
INTRODUCTION

In recent years, new applications for approved drugs that are
used clinically have been discovered. Therefore, drug reposition-
ing has been proposed as a strategy for developing these drugs as
therapeutic agents for different diseases (1). Approved drugs have
already undergone clinical trials, and information on their safety
and pharmacokinetics in humans is available. Therefore, in drug
repositioning, it is possible to reduce the cost and shorten the
duration of drug development while ensuring safety (1-3). Further-
more, since the pharmacokinetics of such drugs in humans have
been clarified, gaps between animal studies and clinical trials are
less likely to be found. Additionally, the success rates of developing
such drugs are higher than those for new compounds.
Approximately 2000 drugs are currently reported to be used in
Japan. However, 70-80% of these drugs have not been studied to
determine their compound targets and mechanisms of action.
Therefore, their pharmacological actions have not been adequately
clarified. Pharmacological examination of approved drugs is an im-
portant task in drug repositioning. It is also an essential process
that must be considered to improve the efficiency of drug develop-
ment.
Cardiovascular disease (CVD) and chronic kidney disease (CKD,
chronic renal disease) are closely related. The frequency of cardio-
vascular events was reported to increase with decreasing glomerular

filtration rate (GFR) in a large resident health survey (4). In
addition, background factors such as obesity, hypertension, diabetes,
and dyslipidemia are known to reduce renal and cardiac functions.
Furthermore, cardiovascular diseases are often chronic and fre-
quently require medicines to be administered over a long period,
and therefore, a high safety profile is required. However, there
are no highly safe therapeutics for these cardiorenal diseases,
which is a serious problem. In this review, we have summarized our
data on pharmacological research aimed at repositioning drugs for
the treatment of cardiorenal diseases (Fig 1).

Antioxidative effect of nifedipine photodegradation product in
management of cardiorenal diseases
Nifedipine is a commonly used calcium channel blocker for
treating hypertension ; however, it is extremely light-sensitive.
Nifedipine is converted to its nitroso analog nitrosonifedipine
[2,6 -dimethyl -4 -(2 -nitrosophenyl) -3,5 -pyridinedicarboxylic acid
dimethyl ester] (NO-NIF) (5-7) after photolysis. NO-NIF does not
have a calcium channel blocking effect ; however, it has a strong
and unique radical scavenging ability. It reacts with lipid-derived
radicals in vitro and participates in radical scavenging activities in
the cell membrane (8). We focused on this unique radical scav-
enging activity and previously investigated the effects of NO-NIF
in some oxidative-stress-related cardiorenal diseases using animal
models(10-12).
First, the study investigated whether NO-NIF exhibits a higher
1,1-diphenyl -2 -picrylhydrazyl (DPPH) radical scavenging activity
than nifedipine does. Interestingly, a mixture of NO-NIF and un-
saturated fatty acids exhibited an extremely stronger radical scav-
enging activity than NO-NIF alone did (8). Furthermore, an
electron paramagnetic resonance (EPR) method revealed that
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NO-NIF could be converted to its radical form through an in vitro
reaction with unsaturated fatty acids, which are abundant in cell
membranes, but not with saturated fatty acids. NO-NIF was also
shown to be converted to its radical following a reaction with endo-
thelial or vascular smooth muscle cells. EPR signals in the two cell
types showed that the formation of NO-NIF radical continued for
over 12 hours after the reaction stopped. In addition, characteristic
aeolotropic triplet signals suggested that the radical stayed within
the cell membrane. Thus, it was proposed that NO-NIF shows a
unique strong radical scavenging activity that is prolonged by
reacting with unsaturated fatty acids, after which it is converted to its
radical formin the cell membrane (8).
NO-NIF has also been shown to suppress the decrease in cell
viability caused by cumene-hydroperoxide- induced membrane
peroxidation in endothelial cells (9). NO-NIF also suppresses the
expression of intercellular adhesion molecule (ICAM)-1 and
the reduction in cell viability induced by tumor necrosis factor
(TNF)-α in endothelial cells. Conversely, nifedipine does not
similarly affect the decrease in cell viability. The results suggest
that NO-NIF has a strong antioxidative effect and protects endo-
thelial cells, which nifedipine does not exhibit.
Furthermore, the effects of NO-NIF have been investigated on
the oxidative-stress-related pathogeneses of several cardiorenal
diseases in mice. NO-NIF was shown to suppress protein urea
excretion induced by Nω -nitro-L-arginine methyl ester (L-NAME),
an inhibitor of nitric oxide synthase (NOS) (10). It also suppresses
ICAM-1 expression in the rat aorta. However, asimilar amount of
nifedipine did not exhibit any of these effects. Moreover, because
NO-NIF did not affect L-NAME-induced hypertension, the ob-
served effects occurred independently of blood pressure (10).
The effects of NO-NIF on angiotensin II (Ang II) - induced
vascular remodeling have also been investigated. The results
showed that NO-NIF suppressed Ang-II - induced medial thicken-
ing by suppressing vascular smooth muscle cell proliferation,
vascular fibrosis, and inflammation in the aortae of mice (11). In
addition, it suppressed Ang-II - induced superoxide generation in
the aorta and the urinary excretion of 8-hydroxydeoxyguanosine
(8-OHdG) (11). Additionally, previous in vitro studies revealed that
NO-NIF suppressed Ang-II - induced generation of reactive oxygen
species (ROS), phosphorylations of epidermal growth factor recep-
tor and AKT, and cell migration and proliferation (11). These re-
sults suggest that NO-NIF suppresses Ang-II - induced vascular
remodeling via suppressing oxidative stress in the aorta. In addi-
tion, NO-NIF suppressed Ang-II - induced ICAM-1 expression in
the aorta and Ang-II - induced blood pressure elevation. Thus, it
was concluded that NO-NIF has a protective effect on endothelial
cells. Because NO-NIF showed a strong antioxidative effect and

