
INTRODUCTION

High-throughput next-generation sequencing (NGS), together
with the development of powerful computational tools, has trans-
formed biological and biomedical research, particularly cancer re-
search, over the past several years. In a wide variety of tumor types,
including gastric cancer (GC), the complex genotypic landscapes of
somatic variants have been investigated (1-3). Most significantly, a
number of clinically actionable mutations have been identified as
therapeutic targets for cancer therapies, narrowing the gap be-
tween basic research and clinical application and forming the basis
for personalized medicine in the clinical setting(4).
During characterization of cancer genomes, calling somatic vari-
ations, mainly single nucleotide variants (SNVs) and small inser-
tions/deletions (indels), by comparing a tumor sample with a
matched normal sample is the critical step (5). Although advances in
NGS technologies and computational algorithms have led to
higher accuracy in somatic variant calling, this step is still difficult
due to low allele frequencies, low sample purity, clonal heterogene-
ity, inadequate sequencing coverage, sequencing errors, and am-
biguities in short read mapping (6). To meet the challenges of
somatic variant calling, a number of tools with enhanced accuracy
have been developed that compare a tumor

�
normal pair directly at

each locus of a possible variant (7). Although each new tool has

been compared with some earlier applications (8), the accuracy of
the combination methods using multiple tools and their relative
advantages in real applications are largely unknown.
GC is a leading cause of global cancer mortality, with high inci-
dence rates in Asia, including Japan (9). Recent genome sequenc-
ing studies have provided valuable insights into the key genetic
alterations of GC, resulting in identification of its major driver
genes (10-14). However, potential genomic alterations among
Japanese individuals are not well understood, although several
studies identified the potential mutations in specific subtypes of
GC, such as diffuse-type (13) and mucinous GCs (14). Recent
reports from The Cancer Genome Atlas (TCGA) research net-
work and the Asian Cancer Research Group (ACRG) explored the
molecular landscape of GC based on genetic/epigenetic and ge-
netic profiles of GCs, respectively (3, 15), and provided four sub-
types in each group. These two classifications showed differences at
least partially explained by the difference in ethnic origin of the
patients : patients from USA and Western Europe in the TCGA and
those from Korea in the ACRG (16). Therefore, further analyses
clarifying the molecular landscape of GC in Japanese populations is
still needed.
For further detailed exploration of the genetic basis of GC in
Japanese individuals, somatic variant detection methods with higher
performance compared with frequently used somatic variant call-
ing tools are necessary. Herein, we constructed a new pipeline. We
combined two somatic variant callers with different algorithms,
Strelka (17) and VarScan 2 (18), and evaluated the performance of
this newly constructed method using whole exome sequencing
data obtained from 19 Japanese cases with GC ; then, we character-
ized these tumors based on identified driver molecular alterations.
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MATERIALS AND METHODS
Patients and DNA samples
Frozen GC samples and paired non-tumorous gastric tissues
were obtained from 19 patients with histologically proven primary
GC who underwent gastrectomy at the Kyoto Prefectural Univer-
sity of Medicine Hospital (Kyoto, Japan) between 2013 and 2014
(Table 1). None had synchronous or metachronous multiple can-
cers in other organs. Relevant clinical data were available for all
patients. The pathological classification of tumors was determined
according to UICC classification (19). Of 19 cases, 12 and 5 cases
were differentiated and undifferentiated GCs, respectively. The
study was performed according to the Declaration of Helsinki proto-
cols. Formal written consent was obtained from all patients after
the local ethics committee (Kyoto Prefectural University of Medi-
cine and Tokushima University) approved all aspects of these stud-
ies. Epstein

�
Barr virus (EBV)-associated GC (EBVaGC) was de-

termined by in situ hybridization (ISH) of EBV-encoded small
RNAs as described elsewhere (20). Genomic DNA from the can-
cerous or paired non-tumorous gastric tissues was extracted using
the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s protocols.

