Natural Science Research (Peer-reviewed note) Institute of Socio-Arts and Sciences, University of Tokushima Vol. 29 No. 3 pp. 31-33 (2015)

- Note -

Cell death process induced by hydrogen peroxide is accelerated by clioquinol in rat thymocytes

Tomohiro M. Oyama, Eri Fukunaga, Yasuo Oyama

Laboratory of Cellular Signaling, Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan

Corresponding author: Yasuo Oyama, Ph.D. E-mail: oyamay@tokushima-u.ac.jp

Present address: T.M. Oyama, Clinical Research Center, Nishi Kumamoto Hospital, Kumamoto, Japan.

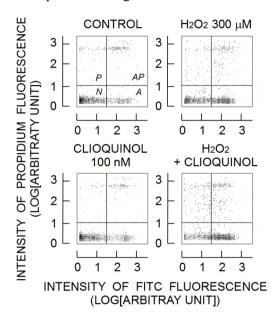
Abstract

We examined the effect of clioquinol on the process of cell death induced by hydrogen peroxide (H_2O_2) using a flow cytometric technique with propidium iodide and annexin V-FITC in order to see if clioquinol augments the toxicity caused by oxidative stress. Clioquinol (100 nM) alone did not change the process of spontaneous cell death. However, the agent accelerated the process of cell death induced by 300 μ M H_2O_2 . Result indicates that clioquinol augments the cytotoxicity induced by H_2O_2 . Therefore, the use of clioquinol may be inadequate for the treatment of some diseases related to oxidative stress.

Keywords: clioquinol; hydrogen peroxide; cytotoxicity; lymphocyte

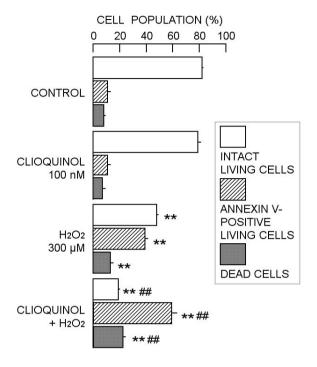
In our previous studies (Oyama et al., 2012, 2014), clioquinol (10-300 nM) increased intracellular Zn²⁺ levels. However, the effect induced by 1 μM clioquinol was less than that by 300 nM clioquinol. Removal of extracellular Zn²⁺ by Zn²⁺ chelators abolished the clioquinol-induced increase in intracellular Zn^{2+} levels. The increase in intracellular Zn²⁺ levels augmented the cytotoxicity of hydrogen peroxide (H₂O₂) (Matsui et al., 2010). We observed a bell-shaped relationship between the clioquinol concentration and changes in H₂O₂ cytotoxicity in the presence of clioquinol; H₂O₂-induced cytotoxicity was the highest when clioquinol concentration was 100 nM (Oyama et al., 2014). In this study, we examined the effect of clioquinol on the process of cell death induced by H2O2 in order to see if clioquinol augments the toxicity elicited by oxidative stress.

This study was approved by Tokushima University (No. 05279). Methods employed in this study were described in our previous papers (Chikahisa and Oyama, 1992; Oyama et al., 1999; Matsui et al., 2008). In brief, thymus glands dissected from ether-anesthetized Wistar rats were sliced with a


blade under ice-cold conditions. The slices were triturated in chilled Tyrode's solution to dissociate the thymocytes. Thereafter, the beaker containing the cell suspension was incubated in a water bath at 36–37°C for 1 h before the experiment.

Propidium iodide was used to stain dead cells or the cells with compromised membranes (Yeh et al., 1981). The exposure of phosphatidylserine on the outer surface of cell membranes, which is a phenomenon that occurs during the early stages of apoptosis, was detected with annexin V-FITC (Koopman et al., 1994). The cells were incubated with annexin V-FITC (10 μ l/mL) and propidium iodide for 30 min before the measurement (Oyama et al., 1999). Statistical analysis was performed with Tukey's multivariate analysis. A P value of <0.05 was considered significant. Values are expressed as the mean and standard deviation, respectively.

Rat thymocytes were incubated with 100 nM clioquinol, 300 μ M H₂O₂, and their combination for 1.5 h, and then annexin V-FITC and propidium iodide were applied to respective cell suspension. Therefore, the measurement of FITC and propidium fluorescence was made at 2 h after respective drug


application.

As shown in Fig. 1, clioquinol did not change the population of cells classified by propidium and FITC fluorescence. Thus, 100 nM clioquinol did not exert the cytotoxic action on rat thymocytes. H_2O_2 at 300 μ M greatly increased cell population of area A (annexin V-positive living cells) and those of areas AP and P (dead cells). The combination of clioquinol and H_2O_2 further decreased the cell population of area N (intact living cells) and increased the population of annexin V-positive living cells and dead cells.

