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Abstract 

Background: Hepcidin secreted by hepatocytes is a key regulator of iron metabolism 

throughout the body. Hepcidin concentrations are increased in chronic kidney disease 

(CKD), contributing to abnormalities in iron metabolism. Levels of indoxyl sulfate (IS), 

a uremic toxin, are also elevated in CKD. However, the effect of IS accumulation on 

iron metabolism remains unclear.  

Methods: We used HepG2 cells to determine the mechanism by which IS regulates 

hepcidin concentrations. We also used a mouse model of adenine-induced CKD. The 

CKD mice were divided into two groups: one was treated using AST-120 and the other 

received no treatment. We examined control mice, CKD mice, CKD mice treated using 

AST-120, and mice treated with IS via drinking water. 

Results: In the in vitro experiments using HepG2 cells, IS increased hepcidin 

expression in a dose-dependent manner. Silencing of the aryl hydrocarbon receptor 

(AhR) inhibited IS-induced hepcidin expression. Furthermore, IS induced oxidative 

stress, and antioxidant drugs diminished IS-induced hepcidin expression. 

Adenine-induced CKD mice demonstrated an increase in hepcidin concentrations; this 

increase was reduced by AST-120, an oral adsorbent of the uremic toxin. CKD mice 

showed renal anemia, decreased plasma iron concentration, increased plasma ferritin, 

and increased iron content in the spleen. Ferroportin was decreased in the duodenum 

and increased in the spleen. These changes were ameliorated by AST-120 treatment. 

Mice treated by direct IS administration showed hepatic hepcidin upregulation. 
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Conclusion: IS affects iron metabolism in CKD by participating in hepcidin regulation 

via pathways that depend on AhR and oxidative stress.  

 

Keywords: Indoxyl sulfate, hepcidin, iron, CKD, anemia 

 

Running Head 

Effect of indoxyl sulfate on hepcidin regulation 

 

Short summary 

In contrast with absolute iron deficiency, functional iron deficiency is common, and it 

causes renal anemia in chronic kidney disease. In the present study, we found that 

indoxyl sulfate (IS)—a uremic toxin—contributes to renal anemia by regulating 

hepcidin concentrations and thus impairing iron absorption and causing ectopic iron 

accumulation. This study presents the first findings regarding the effect of IS on 

hepcidin concentrations and thus on whole-body iron metabolism in CKD. 

 

 

Introduction 

 As the incidence of chronic kidney disease (CKD) has increased worldwide, 

morbidity and mortality in the general population have worsened [1, 2]. Patients with 
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CKD often have renal anemia, and they are generally treated using both iron 

supplementation and an erythropoiesis-stimulating agent (ESA). However, in 

individuals with CKD, iron treatment may lead to over supplementation due to 

functional iron deficiency. 

 Hepcidin is a secreted protein mainly derived from the liver that plays a crucial 

role in the regulation of iron metabolism [3]. Specifically, hepcidin regulates iron 

efflux from intracellular iron by inducing the internalization and degradation of 

ferroportin (FPN), a cellular iron exporter [4]. Hepcidin levels are increased in patients 

with CKD [5], as well as in experimental animal models of CKD [6, 7]. Increased 

hepcidin levels in patients with CKD may impair the proper use of stored iron and lead 

to FPN degradation, thereby contributing to functional iron deficiency and 

dysregulation of iron metabolism. 

 Indoxyl sulfate (IS) is a protein-bound uremic toxin and a metabolite of indole, a 

tryptophan metabolite that is synthesized by intestinal bacteria. In healthy subjects, IS 

is excreted in the urine via the renal proximal tubule; however, patients with impaired 

renal function show reduced excretion of IS, and it accumulates in their blood [8]. The 

accumulation of IS further predicts renal dysfunction in CKD [9], and high serum IS 

levels are associated with cardiovascular diseases and mortality in CKD patients [10]. 

IS also induces reactive oxygen species (ROS) as well as inflammation, and exerts 

adverse effects on various organs [11]. AST-120, a sorbent of uremic toxin, has been 

shown to ameliorate CKD-related complications [12-19]. 
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 Regarding renal anemia in CKD, IS accumulation inhibits the hypoxia-inducible 

factor and thus reduces EPO production [20]. Furthermore, IS removal improves the 

effect of ESA on anemia in late-stage CKD patients [21], indicating that IS mediates 

renal anemia via EPO regulation. However, it is not completely clear how IS 

accumulation impacts iron metabolism in CKD.  