Exome sequencing
A flow chart for exome sequencing and data processing is
shown in Figure 1. Exome capture was performed using the Truseq
DNA Sample Prep Kit (Illumina, San Diego, CA) or SureSelect XT
Human All Exon Kit V5 (Agilent Technologies, Santa Clara, CA).
Libraries were sequenced using the HiSeq 1500 or 2500 platform
(Illumina) with 101-bp paired-end reads. Image analysis and base
calling were performed using HiSeq Control Software v2.2.38 (Illu-
mina), Real Time Analysis v1.18.61 (Illumina), and bcl2fastq Con-
version Software v1.8.4 (Illumina). Reads were quality - filtered us-

ing a FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and
were aligned to the human genome sequence assembly hg19
(GRCh37) using the Burrows-Wheeler Alignment tool v0.7.12
(21). The alignments were converted from a sequence alignment
map format to sorted and indexed binary alignment map (BAM)
files, and duplicated reads were removed using SAMtools v0.1.19
and v1.2 (22). Local realignments around indels and base quality
score recalibration were performed using the Genome Analysis
Toolkit version 3.3-0 (23). A summary of exome sequence per-
formance is shown in Table 2. To perform the SNV analysis, pileup
files were created from the alignment map files by SAMtools and
applied to the two somatic variant calling tools, VarScan2 v2.3.7
and/or Strelka v1.0.14. SNVs were identified by VarScan 2, filtered
with minor allele frequency�0.05 from the paired non-tumorous
tissues, and were considered significant at P� 0.05 by Fisher’s
exact test. Variants that passed the filters were annotated using
ANNOVAR ver 2015March (24). To detect somatic copy number
variations (CNVs), we applied VarScan 2 to the pileup map files as
follows : 1) log coverage ratios were calculated to compare the GC
tissues with paired non-tumorous tissues and 2) regions with
CNVs were detected using circular binary segmentation with
DNAcopy (R /Bioconductor). The relatives were adjusted by the
median of each paired sample, and determined as amplification
(log2 ratio�2) or deletion (log2 ratio�0.5).

Global methylation analysis
Bisulfite conversion of DNA was conducted using the EZ DNA
Methylation Gold Kit (Zymo Research, Irvine, CA, USA). Accord-
ing to the manufacturer’s instructions, HumanMethylation450K
BeadChip (Illumina) analysis was performed on 16 cases whose
genomic DNA were available for analysis. The default settings of
GenomeStudio Software’s DNA methylation module (Illumina)
were applied to calculate the methylation levels of CpG sites as β -

Table1. Clinicopathological characteristics of 19 patients with gastric cancer

Sample Age
(yr) Gender

Main
location
of Tumor

Borrmann
type

Tumor
diameter
(mm)

Histological
predominant
type

Histological type pT N Stage ly v EBV

1 65 F Lower 0-IIc 25 tub1 tub1+2 T1b(SM) 1 IB 1 2 (+)
2 79 F Lower 2 46 por2 por2��tub2 T2(MP) 0 IB 3 0 ( -)
3 71 M Lower 2 80 tub2 tub2�por2 T3(SS) 0 IIA 3 1 (+)
4 79 F Upper 1 62 tub1 tub1�tub2 T3(SS) 1 IIB 0 3 ( -)
5 69 M Lower 2 27 tub1 tub1�tub2 T2(MP) 2 IIB 1 3 ( -)
6 74 M Upper 2 57 tub2 tub2�por2 T3(SS) 1 IIB 1 0 ( -)
7 84 M Upper 2 74 por2 por T2(MP) 2 IIB 3 1 (+)
8 51 F Upper 1 32 tub2 tub2�tub1�pap�por2 T2(MP) 2 IIB 1 2 ( -)
9 79 F Upper 2 82 tub1 tub1�tub2 T3(SS) 2 IIIA 3 3 ( -)
10 74 M Middle 1 36 tub1 tub1��tub2�pap�muc T3(SS) 2 IIIA 3 1 ( -)
11 81 M Middle 1 51 tub2 tub2��por2 T3(SS) 2 IIIA 3 3 (+)
12 66 M Upper 3 96 tub1 tub1 T3(SS) 3a IIIB 3 1 ( -)
13 74 M Upper 3 74 por2 por2�tub2 T3(SS) 3b IIIB 3 3 (+)
14 74 F Lower 1 42 tub1 tub1�pap�muc T3(SS) 3a IIIB 3 0 ( -)
15 57 M Lower 3 75 por2 por2�sig��tub1 T3(SS) 3a IIIB 3 1 ( -)
16 65 F Lower 4 106 sig sig�por��tub2 T3(SS) 3a IIIB 3 0 (+)

