津波による越流洗掘を低減する 新しい堤防裏法面形状に関する考察

石河 雅典1・上月 康則2・山中 亮一3・大久保 陽介4

¹正会員 パシフィックコンサルタンツ㈱ 大阪国土保全事業部 (〒530-0004大阪市北区堂島浜1-2-1) E-mail:masanori.ishikawa@os.pacific.co.jp

²正会員 徳島大学教授 大学院理工学研究部 (〒770-8506徳島県徳島市南常三島2-1) E-mail:kozuki@tokushima-u.ac.jp

3正会員 徳島大学講師 大学院理工学研究部 (〒770-8506徳島県徳島市南常三島2-1)

E-mail: ryoichi_yamanaka@tokushima-u.ac.jp

4正会員 パシフィックコンサルタンツ㈱ 港湾部 (〒101-8462 東京都千代田区神田錦町三丁目22番地)

E-mail:yousuke.ookubo@os.pacific.co.jp

2011年3月11日の東日本大震災において,海岸堤防は大きく被災し,その原因は堤防の裏法尻の洗掘を 始めとする裏法側での破壊であることが多く指摘されている.著者らは,津波に対する堤防の粘り強さを 検討する上で,越流した際はできる限りスムーズに陸側へ流すことが有効であると考えた.そこで,数値 波動水槽(CADMAS-SURF/3D)を用いた数値解析により,作用する津波高を変化させ,構造諸元の違いに よる裏法面への津波作用外力の違いを明らかにし,堤防の「粘り強さ」の発生メカニズムと設計上の留意 点について考察した.

その結果,海岸堤防裏法尻部の洗掘抑制には,裏法面の緩勾配化の他,裏法肩及び法尻部に曲線形を用い法尻陸側に落堀を採用することが有効であることを確認した.

Key Words : coastal dike, streamline, tsunami overflow, robustness, numerical analysis

1. 緒論

東日本大震災以降,設計津波に対する堤防整備が各地 で進められている.海岸堤防の粘り強さについては,加 藤ら¹)は裏法尻での越流水の流向を水平に変えることが 法尻部での洗掘抑制に対して有効であることを指摘して いる.実際に,仙台湾南部海岸では堤防復旧工事におい て,陸側法留コンクリートの補強として法面勾配変化部 と基礎とを一体構造化して,津波越流による鉛直流速に 対する裏法尻部の弱点を補強する構造形式が採用されて いる.しかしこれらの断面は,法面勾配を1:2として おり従来の一般的な勾配の1:15と比べると堤防幅を 広くする必要があり,今後予防保全的に整備する海岸に おいては,背後の土地利用に支障を来す恐れも出てくる.

また常田ら²は今次津波により堤防背後にできた落堀 の津波抑制効果の可能性を指摘している.落堀の大きさ についても,先の整備と同様に背後地利用との調整が必 要となるケースも考えられる.

一方 2015 年 3 月には、「Eco-DRR に関する仙台宣 言」が出されるなど、生態系を基盤とした防災・減災 (Ecosystem-based Disaster Risk Reduction)の取り組みの重要性 も高まってきている.

このように、堤防の粘り強さに対する工学的研究は進 んできているが、防護と環境の両方に配慮した具体的な 設計事例は、仙台湾南部海岸³⁹等での"堤体幅の広い堤 防形式"以外では、今のところ例を見ない、そこで本研 究では、堤防の粘り強さを"越流水の流向を水平方向に 変換すること"とし、そのような作用が生じやすい裏法 面形状を考案した。その裏法面形状については、今後予 防保全的に耐津波整備を実施しようとする地域で現況堤 防を改良することを念頭に置き、背後の土地利用に配慮 して、裏法尻位置を現況と変えないこととした。特に背 後に設けた「落堀」は堤防をより「粘り強く」させ、同 時に平時はビオトープとしての活用も期待できる.

