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REVIEW

Actin filament association at adherens junctions
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Abstract : The adherens junction (AdJ) is a cadherin-based and actin filament associated cell-to-cell junction.
AdJs can contribute to tissue morphogenesis and homeostasis and their association with actin filaments is crucial
for the functions. There are three types of AdJs in terms of the mode of actin filament/AJ association. Among
many actin-binding proteins associated with AdJs, a-catenin is one of the most important actin filament/AJ
linkers that functions in all types of AdJs. Although o-catenin in cadherin-catenin complex appears to bind to
actin filaments within cells, it fails to bind to actin filaments in vitro mysteriously. Recent report revealed that
o-catenin in the complex can bind to actin filaments in vitro when forces are applied to the filament. In addition
to force-sensitive vinculin binding, o.-catenin has another force-sensitive property of actin filament-binding.
Elucidation of its significance and the molecular mechanism is indispensable for understanding AJ formation
and maintenance during tissue morphogenesis, function and repair. J. Med. Invest. 64 : 14-19, February, 2017

Keywords : Adherens junction, Actin filament, a-catenin, Force-sensitivity

INTRODUCTION

The adherens junction (A]) is a cadherin-based and actin fila-
ment-associated cell-to-cell junction typically found in epithelial
tissues. AJs are also found in fibroblasts, cardiac muscles and neu-
rons. Cadherins connect adjacent cells and actin filaments transmit
forces through interaction with myosin II. Therefore, AJs can con-
tribute to tissue morphogenesis and homeostasis and their associa-
tion with actin filaments is crucial (1-3). During embryogenesis,
tissue regeneration and wound repair AJs support morphogenesis
mechanically as well as are remodeled dynamically. For transmis-
sion of forces, actin filament/AJ association should be strong. On
the other hand, dynamic remodeling of AJs requires weak asso-
ciation leading to quick dissociation of A] components. It is natural
to think that strength of actin filament/A]J association is regulated
according to cellular context.

Ultrastructural analyses showed that the AJs are characterized
as a membrane region at the interface of two adjacent cells with
opposing membranes typically ~20 nm apart, with an intercellular
space spanned by cadherin’s extracellular domains, and with a
dense undercoat associated with actin filaments at the cytoplasmic
surface (4-8). There are typically three types of AJs (Figure 1).
Punctate forms of AJs are called punctum adherens (PA, Figure
1A, D) (4,9, 10). They are also called spot AJ, spot-like AJ, punc-
tum, punctate AJ, nascent junction, primordial AJ or focal adherens
junction, depending on their situation. PAs found in the interca-
lated discs tandemly connecting cardiac muscle cells have been
called fascia adherens. Zonula adherens (ZA, Figure 1B, E) is a
belt-like AJ encircling the cell completely at the apical/basolateral
border in highly polarized epithelial cells. The tight junction (TJ)
forms apically close to the ZA based on ZA formation. PAs are found
in early stages of junction development and transformed into ZAs
in highly polarized epithelial cells (11). Therefore, it is quite often
that PAs are considered as premature forms of AJs and ZAs as

Received for publication October 31, 2016 ; accepted February 6, 2016.

Address correspondence and reprint requests to Shigenobu Yonemura,
Department of Cell Biology, Tokushima University Graduate School of
Medical Science, 3-18-15, Kuramoto, Tokushima 770-8503, Japan.

matured forms of AJs. However, PAs are not always primary forms
of AJs because PAs are found in various tissue cells such as cardiac
muscles, keratinocytes in stratified epithelium, many organisms
in stages during development (6, 11-15). The third type of AJs is
found at the corner where several cells meet in polarized epithelial
cell sheets. Three cells are connected at their corner through a
tricellular AJ (Figure 1C, F). Adhesion molecules and the mode of
their binding are not yet known (16). The corner can consist of four
or more cells and show highly dynamic behavior during cell rear-
rangement found during morphogenesis (17-19).

ULTRASTRUCTURE OF ACTIN FILAMENT/AJ AS-
SOCIATION

At ZAs, actin filaments form bundles and run parallel to the
plasma membrane (20) (Figure 1B, E). Because ZAs encircle epi-
thelial cells at their apex, ZA-associated actin filament bundles
form a circular structure called the circumferential actin bundles.
This structure can contract by the interaction with myosin II, lead-
ing to apical constriction typically seen in epithelial morphogenesis
during development. At PAs actin filaments associate with the
plasma membrane in a perpendicular manner (6, 11, 15, 21-24),
enabling direct transmission of forces through AJs to adjacent cells
(Figure 1A, D). When forces are reduced by inhibiting myosin II
activity, PAs cannot be maintained and are converted into ZAs
(25, 26). Normally PAs convert into ZAs during sheet formation
of highly polarized epithelial cells (11, 15, 23). PAs are known to
fuse each other and form the continuous belt of the ZA during the
process with dynamic changes of actin filament association. The
molecular mechanism involved in the process is almost unknown.
Because the mode of actin filament association is completely dif-
ferent, regulation of the association should be required. The mode
of actin filament/AJ association at the tricellular junctions is similar
to that at PAs in that actin filaments penetrate the undercoat of the
AJ at relatively high angles (Figure 1C, F).