17 76 M Upper 2 88 por2 tub2�tub1��por2,
tub2�tub1�muc T4a(SE) 3a IIIC 3 3 (+)

18 80 F Middle 4 108 por2 por2��tub2 T4a(SE) 3b IIIC 3 0 ( -)
19 70 M Lower 0-IIa+Is 95 tub2 tub2�tub1�por2 T4a(SE) 1 IV 3 0 (+)

The gray shaded area shows samples analyzed using Truseq Exome Kit (Illumina) and Hiseq 1500 sequencer (n=6).
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values [β = intensity (methylated)/intensity (methylated + un-
methylated)]. The data were further normalized using a peak cor-
rection algorithm embedded in the R-package of Illumina Methyla-
tion Analyzer (25). Averaged β -difference in CpG island-based re-
gions of the MLH1 gene was calculated based on a β -difference
matrix in which β -values of paired non-tumorous gastric tissues
were subtracted from those of tumors.

RESULTS
Classification and comparison of variants categorized by two dif-
ferent tools
A total 7046 and 4896 SNVs and 795 and 1446 indels were de-
tected by Strelka and VarScan 2, respectively, suggesting that
SNVs were better detected by Strelka than VarScan 2, whereas
indels were better detected by VarScan 2 than Strelka (Table 3). To
analyze common or different variants called by these two tools, we
classified detected variants into three categories : (I) detected only
by Strelka, (II) detected only by VarScan 2, and (III) detected by
both Strelka and VarScan 2. As shown in Figure 2, more than half of

variants were commonly detected by both tools : 4177 of 7765 SNVs
(53.8%) and 757 of 1484 indels (51.0%). The number of SNVs de-
tected only by Strelka was higher than those detected by VarScan 2
(2869/7765, 36.9% vs. 719/7765, 9.3%), while the number of indels
detected only by VerScan 2 was higher than those detected by
Strelka (689/1484, 46.4% vs. 38/1484, 2.6%).

Somatic variants detected by each tool
To assess the accuracy of variants called by each tool, we com-
pared detected variants with the pathogenic somatic mutation v70
dataset (the Catalogue of Somatic Mutations in Cancer, COSMIC ;
http://cancer.sanger.ac.uk/cosmic) or the genetic variation da-
taset (dbSNP v138, https://www.ncbi.nlm.nih.gov/projects/SNP/)
(Table 4). Accurately called somatic mutations are supposed to
overlap mutations in the COSMIC dataset, while inaccurately
called germline variants may overlap common variations in the
dbSNP dataset. Overlapping rates between called mutations and
data in COSMIC were almost the same between Strelka and
VarScan 2 (8.4% vs. 8.5%), whereas those between variants called by
Strelka and data in dbSNP were smaller than those between vari-
ants called by VarScan 2 and data in dbSNP (15.5% vs. 20.6%).
Notably higher overlapping rate for COSMIC (9.0%) and lower
overlapping rates for dbSNP (14.1%) were obtained using vari-
ants in category III (detected by both Strelka and VarScan 2).

Mutation signature of GC
Mutations in human cancer, including GC, are classified into
various mutational signatures using base substitution patterns and
information of the trinucleotide context of each mutation. There are
six classes of base substitutions : C�A, C�G, C�T, T�A, T�C,
and T�G. C�T substitution at either NpCpG or TpCpN trinucleo-
tide has been reported as the predominant mutation in GC (26).
The cause of increasing C�T substitution is considered to be age-
related relatively elevated spontaneous deamination of 5-methyl -
cytosine (NpCpG) or over-activation of the APOBEC family of
cytidine deaminases (TpCpN) (27, 28). We classified variants in
category III using Maftools (https://github.com/PoisonAlien/
maftools), and detected the feature of increasing C�T substitu-
tion at NpCpG or TpCpN in our cases of GC (Figure 3).