Figure 1. Changes induced by clioquinol, H_2O_2 , and their combination in cells that were labeled by annexin V- FITC and propidium iodide. Changes in the fluorescence cytogram (propidium fluorescence versus FITC fluorescence) by 300 μ M H_2O_2 , 100 nM clioquinol (CLIOQUINOL), and their combination ($H_2O_2 + CLIOQUINOL$). The effects were examined 2h after their application. Each cytogram consisted of 2,000 cells. The N, A, P, and AP areas show the intact living cells, annexin V-positive living cells, dead cells, and annexin V-positive dead cells, respectively

The results of Fig. 1 are summarized in Fig. 2. The result of Fig.2 suggests that simultaneous application of clioquinol and H₂O₂ increased the number of living cells with phosphatidylserine exposed on their outer membrane surfaces (area A of Fig. 1), which is a marker for the early stages of apoptosis (Koopman et al., 1994). Thus, it is likely that clioquinol accelerate the process of apoptosis.

Figure 2. Changes in the percentage population after treatment with clioquinol (CLIOQUINOL), H_2O_2 , and their combination. The dead cells consisted of the P and AP areas as shown in Fig. 1. The asterisk (**) indicates a significant difference (P < 0.01) between the control group (CONTROL) and the test groups. The symbol (##) also shows a significant difference (P < 0.01) between the group of cells treated with H_2O_2 and that with the combination (CLIOQUINOL + H_2O_2).

In our previous studies (Oyama et al., 2012, 2014), clioquinol increased intracellular Zn^{2+} levels, depending on the presence of extracellular Zn^{2+} . The result indicates that clioquinol accelerated the process of cell death induced by H_2O_2 . Therefore, it is suggested that the agents modifying intracellular Zn^{2+} homeostasis may affect the toxicity caused by oxidative stress. The use of clioquinol may be inadequate for the treatment of some diseases related to oxidative stress.

Acknowledgment

This study was supported by a Grant-in-Aid for Scientific Research (C26340039) from the Japan Society for the Promotion of Science (Japan).

References

- Chikahisa, L., Oyama, Y., 1992. Tri-n-butyltin increases intracellular Ca²⁺ in mouse thymocytes: a flow-cytometric study using fluorescent dyes for membrane potential and intracellular Ca²⁺. Pharmacol. Toxicol. 71, 190–195.
- Koopman, G., Reutelingsperger, C.P., Kuijten, G.A.,
 Keehnen, R.M., Pals, S.T., Van Oers, M.H., 1994.
 Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.
- Matsui, H., Sakanashi, Y., Oyama, T.M., Oyama, Y., Yokota, S., Ishida, S., Okano, Y., Oyama, T.B., Nishimura, Y., 2008. Imidazole antifungals, but not triazole antifungals, increase membrane Zn²⁺ permeability in rat thymocytes: Possible contribution to their cytotoxicity. Toxicology 248, 142–150.
- Matsui, H., Oyama, T. M., Okano, Y., Hashimoto, E., Kawanai, T., Oyama, Y., 2010. Low micromolar zinc exerts cytotoxic action under H₂O₂-induced oxidative stress: excessive increase in intracellular

Article History
MS received July 15, 2015
Revised MS received July 30, 2015
MS accepted July 31, 2015

- Zn²⁺ concentration. Toxicology 276, 27–32.
- Oyama, T.M., Ishida, S., Okano, Y., Seo, H., Oyama, Y., 2012. Clioquinol-induced increase and decrease in the intracellular Zn²⁺ level in rat thymocytes. Life Sci. 91, 1216–1220.
- Oyama, T.M., Oyama, K., Fukunaga, E., Ishibashi, H., Oyama, Y., 2014. Clioquinol, a lipophilic Zn²⁺ chelator, augments and attenuates the cytotoxicity of H₂O₂: a bell-shaped response curve of the effects of the drug. Toxicol. Res. 3, 110–117.
- Oyama, Y., Noguchi, S., Nakata, M., Okada, Y., Yamazaki, Y., Funai, M., Chikahisa, L., Kanemaru, K., 1999. Exposure of rat thymocytes to hydrogen peroxide increases annexin V binding to membranes: inhibitory actions of deferoxamine and quercetin. Eur. J. Pharmacol. 384, 47–52.
- Yeh, C.J.G., Hsi, B.L., Page Faulk, W., 1981. Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies. J. Immunol. Meth. 43, 269–275.