protected endothelial cells, its effects were further investigated in a
mouse model of diabetic nephropathy. Although NO-NIF did not
affect glucose tolerance, it suppressed urinary protein excretion,
glomerular expansion, ICAM-1 induction in the glomeruli, super-
oxide generation in the kidney, and urinary excretion of 8-OHdG in
KKAy mice with type 2 diabetes (12). Thus, NO-NIF alleviated
type 2 diabetic nephropathy via its antioxidative effect without af-
fecting glucose tolerance. These results suggest that NO-NIF may
be a potential new therapeutic agent for managing cardiorenal
diseases.

Receptor-independent effects of angiotensin II receptor blockers
on renal cells
Ang II type 1 receptor (AT1R) blockers (ARBs) are major thera-
peutic agents for treating hypertension. However, several reports
have indicated that the beneficial effects of ARBs on cardiorenal
diseases are independent of blood pressure (13, 14). It has been
suggested that ARBs have a renoprotective effect in addition to
blood pressure-reducing effects (13-15). In addition, ARBs have
unique properties such as anti -apoptotic, antioxidant, and anti -
inflammatory effects that are exerted in a receptor- independent
manner (16-18).
Mesangial cell migration induced by platelet -derived growth
factor (PDGF) has been shown to be inhibited by the ARB olme-
sartan (Olm) ; however, AT1R knockdown is not affected (19). Al-
though results have shown that Olm does not exhibit a superoxide
scavenging activity or affect the expression of PDGF receptors, it
suppresses PDGF-induced ROS generation and its downstream
phosphorylation pathway of Src and big mitogen-activated protein
kinase 1 (BMK1), implicated in cell migration. Moreover, because
Olm did not affect the hydrogen-peroxide- induced phosphorylation
pathway, it is believed to affect PDGF-induced ROS generation but
not its downstream phosphorylation pathway. Therefore, Olm has
been proposed to suppress PDGF-induced ROS generation, lead-
ing to subsequent inhibition of Src/BMK1/migration in an AT1R-
independent manner.
Next, an active metabolite of Olm, RNH-6270, has been shown to
suppress TNF-α - induced cytotoxicity in glomerular endothelial
cells (20). In addition, RNH-6270 suppressed cell death and the
increase in ICAM-1 expression induced by TNF-α via inhibition of
ROS in human glomerular endothelial cells.
In summary, these results showed that the receptor- indepen-
dent effects of ARBs are implicated in ROS generation in renal cells.
Additionally, those effects may be beneficial in the management of
cardiorenal diseases.