Characterization of genomic features in GC
To characterize genomic features of 19 GCs, we first compared
the number of somatic SNVs and indels as well as genes with so-
matic CNVs in each case. Three cases (cases2, 19, and 3) showed
higher numbers of SNVs and indels compared with others (Fig-
ure 4A), and hypermethylation of MLH1 was observed in two of
those cases (cases 2 and 3 ; Figure 4B). Four cases (cases 17, 13,
10, and 4) showed higher number of genes with CNVs (Figure 4C),
and mutations in TP53 were observed in three of those cases.
The TCGA research network, ACRG, and others reported altera-
tions of various driver genes and therapeutic targets in GC, such as
TP53, cell cycle mediators, genes related to receptor tyrosine
kinases (RTKs), RAS and PI(3)-kinase (RAS-PI3K) signaling, and
the DNA mismatch repair (MMR) system (3, 15). Therefore, we
next focused on those driver alterations (Figure 5). As with TCGA
and ACRG, TP53 was detected as the most frequently altered gene
(13/19, 68%). Amplification of CCND1 and a loss-of - function muta-
tion of CDKN2A in cell cycle mediators were observed. In RTKs and
the RAS-PI3K signaling pathway, activating alterations (gain-of -
function mutations and amplifications) were observed in ERBB2,
PIK3CA, KRAS, EGFR, and FGFR2, and loss-of - function mutations
were observed in PTEN.
In the MMR system, at least twoMLH1methylations (cases 2
and 3 in 16 analyzed cases, Figure 4B) and a loss-of - function muta-
tion ofMSH6 (case 2) were detected. Somatic CNVs were generally
lacking in cases 2 and 3 (Figure 4C).

Figure 1. Schematic representation of the overall experimental de-
sign
Exome sequencing was performed on paired tumor

�
normal DNA

from 19 GC patients followed by somatic variant calling using two different
somatic variant callers.
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Table2. Summary of mapped sequencing reads

Sample
Mapping Removing PCR dupulication Depth of coverage

Paired reads
after QC

Paired mapped
reads Mapping rate Remained

reads
Remained
percentage

Mean bases
in target region

Percentage of
�15 bases region

1 Non-Tumor 65857120 65614414 99.6% 58724065 89.5% 73.64 97.0%
Tumor 181603326 180970888 99.7% 131785777 72.8% 158.55 99.4%

2 Non-Tumor 69994510 69749700 99.7% 60962978 87.4% 76.82 97.0%
Tumor 193041736 192329122 99.6% 145264275 75.5% 178.26 99.4%

3 Non-Tumor 61181016 60957120 99.6% 53734851 88.2% 67.12 96.3%
Tumor 164285882 163706626 99.6% 119712928 73.1% 147.63 99.4%

4 Non-Tumor 59956756 59747158 99.7% 54074414 90.5% 68.22 96.3%
Tumor 180965978 180222798 99.6% 129905079 72.1% 157.63 99.3%

5 Non-Tumor 54878494 54686282 99.6% 49419388 90.4% 61.97 95.4%
Tumor 186128494 185446402 99.6% 127366551 68.7% 156.06 99.4%

6 Non-Tumor 54326490 54135058 99.6% 49366471 91.2% 62.07 95.4%
Tumor 176612004 175936458 99.6% 131685244 74.8% 159.43 99.5%

7 Non-Tumor 74607464 73883834 99.0% 71542483 96.8% 94.03 97.4%
Tumor 120809972 120056666 99.4% 112750560 93.9% 142.41 98.8%

8 Non-Tumor 106593550 106086448 99.5% 101611078 95.8% 64.78 85.1%
Tumor 112144924 111562016 99.5% 106737241 95.7% 66.07 85.4%

9 Non-Tumor 62770174 62556038 99.7% 54126506 86.5% 68.44 96.3%
Tumor 171822472 171202862 99.6% 121896250 71.2% 148.98 99.2%

10 Non-Tumor 71260430 70997306 99.6% 60971729 85.9% 76.3 97.3%
Tumor 199795084 199011934 99.6% 141543819 71.1% 174.18 99.4%

11 Non-Tumor 41649774 41499744 99.6% 38145737 91.9% 48.69 92.1%
Tumor 195045234 194341898 99.6% 138498420 71.3% 171.04 99.5%

12 Non-Tumor 132970538 130783250 98.4% 120431679 92.1% 75.03 87.9%
Tumor 112515608 110876038 98.5% 101490761 91.5% 60.76 87.0%