The Journal of Medical Investigation Vol. 64 2017


https://core.ac.uk/display/197208777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Journal of Medical Investigation Vol.64 February 2017 15

D Punctum adherens (PA)

Figure 1

E Zonula adherens (ZA) F

Tricellular AJ

Three types of AJs found in MTD- 1A epithelial cells. Electron micrographs (A-C) and models illustrating the mode of association of actin filaments
with AJs (D-F). Yellow arrows in micrographs show actin filaments. Blue arrows in models show the orientation of actin filaments. Pink regions
indicate AJs in the models. In the Punctum adherens (PA), actin filament bundles are associated with the plasma membrane perpendicularly (A, D).
In the Zonula adherens (ZA), actin filament bundles run parallel to the plasma membrane (B, E). The tricellular AJ, the corner where three cells meet,
is formed at both ends of the ZA in a hexagonal cell sheet. Three or more cells can form a corner. Actin filament bundles are associated with the plasma

membrane at high angles. Bar, 200 nm.

AJ COMPONENTS RESPONSIBLE FOR ACTIN AS-
SOCIATION

The central functional unit of AJs is the cadherin-catenin com-
plex. Cadherin binds to p120 catenin and B-catenin at its cytoplas-
mic region. B-catenin in turn binds to o-catenin, forming the
cadherin-catenin complex (27-30). Within this complex, o.-catenin
has an actin filament-binding ability and it is essential for the actin
filament/A]J interaction (13, 31-36). Another major adhesion mole-
cule in AJs is nectins, which bind to an actin-binding protein AF6/
afadin at their cytoplasmic region (37-38). Because afadin knock-
out in mouse intestinal epithelial cells showed no change in junc-
tional and epithelial organization, importance of actin filament/
afadin association in AJ is limited (39). Eplin is colocalized with
actin filaments within cells and also found in ZAs but not in PAs, also
showing its limited function in AJ formation (12, 40, 41). Vinculin
accumulates at both focal adhesions and AJs. It has actin binding
region in its C-terminus, which is exposed when vinculin is acti-
vated (42). As vinculin recruitment to focal adhesions is force-
dependent (43), vinculin recruitment to AJs through its binding
to o-catenin is also force-dependent (26, 44, 45). Although the
cadherin-catenin complex distribution along the lateral membranes
is not affected in epithelial sheets when myosin II activity is inhib-
ited, vinculin disappears from ZAs. Inhibition of vinculin recruit-
ment to AJs showed that vinculin is not required for PA formation
and ZAs can be formed but incompletely, indicating its regulatory
role (35, 46). Since vinculin is an actin-binding protein required
for early development (47) and formation of PAs in cardiac muscles
(48), its recruitment should increase the number of actin filaments
associated with AJs, resulting in strengthening the structure and
function of AJs. ZO-1 and closely related ZO-2 accumulate at PAs
but not at ZAs. During TJ formation they move from ZAs to TJs
(49). Because PAs can be formed without ZO-1/-2 (24), ZO-1/-2

may have a regulatory but not structural role in AJ formation. The
Arp2/3 complex responsible for actin polymerization together
with N-WASP, cortactin, Ena/VASP has a fundamental role in both
initiation and maturation steps of AJ formation through regulation
of actin polymerization although these proteins do not appear to be
structural linkages between AJs and actin filaments (50-53). These
structural components of AJs are summarized in Figure 2.

ACTIN-BINDING ABILITY OF a-CATENIN

A member of the cadherin-catenin complex, o-catenin is an ac-
tin binding protein, which deletion leads to loss of function of the
complex. Deletion of only its actin-binding C-terminal region
showed weak cadherin-based cell adhesion (32, 54). At the cellular
level, the behavior of the cadherin-catenin complex depends on
o.-catenin and actomyosin. The complex shows a flow from basal
to apical along the lateral membrane of some cultured epithelial
cells. This flow depends both on actin cytoskeleton and on the C-
terminal region of o-catenin with actin-binding ability (14). Ecto-
dermal cells of Drosophila embryos show that PAs (spot AJs)
containing both the complex and actin filaments are scattered along
the circumferential contractile actin meshwork. The mobility of
these PAs along the meshwork is dependent both on o-catenin and
actomyosin tension, indicating connecting to actin in o-catenin-
dependent manner (13). In endothelial cells, the actin-binding re-
gion of or-catenin is also required for VE-cadherin stabilization and
accumulation to cortical actin bundles (55). PAs were disrupted in
cardiac-specific o.-catenin conditional knockout mice, resulting in
cardiomyopathy and susceptibility to wall rupture (56).

