996).
- 3) D. A. Fleming, D. W. Johnson Jr, P. J. Lemaire:

5,694,503, (Dec. 2, 1997); U.S. Patent, (1997).

- G. D. Barrera, J. A. O. Bruno, T. H. K. Barron, N. L. Allan: *J. Phys.-Condes. Matter*, **17**, R217 (2005).
- K. Takenaka: Sci. *Technol. Adv. Mater.*, **13**, 013001 (2012).
- L. L. Y. Chang, M. G. Scroger, B. Phillips: J. Am. Ceram. Soc., 50, 211 (1967).
- C. Closmann, A. W. Sleight, J. C. Haygarth: J. Solid State Chem., 139, 424 (1998).
- U. Kameswari, A. W. Sleight, J. S. O. Evans: *Int. J. Inorg. Mater.*, 2, 333 (2000).
- Q. F. Xing, X. R. Xing, R. B. Yu, L. Du, J. Meng, J. Luo, D. Wang, G. R. Liu: *J. Cryst. Growth*, **283**, 208 (2005).
- X. R. Xing, Q. F. Xing, R. B. Yu, J. Meng, J. Chen,
 G. R. Liu: *Physica B*, **371**, 81 (2006).
- 11) N. A. Banek, H. I. Baiz, A. Latigo, C. Lind: J. Am. Chem. Soc., **132**, 8278 (2010).
- M. Hino, K. Arata: J. Chem. Soc., Chem. Commun., 1259 (1988).
- H. Hattori, Y. Ono: "Solid Acid Catalysis", (2015), (Pan Stanford, Singapore).
- 14) L. Jiang, Q. Z. Wang, C. L. Li, J. A. Yuan, W. F. Shangguan: *Int. J. Hydrog. Energy*, **35**, 7043 (2010).
- T. Taguchi, J. Harada, A. Kiku, K. Tohji, K. Shinoda: J. Synchrot. Radiat., 8, 363 (2001).
- T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki, S. Yoshida: J. Chem. Soc., Faraday Trans. I, 84, 2987 (1988).
- 17) 吉田郷弘,田中庸裕:X線分析の進歩,19,97 (1988).
- T. Taguchi, T. Ozawa, H. Yashiro: *Physica Scripta*, T115, 205 (2005).
- A. Takagaki, D. L. Lu, J. N. Kondo, M. Hara, S. Hayashi, K. Domen: *Chem. Mater.*, **17**, 2487 (2005).
- 20) M. S. Dadachov, R. M. Lambrecht: J. Mater. Chem.,

7, 1867 (1997).

- 21) T. Yamamoto: X-Ray Spectrom., 37, 572 (2008).
- S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka: J. Phys. Chem. C, 112, 6869 (2008).
- 23) J. A. Horsley, I. E. Wachs, J. M. Brown, G. H. Via, F. D. Hardcastle: *J. Phys. Chem.*, **91**, 4014 (1987).
- 24) T. Yamamoto, A. Orita, T. Tanaka: *X-Ray Spectrom.*, **37**, 226 (2008).
- 25) M. Kitano, K. Nakajima, J. N. Kondo, S. Hayashi, M. Hara: J. Am. Chem. Soc., 132, 6622 (2010).
- K. Okumura, T. Tomiyama, S. Shirakawa, S. Ishida, T. Sanada, M. Arao, M. Niwa: *J. Mater. Chem.*, **21**, 229 (2011).
- 27) T. Murayama, N. Kuramata, W. Ueda: *J. Catal.*, 339, 143 (2016).
- T. Yamamoto, A. Teramachi, A. Orita, A. Kurimoto,
 T. Motoi, T. Tanaka: *J. Phys. Chem. C*, **120**, 19705 (2016).
- 29) J. A. Colin, D. V. Camper, S. D. Gates, M. D. Simon, K. L. Witker, C. Lind: *J. Solid State Chem.*, 180, 3504 (2007).
- 30) 安藤雅郎,泉 彰子,村山 徹,上田 渉:第 108 回触媒討論会 A 予稿集, 1F11 (2011).
- M. Hino, S. Kobayashi, K. Arata: J. Am. Chem. Soc., 101, 6439 (1979).
- X. M. Song, A. Sayari: *Catal. Rev.-Sci. Eng.*, 38, 329 (1996).
- M. Scheithauer, R. K. Grasselli, H. Knozinger: Langmuir, 14, 3019 (1998).
- 34) D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, E. Iglesia: J. Phys. Chem. B, 103, 630 (1999).
- 35) D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes, E. Iglesia: *J. Catal.*, **181**, 57 (1999).
- 36) W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, C. J. Kiely: *Nature Chem.*, 1, 722 (2009).