本論文では、先ず物理面について津波越流時の裏法尻 部への作用外力に着目し、津波外力を変化させた場合の 裏法面形状の違いによる「粘り強さ」に係る効果につい て、数値解析をもとに考察を行った。

2. 数値解析

(1) 従来の堤防の弱点と粘り強さに係る課題

津波越流に伴う海岸堤防の被災メカニズムとしては、 ①裏法尻部の洗掘による破壊(例えば加藤ら⁴),②裏 法肩付近に作用する負圧(例えば小竹ら⁵),③堤体内 部から被覆材に作用する浮力(例えば中尾ら⁶),に大 別される.その中でも特に重要と考えられる法尻洗掘に 対しては、裏法勾配の緩傾斜化(例えば石河ら⁷),越 流水の流向を水平に変える保護工の設置(加藤ら¹⁾), 堤防背後への植樹帯の設置(例えば五十嵐ら⁸),基礎 部への矢板工の打設(例えば吉森ら⁹)等の知見がある が、背後の土地利用への空間的圧迫や矢板を設置した場 合の洗掘深の評価など、実現面での課題は残っている.

(2) 数値解析手法及び計算条件

数値モデルは、津波への適用事例(石河ら ")を考 慮し、断面 2 次元の流体解析モデル数値波動水路 (CADMAS-SURF) ((財)沿岸開発研究センター)を基に, VOF 法による自由表面の解析精度を向上させた数値波 動水槽(CADMAS-SURF/3D) ((財)沿岸開発研究センタ ー) (以下, C-S/3D と略記する)を用いることとした. 解析に用いる津波波形は、今次津波において津波被害 の大きかった東北地方沖合にある岩手南部沖GPS波浪計 が捉えた波形を基に、平面津波計算で再現計算を行った 押波時の結果より、図-1の通りとした. これは最大クラ スのL2津波に相当するが、本検討では他にも発生頻度 の高い津波(L1津波)を超える津波に対する評価も実 施した.具体的には、ピーク値をL2津波の0.8倍、0.6倍 として解析を行った. なお計算条件は, 石河ら"と同じ 条件とし,堤防法線から沖へ6km地点から津波波形を入 射するものとした.

図-1 解析に用いる津波波形

本研究では、表-1に示す、Case1(表法勾配を海岸堤防として一般的に良く使われている1:1.5勾配)、Case2(裏法勾配を緩勾配1:4にした)、Case3(堤体幅を従来と変えずに裏法尻での越流水の流向を鉛直から水平にすることができるよう曲線形にした)、Case4(従来の排水溝の形状を工夫し、津波越流後にできていた落堀形状を小型化したケース)の計4ケースについて解析を行った.図-2には、各検討ケースの断面形状と解析で求まる流速と圧力の出力位置を示す.

表-1 検討ケース一覧

		× -	
検討 Case	表法勾配	裏法勾配	
Case1	1.5	1.5	
Case2	1.5	4	
Case3	1.5	曲線形	
Case4	1.5	曲線形+落堀	
Case1(1:1.5)			
$X/X_{bs} = 0 X/X_{bs} = 0.37 X/X_{bs} = 1 X/X_{bs} = 2$			
海側 ▽T. P+5. 50	速・圧力分布出力地点		陸側
LS 1.15 4.	0		
4	- 5		
Case2(1:4)			
$X/X_{bs}=0 X/X_{bs}=0.18 $ $X/X_{bs}=1$			
海側	 王力分布出力地点		
LS 1:15 4.0	1.4.0		
4.		√ 1.1	2+100
Case3(曲線形)			
$X/X_{he}=0$ $X/X_{he}=0.37$ $X/X_{he}=1$ $X/X_{he}=2$			
海側 流	速•		陸側
<u>⊽Ť. P+5. 50</u>			
4 1:1.2 4	0 7.3		
	and the second s	T. P+1. 00	
Case4(曲線形+3	落堀)		
$X/X_{bs} = 0$	$X/X_{bs} = 0.37 X/X_{bs} = 1$	X/X _{bs}	=2
海側 ☆ P+5 50 流退	・ 圧力分布出力地点		陸側
s 15 4	0		
4	3.0	7T.P+1.00	
<u>L</u>			

図-2 解析に用いる堤防断面(単位;m)

(3) 解析結果

図-3 は、堤防に作用する津波最大波圧分布を示す. x 軸は堤防法線からの距離 x を天端から裏法尻までの距離 Xbs で無次元化したものであり、y 軸は波圧について作 用波圧 Po を全ての検討ケースでの最大波圧 Pom (Case4) との比で無次元化したものを示す.