    In the present study, we evaluated the effect of IS on iron metabolism, and found 

that IS augments hepatic hepcidin production, and in a mouse model of 

adenine-induced CKD, mice with a high IS concentration showed increased hepatic 

and plasma hepcidin levels, decreased ferroportin expression in the duodenum, and 

increased iron content in the spleen. These changes were ameliorated by AST-120 

treatment. Our findings suggest that IS accumulation leads to increases in hepcidin, 

which in turn dysregulates iron metabolism in CKD. 

 

Materials and Methods 

Chemicals and reagents 

Indoxyl sulfate potassium salt, adenine sulfate, and AST-120 (Kremezin™) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA), Wako Pure Chemical 

Industries, Ltd. (Osaka, Japan), and Kureha Corporation (Tokyo, Japan), respectively. 

N-acetyl cysteine (NAC), an antioxidant drug, and CH-223191, an inhibitor of AhR, 

were obtained from Sigma-Aldrich. The following commercially available antibodies 

were used for this study: anti-NRAMP2 (DMT1) antibody, anti-ferritin heavy chain 
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(FTH), anti-ferritin light chain (FTL), and anti-AhR antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA); anti-transferrin receptor 1 (TfR1) antibody 

(Zymed Technologies; Carlsbad, CA, USA); anti-FPN antibody (Alpha Diagnostics; 

San Antonio, TX, USA); anti-α-tubulin (San Diego, CA, USA), which was used as a 

protein loading control; and anti-Histone H3 antibody (Abcam, Cambridge, UK), 

which was used as a loading control in the case of nuclear proteins.  

 

Experimental animals and treatment 

All experimental procedures involving animals were performed in 

accordance with the guidelines of the Animal Research Committee of Tokushima 

University Graduate School (Permit Number: 13095). Eight-week-old male C57BL6/J 

mice were purchased from Nippon CLEA (Tokyo, Japan). The mice were maintained 

under conventional conditions, with a regular 12-hour light/dark cycle and free access 

to food (Type NMF; Oriental Yeast, Tokyo, Japan) and water during the study. Dietary 

adenine administration has been used to induce CKD in rodents [22]. [Animal 

experiment 1]: We used a new protocol involving intraperitoneal adenine 

administration, as previously described [23]; however, we modified the protocol of the 

previous study in that we administered 100 mg/kg of adenine three times per week for 

four weeks. One week after the start of adenine administration, serum creatinine was 

elevated by approximately twofold (vehicle vs. adenine: 0.50 ± 0.07 mg/dL vs. 0.87 ± 

0.15 mg/dL; p < 0.01); the mice that were receiving adenine were then divided into two 
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groups and treated for three more weeks; specifically, a “normal diet” group and an 

“AST-120” group, in which the normal diet was supplemented with 5% AST-120, 

were established [13, 19]. A control group received a normal diet, as well as 

intraperitoneal vehicle administration. [Animal experiment 2]: To test the direct IS 

effect on hepcidin, 0.1% IS (200 mg (800 µmol)/kg/day) was administered to the mice 

in their drinking water for two weeks as previously described [19]. The mice were 

euthanized by intraperitoneal over-dose injection of pentobarbital, their blood was 

collected, and their tissue was removed and stored at -80°C until use. 

 

Hematological analysis 

Whole blood cell counts were performed by Shikoku Chuken Co. Ltd. 

(Kagawa, Japan), and serum creatinine levels were determined using an alkaline picrate 

based assay (LabAssay Creatinine Kit, Wako Pure Chemical Industries Ltd., Osaka, 

Japan). 

 

Measurement of plasma iron levels, plasma ferritin levels, and tissue iron 

concentration 

Plasma iron levels and tissue iron concentrations were measured using an 

iron assay kit according to the manufacturer’s instructions (Metallo Assay; 

Metallogenics Co. Ltd.; Chiba, Japan), as previously described [24-26]. Plasma ferritin 
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levels were determined by a Mouse Ferritin ELISA Kit (Immunology Consultants 

Laboratory, Newberg, OR) according to the manufacturer’s instructions. 

 

Cell culture 

HepG2, a human hepatoma cell line, was purchased from the Japanese 

Collection of Research Bioresources (Osaka, Japan). The methods of cell culture have 

been previously described [26]. In some experiments, the cells were pre-treated for one 

hour with either 100 µM tempol (ROS scavenger), 10 µM BAY11-7082 (NF-κB 

inhibitor), 100 µM NAC (antioxidant drug), or 10 µM CH-223191 (AhR inhibitor) 

before stimulation with IS. In other experiments, HepG2 cells were cultured in bovine 

serum albumin (BSA) (40g/L) containing DMEM [11]. BSA was purchased from 

Wako Pure Chemical Industries, Ltd., and the concentration of endotoxin in BSA 

solution was 0.03 ng/mL as detected using a Limulus Amebocyte Lysate assay 

(Pierce™ LAL Chromogenic Endotoxin Quantitation Kit, Thermo Fisher Scientific Inc. 