Fig.1 Drug repositioning strategy using approved clinically used drugs
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Ameliorating effect of pioglitazone in neurogenic vascular dys-
function in diabetes mellitus with insulin resistance
Pioglitazone is a thiazolidinedione derivative and a ligand for
peroxisome proliferator -activated receptor-γ (PPARγ). It is used in
the treatment of diabetes mellitus with insulin resistance. Several
studies have indicated that pioglitazone increases insulin sensitiv-
ity and inhibits the development of experimental hypertension
(21-23). Therefore, active treatment with a PPARγ ligand is consid-
ered useful for treating insulin-resistant patients with complica-
tions such as hypertension and vascular disorders. Therefore, the
ameliorating effects of pioglitazone on vascular control regulated
by adrenergic and CGRPergic nerves have been investigated in
diabetic rats.
First, acute insulin infusion has been demonstrated to augment
adrenergic-nerve-mediated vasoconstriction and inhibit vaso-
dilatation mediated by calcitonin gene-related peptide (CGRP)-
containing (CGRPergic) nerves in pithed rats without central va-
soreflex (24, 25). Thus, insulin plays an important role in vascular
control regulated by adrenergic and CGRPergic nerves.
Next, it has been demonstrated that rats administered 15% fruc-
tose solution as their drinking fluid showed a marked increase in
plasma insulin levels but not a significant increase in blood glucose
levels. Moreover, fructose-drinking rats (FDR) with hyperinsu-
linemia showed signs of hypertension. Thus, hypertension appears
to be closely associated with chronic hyperinsulinemia and insulin
resistance. Furthermore, it has been indicated that fructose-
drinking pithed rats with chronic hyperinsulinemia show aug-
mented adrenergic-nerve-mediated vasoconstriction and decreased
CGRPergic-nerve-mediated vasodilatation (26-29). Based on the
reports, insulin likely exerts a neurogenic regulatory effect on
vascular tone.
Finally, oral administration of pioglitazone to FDRs for 2 weeks
markedly decreased their plasma levels of insulin, triglycerides,
and glucose. However, untreated FDRs remained hypertensive,
whereas the blood pressure of pioglitazone-treated FDRs mark-
edly decreased to a level similar to that of the control rats (30). Fur-
thermore, treatment of FDRs with pioglitazone has been shown to
restore the activation of adrenergic nerves and blunt CGRPergic-
nerve-mediated vasodilator response ; however, exogenous CGRP-
induced responses are not affected (30). Therefore, insulin resis-
tance is associated with dysfunctions of vascular control regu-
lated by adrenergic and CGRPergic nerves.
In conclusion, pioglitazone has been suggested to exert multiple
effects that improve insulin resistance and neurogenic vascular
dysfunction in a rat model of diabetes. In addition, pharmacother-
apy using pioglitazone has been suggested to have the potential to
effectively prevent the development of hypertension in patients
who have diabetes mellitus with insulin resistance.

CONCLUSION

Recently, numerous drug repositionings have succeeded, and
various drugs with novel efficacies against intractable diseases
have been discovered (Table 1). In this review, we highlighted that
ARBs show receptor- independent effects against ROS generation in
renal cells, NO-NIF has an antioxidative effect and protects endo-
thelial cells from oxidative stress in some animal models, and
pioglitazone has multiple effects that improve dysfunctions in vas-
cular control regulated by adrenergic and CGRPergic nerves in
animal models of diabetes. These data suggested that some ap-
proved drugs could be useful therapeutic agents for treating car-
diorenal diseases.
Cardiorenal diseases are often chronic pathological conditions
that require drug administration over prolonged, and therefore,

highly safe drugs are needed. Compared to newly developed
drugs, drug repositioning of approved drugs with available safety
information is considered a particularly useful technique for identify-
ing new treatments for cardiorenal diseases. However, when an
effective existing approved drug is out of patent, pharmaceutical
companies are often reluctant to clinically apply because they
cannot achieve profits. Therefore, drug repositioning should be
promoted by researchers from countries and other sources.
Recently, a method of comprehensively analyzing the molecular
effects of approved drugs using the latest analytical methods and
examining their possibility as a therapeutic drug for other diseases is
being carried out. In vitro systems such as high-throughput screen-
ing are used for efficacy discovery, and in silico systems based on
drug and disease databases are often used for drug evaluation (31-
36). The development of the research highlighted in this review
using these latest analytical methods would lead to the clinical
application of many therapeutic agents in the management of car-
diorenal diseases.
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