津波高 L2 のケースで、Case 2(裏法勾配が 1:4) に着 目すると、他のケースと比べて裏法尻(XXbs=1.0)よ り陸側では作用波圧は小さく、陸側に向かって緩やかな 減少傾向を示している.これは、津波越流による局所的 な流動構造の変化が生じなかったためであると判断され る.XXbsが 1.5以上の陸側部では、堤防形状に関係なく、 どのケースもほぼ同じ程度の波圧が作用している.また Case 4 を見ると、裏法尻付近で落堀により波圧が増大し 最大値を示していることが分かる.Bemoulliの定理を適 用すると、波圧が増大した分、流速が落ちていることが 期待できる.波圧の変動幅は、裏法面に形状の変化を持 たせた Case 3 と Case 4 で、基準とした Case 1 に比べて大 きくなっている.

津波高を 0.8 倍と小さくしたケースを見ると, Case 1 および Case 2 では津波高 L2 のケースと同様に, 裏法尻 部をピークに陸側に向かって減少しているが, 曲線形を 用いた場合にはそのピークが裏法尻よりも海側に移動し ている. またその値は図-3a)と同様に Case 1 よりも大き くなっている. Case 4 では落堀による波圧増大が見られ るが, 法尻部において局所的に波圧が減少している.

また,より津波高が小さい L2 津波の 0.6 倍のケース では、曲線形を用いた場合(Case 3, 4)には、全体的な 傾向として波圧のピークをより海側へ移動させることが でき、裏法尻部の波圧の低減効果も 0.8 倍の時と比べて より大きくなることが期待できる.また Case 3 では、裏 法尻から陸側にかけて、裏法を緩傾斜化した Case 2 と同 等の波圧の低減効果が期待できる.

以上より,裏法面を緩勾配にすると,裏法尻部付近に 作用する波圧を相当程度低減させることができると思わ れる.また裏法面に曲線形を用いることで,今次津波の ような最大級の津波に対しては法面及び法尻部に作用す る波圧を低減することはできないが,発生頻度の高い津 波(L1 津波)を超える津波,つまり L1 津波以上 L2 津 波未満の場合には,裏法尻部における波圧の低減効果も 期待できることがわかる.さらに,この波圧低減効果は, 曲線形に落堀を付加することで,より大きくなることも わかった.ただし落堀部では,断面形状の急激な変化に よる波圧増大も見られた.また裏法面を緩勾配化するこ とで,堤防全体に作用する波圧に変動は小さく,波圧の 低減効果が最も大きく期待できることもわかった.

図-4には、最大越流時における堤防に作用する津波越 流流速の作用状況を示す. x軸は図-3と同様、堤防法線 からの距離xを天端から裏法尻までの距離Xbsで無次元 化したものであり, y軸は流速(鉛直と水平の合成)に ついて作用流速Voを全てのケースの最大流速Vom (Case 4) との比で無次元化したものを示す.

津波高L2のケースを見ると流速は、作用波圧とは逆 にCase 2の裏法勾配が1:4の場合が最も大きく、Case 3、 Case 4の曲線形を用いた場合が小さくなっている。特に Case 4では、落堀の効果により流速が抑えられた後、陸 側に向かって急速に流速が増加している。またその陸側 では、裏法形状に関係なく流速は一定となっている。

次に津波高が小さいケースのうち0.8倍のケースを見ると、裏法尻付近ではCase1とCase2の大小関係は津波高が大きい場合と変わらないものの、CASE3、4の流速の方が大きくなっており、津波高L2のケースとの傾向は

異なっている. Case 1, Case 2の流速の変動幅は津波高L2 のケースと比べて小さい. また陸側を見ると, 各ケース によって流速の値が異なっており, 特にCase 2が最少と なっている. 一方, 津波高が小さいケースのうち0.6倍 のケースを見ると, 法尻部ではCase 2が大きくCase 3 が 最も小さい. 陸側部ではCase 1 (勾配1:1.5) が最も大き な流速となっており, 曲線形 (Case 3) を用いることで Case 1 (勾配1:1.5) の80%程度にまで低減できている. 特 にCase 2が最も小さい値を示しており, 越流水深の大き さの違いにより緩勾配とした方が流速が小さくなるケー スが見られる場合がある. また落堀の効果 (Case 4) に よる流速の減衰効果も見られた.