Although purified o-catenin protein showed actin filament bind-
ing by in vitro co-sedimentation assay (31), a.-catenin in the com-
plex showed almost no actin filament binding ability (57), suggesting
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Structural components in AJ.
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AJ components and AJ related proteins are shown. Myosin II and Arp2/3 complex-associated proteins are not included in AJ components usually.

that actin-binding protein(s) other than o.-catenin associated with
the complex may be responsible for regulation of actin filament/
cadherin-catenin complex association. As already mentioned above,
however, there is no good candidate for the protein so far. Further-
more, molecular dissection of a-catenin revealed that it has a
vinculin-binding region at the central part of the molecule and also
a region inhibiting the binding (35, 44). To release the inhibition
within cells, the actin-binding C-terminus of o.-catenin, actin fila-
ments, myosin II activity, and cadherin binding between cells are
required, indicating that vinculin/o-catenin association is force-
dependent and that a possible conformational change of o.-catenin
when stretched unmasks the vinculin-binding region (Figure 3a).
This clearly shows that o.-catenin is involved in force transmission
through AJs. One of the reasons why pure o-catenin but not o-
catenin in the cadherin-catenin complex can bind to actin filament
strongly is that o.-catenin especially oE-catenin forms dimers, which
enhances the actin filament binding ability because of the two actin
binding regions per a dimer (57, 58) (Figure 3b, c). o.-catenin exists
as a monomer in the cadherin-catenin complex. This can explain
the difference in the actin-binding ability between pure o.-catenin
and the cadherin-catenin complex in vitro (Figure 3d). However,
because actin filament/cadherin-catenin complex association is
crucial for force transmission at AJs within epithelial sheets, there
should be an unknown regulatory mechanism of actin-binding abil-
ity of a-catenin in the complex. Although crystal structure of the
actin-binding domain of oN-catenin was determined (59), there
is no model explaining the regulatory mechanism so far.

ACTIN FILAMENT/a-CATENIN BINDING AND ITS
FORCE-SENSITIVITY

We suggested an idea that o.-catenin in the complex may make
an effective linkage with actin filament only when the filament pulls
the o-catenin in a ratchet-like manner and that stretched o.-catenin
may further stabilize the binding (60). If there is such a mechanism,
AJs can transmit forces efficiently when needed and can be remod-
eled easily when strong forces are not applied. Furthermore, we
pointed out that this idea should be tested by in vitro binding assays

where the dynamic association of o-catenin and the actin filament
is considered (61). Along this line, o.-catenin forming a complex
with [-catenin has been shown to associate with actin filaments
in vitro using a biophysical assay (62), which is developed based on
optical trap to measure the lifetime of actin filament/cadherin-
catenin complex bonds under tension. Purified cadherin-catenin
complexes were immobilized on a glass coverslip. An actin filament
was attached to two optically trapped beads and suspended above
the complex. The coverslip was mounted on a motorized stage of
a microscope and force was applied to the actin filament/cadherin-
catenin complex bonds by moving the stage parallel to the actin
filament. The beads were displaced from the optical trap if the
attached actin filament bound to the immobilized cadherin-catenin
complex. Then the lifetime of the bond was measured with respect
to applied force. This assay revealed that actin filament/cadherin-
catenin complex binding occurs under force (Figure 3d, e). A two-
state catch bond model was proposed that bonds form in a weakly
bound state and quickly dissociate but rapidly transition to a strongly
bound state as applied force increases.

Thus, discrepancy between biochemical data and cell biological
data with respect to actin filament/cadherin-catenin complex has
been resolved recently. The molecular mechanism, however, that
changes the actin-binding ability of o-catenin by applied forces has
not been understood at all. It is quite reasonable to think that o-
catenin changes its conformation under force, leading to elevated
binding to actin filament. Structural, biochemical and cell biologi-
cal analyses are required. In addition, the significance of the exis-
tence of such a regulation should be elucidated experimentally.

In AJs, a-catenin appears to have a central role in actin filament
association. Further analyses of o.-catenin as well as other proteins
that may be involved in the association would be important to un-
derstand the dynamic AJ functions during tissue or organ devel-
opment, wound repair and maintenance.
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Actin filament/A]J association through o-catenin.
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(A) The structure and functional domains of o.-catenin, showing 3-catenin, vinculin and F-actin (actin filament) binding regions (light grey, light
green and light blue, respectively). The light purple domain can mask the vinculin-binding site and can unmask this site when the C-terminal actin-
binding domain is pulled by actomyosin forces. (B) Cytoplasmic o.-catenin monomer contains the C-terminal actin-binding region with relatively
low affinity. Because there is no actomyosin force, cytoplasmic o.-catenin would be in a folded state. (C) a-catenin especially oE-catenin forms
dimers. The dimer has two actin-binding domains, resulting in high affinity for F-actin. (D) In the cadherin-catenin complex, o.-catenin is monomeric
and in a folded state unless it is stretched. The affinity for F-actin is low. When actomyosin forces are applied during a transient association, the
conformation of the a-catenin changes (activation by tension). (E) When o-catenin is stretched by actomyosin forces, the vinculin-binding site is
unmasked and vinculin is recruited. The conformation changes in the actin-binding domain (dark blue) would result in higher affinity to F-actin.
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