13 Non-Tumor 60696194 60482616 99.6% 52415338 86.7% 65.69 96.1%
Tumor 199245284 198547282 99.6% 136566565 68.8% 163.35 99.5%

14 Non-Tumor 115025312 114532608 99.6% 108029046 94.3% 69.13 85.9%
Tumor 143450786 142502458 99.3% 136082131 95.5% 75.13 87.4%

15 Non-Tumor 64248108 64038712 99.7% 56975815 89.0% 72.2 96.6%
Tumor 168567112 167985604 99.7% 129176401 76.9% 158.03 99.4%

16 Non-Tumor 67676754 66517724 98.3% 64714583 97.3% 85.44 96.8%
Tumor 133779230 132337162 98.9% 125123983 94.5% 166.24 98.8%

17 Non-Tumor 150171702 149139324 99.3% 142595142 95.6% 79.55 87.5%
Tumor 145581182 144545830 99.3% 137062967 94.8% 85.54 87.3%

18 Non-Tumor 137728078 135804426 98.6% 127916498 94.2% 80.96 88.3%
Tumor 137414182 135507026 98.6% 127378179 94.0% 80.56 88.3%

19 Non-Tumor 116462760 115036188 98.8% 99865533 86.8% 64.65 86.6%
Tumor 104988856 103804024 98.9% 95492752 92.0% 58.14 86.8%

The gray shaded area shows samples analyzed using Truseq Exome Kit (Illumina) and Hiseq 1500 sequencer (n=6).

Table3. Number of SNVs and Indels detected in each case
SNVs Indels

Sample
ID

Strelka
alonea

VarScan
aloneb

VarScan and
Strelkac

Strelka
alonea

VarScan
aloneb

VarScan and
Strelkac

1 199 44 53 3 6 1
2 755 59 1923 12 347 475
3 1014 42 341 12 127 53
4 31 33 173 1 7 8
5 75 43 58 3 7 1
6 168 26 81 0 5 1
7 99 21 16 2 4 0
8 31 44 78 2 6 2
9 42 32 117 0 3 6
10 21 58 79 0 7 6
11 48 37 112 0 8 5
12 45 37 6 0 7 0
13 46 27 117 0 7 4
14 80 38 88 0 6 1
15 33 18 178 1 2 10
16 71 22 77 0 8 2
17 15 54 79 1 9 7
18 13 10 2 0 5 0
19 83 74 599 1 119 175
Total 2869 719 4177 38 690 757

aNumber of SNVs or Indels detected only by Strelka
bNumber of SNVs or Indels detected only by VarScan
cNumber of SNVs or Indels detected by Strelka and VarScan
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DISCUSSION
It is challenging for a somatic variant calling tool to balance
between detecting true low-allelic somatic variants and reducing

the number of false positive calls. Sensitivity, specificity, and accu-
racy have been discussed for various somatic variant calling tools
(6, 29-31). The calling algorithms of Strelka and VarScan 2 used in
this research are different from each other, with each tool having

Table4. Comparison of the concordance rate between SNVs detected by each analysis and data from COSMIC or dbSNP
COSMIC dbSNP

Total SNVs Matched Non-matched Matching rate Matched Non-matched Matching rate

Combinatorial
analysis

Strelka alone 2869 211 2658 7.4% 505 2364 17.6%
VarScan alone 719 40 679 5.6% 419 300 58.3%

both Strelka and VarScan 4177 378 3799 9.0% 589 3588 14.1%
Conventional
analysis

Strelka 7046 589 6457 8.4% 1094 5952 15.5%
VarScan 4896 418 4478 8.5% 1008 3888 20.6%

Figure 2. Venn diagrams to summarize the somatic variants called by Strelka or VarScan 2 in the exome sequencing data of 19 GC samples
SNV (A) and indel (B) calls are quantified for each caller and the combination.