図-5には、各ケースの最大越流時における鉛直流速の 分布を示す.裏法尻付近から陸側を見ると、Case1と Case3、Case2とCase4の流速の変化傾向が似ている.こ れは裏法面に曲線形を用いるだけでは、今次津波のよう な最大級のL2津波に対しては鉛直流速を減じることと はできないものの、曲線形に落堀を付加することで緩勾 配化と同じ効果が得られることがわかる.今次津波によ る裏法尻洗掘の主原因であった鉛直流速に対し、裏法面 に曲線形+落堀を用いることは緩勾配化と同じ効果が得 られ、洗掘抑制効果が期待できることを示唆している. この効果は津波高大小にかかわらず期待できる.

図-7 解析結果(作用波圧分布)

次に図-6及び図-7には,裏法面に曲線形及び落堀を用 いた場合(Case 4)の津波越流時における最大流速およ び作用波圧に関する空間的な分布状況を示す.

最大流速分布図を見ると、裏法尻付近には陸側から堤 防側に向かう弱い流れが発生しており、これは越流によ る着地点を裏法尻から陸側へ遠ざけたことにより逆向き の流れが形成されたためと推察され、洗掘深の増加を抑 制できることを示唆している.このことは、中村ら¹⁰に よっても指摘されている.ただし作用波圧分布図を見る と、着地点を遠ざけたことで、落堀部には大きな波圧が 作用しており、崩壊しないための留意も必要である.裏 法肩部では、流線の曲率半径が小さくなっており(石河 ら¹¹⁾)、20 kN/m²程度の負圧が作用していることがわかる. 例えば、仙台湾南部海岸³の防潮堤では部材厚を従来の 0.2 mから0.5 mへと大きくしたが、コンクリート部材の みの重量(23 kN/m³×0.5=11.5 kN/m²)では裏法肩部で負 圧に対して不足しており、周辺の法面および天端舗装部 との連結を施すなどの対策が必要となっている.

また**表-1**に示した各ケースについて,裏法尻部に着目 して,越流水深の違いによる最大越流時の作用波圧及び 鉛直流速の変化を図-8に示す.

作用波圧との関係図を見ると、グラフが右肩上がりの 傾向を示しており、越流水深の増加に伴い作用圧力も増 加している.作用波圧については、Case 2を見ると他の ケースに比べ全体的に波圧の増加度合いは抑えられてお り、裏法面の緩傾斜化により波圧軽減効果が期待できる ことがわかる.またCase 4では、越流水深が2m程度まで であればCase 2と同様の傾向を示しており、越流水深が 小さい場合には曲線形に落堀を付加することで緩傾斜化 と同様の波圧減衰効果も期待できる.

鉛直流速との関係図を見ると,越流水深が2mを超え る場合は裏法面の構造形式に関係なく下向きに1.3m/s程 度の流速となっているが,越流水深が2m未満の場合に はCase 3でほぼ0m/sとなっている他, Case 4でも0.9m/s程 度(越流水深2m以上の場合に比べ約70%程度にまで減 速)となっており,裏法面に曲線形を用いることで鉛直 流速を抑制する効果が期待できる.

粘り強い構造とするために,裏法面緩勾配とすると, 後背地により幅広い空間が必要となり,堤防直背後に民 家がある場合などには現況堤防幅での対応が必要となっ てくる.しかし,本研究で提案した法肩や法尻部に曲線 形状とし,落堀を用いると,後背地に用地を必要とせず, 下記の様に,裏法面緩勾配化と同様に裏法尻部での洗掘 の主要因と考えられる鉛直流速を抑制する効果が期待で きることがわかった.

本研究により得られた結論は、以下のとおりである.

- (1) 裏法面を緩勾配とした場合,越流による洗掘の 原因と考えられる鉛直方向の流速や,裏法尻部 に作用する波圧を軽減できることが示唆された. 特に,越流水深が小さくなると,他の構造形式 よりも陸側の流速が小さくなる傾向にあった.
- (2) 裏法肩部及び裏法尻部に曲線形を採用すると, 裏法尻部に作用する流速は、今次津波のような 越流水深が大きい場合には相当低減できるが、 作用波圧がやや大きくなり、また裏法肩部での 上向きの圧力はやや大きくなる。
- (3) 曲線形を採用すると、陸側から海側へ向かう流れを形成され、洗掘の抑制効果が期待できる.
- (4) 曲線形に落堀を付加すると、越流水深に関係なく緩傾斜化と同様に鉛直流速を抑制できることから、より粘り強い構造とすることができる. 特に、越流水深が2m以下の場合には緩傾斜化と同様に波圧も軽減された.