Figure 3. Mutational signatures using SNVs identified by both Strelka and VarScan 2
Vertical axis depicts the number of mutations attributed to a specific mutation type.
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ERBB2 6 (32)
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MYC 1 (5)

ARID1A 3 (16)

EGFR 2 (11)
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Figure 4. The prevalence of somatic variants, DNA methylations in CpG islands of MLH1, and genes with copy number alterations in GC
samples
(A) The number of somatic variants per Mb of DNA in 19 GC samples. SNVs (black) and indels (gray) were called by both Strelka and VarScan 2. (B) The
average difference in β -value (methylation level) of MLH1 CpG islands between tumor and non- tumor tissues in 16 GC cases, as determined using an
Illumina HumanMethylation450K BeadChip. (C) The number of genes with copy number alterations in 19 GC samples. Focal amplification (black) and
deletion (gray) were called by VarScan 2 and DNACopy.

Figure 5. Landscape of genetic and epigenetic changes observed in possible driver genes
The matrix displays individual somatic alterations in each case. Color indicates the class of alteration. The percentage of samples with somatic
alterations in each gene is shown on the right.
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unique features. Strelka uses a complex set of calculations based
on a Bayesian approach, wherein the tumor and normal allele fre-
quencies from realigned BAM files are treated as continuous
values (17). VarScan 2 applies Fisher’s exact test to the tumor and
normal allele frequencies obtained from a pileup file (18). Strelka
identifies low-allelic - fraction candidate mutations with high sensi-
tivity, whereas VarScan 2 detects little low-allelic - fraction candi-
dates (6, 29). Therefore, tumor purity has a relatively higher impact
on the numbers of variants detected by VarScan 2. In the present
study, SNVswere better detected by Strelka than VarScan 2 (Figure 2
A), suggesting that our GC tumor samples had a relatively low
degree of purity. Notably, more indels were detected by VarScan2
(Figure 2B) because Strelka filtered out indels in microsatellites
and tandem repeats (17). This effect showed higher impact on MSI
samples (Table 3). Therefore, SNVs and indels are preferably
evaluated by Strelka and VarScan 2, respectively, for the genetic
characterization of GC. Conversely, variants in category III (de-
tected by both Strelka and VarScan 2) showed a higher overlapping
rate with COSMIC and a lower overlapping rate with dbSNP, com-
pared with other categories. Therefore, the highest accuracy for esti-
mating variants can be obtained using both Strelka and VarScan 2.
Using variants in category III, we found that mutation signa-
tures in Japanese GC cases were the same as the previously re-
ported signatures of GC using the data from TCGA and the Interna-
tional Cancer Genome Consortium, which contains Japanese cases
(26). This result indicates that (i) variants in category III of our
approach have accuracy sufficient to categorize mutation signa-
tures in GC and (ii) C�T substitution at NpCpG or TpCpN trinu-
cleotide is the predominant mutation in GC regardless of ethnic-
ity or race.
The TCGA research network reported that GC could be classi-
fied into four molecular subtypes : EBV-positive (EBV), microsat-
ellite instability (MSI), genomically stable (GS), and chromoso-
mal instability (CIN) (3). In the EBV-positive subtype, frequent
PIK3CA mutation and DNA promoter hypermethylation were re-
ported. In our cases, however, neither PIK3CA mutation (Figure5)
nor DNA hypermethylation pattern (data not shown) was ob-
served. ACRG provided four different subtypes : tumors with mi-
crosatellite instability (MSI), tumors with epithelial -mesenchymal
transition (EMT), tumors with microsatellite stability and p53 activ-
ity (MSS/TP53+), and tumors with microsatellite stability and
loss of p53 activity (MSS/TP53-) (15). In those subtypes, MSS/TP
53+ showed the highest frequency of EBV positivity. However, 5 of
13 cases with the TP53mutation and 3 of 6 cases without the TP53
mutation showed EBV positivity. These results suggested that
genomic features of GC may be different between Japanese pa-
tients and other patients from different ethnic origins, such as the
USA and Western Europe in the TCGA and Korea in the ACRG.
Thus, further characterization of GC in Japanese patients remains to
be performed for identifying bona fide molecular targets and
developing solid therapeutic approaches.
In conclusion, we constructed a combinatorial pipeline using two
different somatic variant calling methods, which may be useful for
accurately detecting mutations in GC. Personalized medicine for
Japanese patients with GC needs accurate and detailed molecular
characteristics of this disease to provide tailored patient treat-
ments. Genomic characterization through application of our pipe-
line to larger cohorts of Japanese patients is expected be useful to
improve the efficacy of GC treatments.
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