今後は、模型実験での検証とともに、汎用性について も検討していく.また今回新たに提案した落堀を湿地化 させることで、ビオトープとしての利用が可能となり、 新たな環境創造も期待できることから、今後はこの環境 面についても検討する.

参考文献

- 加藤史訓,鳩貝 聡,諏訪義雄:津波の越流に対するコンクリート平張り海岸堤防の粘り強い構造,土木学会論 文集 B2(海岸工学), Vol.69, No.2, pp.I_1021-I_1025, 2013.
- 常田賢一,谷本隆介:2011年東北地方太平洋沖地震の現 地調査による防潮堤などの津波被害特性,土木学会論文 集B2(海岸工学),Vol.68,No.2,pp.I_1406-I_1410,2012.
- 国土交通省:「仙台湾南部海岸堤防復旧の取り組 み」, 2015.
- 4) 加藤史訓,野口賢二,諏訪義雄,木村晃,河合雅史,高 木利光,小俣雅志:東北地方太平洋沖地震津波による仙 台平野南部での海岸堤防被災・洗掘に関する調査,土木 学会論文集 B2(海岸工学), Vol. 68, No. 2, pp.I_1396 -I_1400, 2012.
- 5) 小竹康夫,磯部雅彦:津波の越流時に海岸堤防の法面に 作用する圧力特性に関する実験的研究,土木学会論文集 B2(海岸工学),Vol.68,No.2,pp.I_891-I_895, 2012
- 6) 中尾秀之,佐藤慎司, Hany YEH:津波の越流による海岸 堤防の破壊メカニズムに関する研究,土木学会論文集 B2 (海岸工学), Vol. 68, No. 2, pp.I_281-I_285, 2012.
- 石河雅典,上月康則,山中亮一,大久保陽介:津波越流時の海岸堤防への作用外力と構造形式との関連性に関する数値的考察,土木学会論文集 B3(海洋開発), Vol. 69, No. 2, pp.I_311-I_316, 2013.
- 3) 五十嵐善哉,田仲規夫:レベル2津波の堤防越流に対する減勢に適した裏法側堤防構造の検討,土木学会論文集 B2(海岸工学),Vol.71,No.2,pp.I_325-I_330, 2015.
- 9) 吉森佑介,倉上由貴,二瓶康雄,森田麻友:堤防裏のり 尻部の洗掘現象の把握と対策工配置条件の基礎的検討, 土木学会論文集 B2(海岸工学), Vol. 71, No. 2, pp.I_1117 – I_1122, 2015.
- 10) 中村友昭,日比野加奈,趙容桓,水谷法美,小竹康夫: 東北地方太平洋沖地震津波による海岸堤防裏法尻の対策 工の有効性に関する数値解析,土木学会論文集 B2(海岸 工学),Vol.71,No.2,ppI_1099-I_1104, 2015.
- 石河雅典,上月康則,山中亮一,大久保陽介:津波越流 に対する曲線形海岸堤防の粘り強さに関する数値解析, 土木学会論文集 B3(海洋開発), Vol. 70, No. 2, pp.I_372 – I_377, 2014.

(2016.3.16受付)

NUMERICAL ANALYSIS ON NEW DIKE BACK SLOPE SHAPE TO REDUCE SCOURING AT THE LANDWARD TOW CAUSED BY THE TSUNAMI OVERFLOW

Masanori ISHIKAWA, Yasunori KOZUKI, Ryoichi YAMANAKA and Yosuke OKUBO

Most of coastal structures, especially coastal dikes were destroyed by the 2011 Tohoku Tsunami. It was reported that one of the most important causes was the failure of back slope of dikes due to scouring.

It was effective to drain into the landside as possible smoothly in examining the robustness of the dike for the tsunami. In this study, a numerical model using CADMAS-SURF/3D has been applied to clarify the difference of tsunami external force toward back slope of dikes due to structure specification and to make suggestions for mechanism of robustness and design of coastal dikes. As a result, in order to restrain scouring at back slope of dikes, excepting method of moderating the back slope, streamline at top of inner slope and back slope were proposed.