Waltham, MA, USA). 

 

RNA extraction and evaluation of mRNA expression levels 

The RNA extraction, cDNA synthesis, and quantitative RT-PCR methods 

have been described previously [25]. The primer sets used were as follows: 5′

-ATGTCGCCTCCAGATACCAC-3′ and 5′-CCTCTCCCGTGTACAGCTTC-3′ 

for mouse erythropoietin (EPO), 5′-CTGCCTGTCTCCTGCTTCTC-3′ and 5′- 
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AGATGCAGATGGGGAAGTTG-3 ′  for mouse hepcidin-1, 5 ′

-CTCCGAACAATCACTGCTGA-3′ and 5′-CCTCCCCTGTGTSCSGCTTC-3′ 

for human hepcidin, 5 ′ -CTGCCTTTCCCACAAGATGT-3 ′  and 5 ′

-CAGTTATCCTGGCCTCCGTTT-3 ′  for human AhR, and 5 ′

-GCTCCAAGCAGATGCAGCA-3′  and 5′ -CCGGATGTGAGGCAGCAG-3′ 

for 36B4 as an internal control. The expression levels of all target genes were 

normalized using 36B4, and the values were compared to the control group in terms of 

relative fold changes. 

 

Protein extraction and western blot analysis 

Protein preparation was done and western blotting was performed as 

previously described [25]. Densitometry of the visualized bands was quantified using 

Image J 1.38x software. Protein staining by Ponceau S solution was used as a protein 

loading control in the duodenum. 

 

Measurement of intracellular reactive oxidative species levels 

Intracellular ROS were detected using dichlorofluorescin diacetate 

(DCFH-DA; Sigma-Aldrich). HepG2 cells were stimulated, for various time periods, 

using 250 µM IS; then, they were incubated with 10 µM DCFH-DA at 37°C for 30 

minutes. After washing, ROS production was quantified at 488 and 532 nm using a 
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microplate reader (FilterMax F3 Multi-Mode Microplate Reader; Molecular Devices 

LLC, Sunnyvale, CA, USA).  

 

Small interfering RNA experiments 

Small interfering RNA (siRNA) targeting human AhR and a non-targeting 

siRNA control sequence were commercially obtained from Sigma Aldrich (Mission 

siRNA; Tokyo, Japan). Transfection was performed as previously described [26]. 

Briefly, subconfluent HepG2 cells were transfected for 24 hours with 25 nM siRNA 

using the RNAiMAX® reagent and OPTI-MEM® (Life Technologies, Inc.). In all 

experiments, transfected HepG2 cells were used 48 hours after transfection. 

 

Measurement of IS and hepcidin concentrations in plasma and cell culture medium 

IS levels in mouse plasma were measured using high performance liquid 

chromatography. The concentrations of human and mouse hepcidin-25 were 

quantitatively analyzed as previously described [27]. In brief, surface-enhanced laser 

desorption ionization time of flight mass spectrometry (SELDI-TOF MS) was used to 

analyze hepcidin-25. The molecular sizes of peptides at 2789 m/z matched with the 

reported sizes of hepcidin-25, and the serum peptide at 2789 m/z was identified as 
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hepcidin-25 by collision-induced dissociation tandem MS. The assays were performed 

by Medical Care Proteomics Biotechnology Co. Ltd. (Kanazawa, Japan).  

 

Evaluation of iron-regulatory protein iron-responsive element binding activity  

The interaction between iron-regulatory protein (IRP) and iron-responsive 

element (IRE) was evaluated using an EMSA kit (LightShift Chemiluminescent RNA 

EMSA Kit; Thermo Fisher Scientific Inc., Rockford, IL, USA) as previously reported 

[24]. Semi-quantification for IRP-IRE binding activity was performed using ImageJ 

1.38X software. 

 

Statistical analysis 

Data are presented as means ± standard deviation (SD). An unpaired, 2-tailed, 

Student’s t-test was used for comparisons between the two groups. For comparisons 

between more than two groups, the statistical significance of each difference was 

evaluated using a post-hoc test (either Dunnett’s method or Tukey-Kramer’s method). 

P-values < 0.05 indicated statistical significance. 

 

Results 

Effect of IS on hepcidin expression in liver and cultured hepatic cell line 
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 IS stimulated hepcidin mRNA expression in a dose-dependent manner in 

HepG2 cells (Figure 1A). Similarly, hepcidin secreted from HepG2 cells was increased 

by IS stimulation (Figure 1B). AhR is a receptor for IS, and activated AhR is 

translocated from the cytosol to the nucleus, where it promotes the transcription of 

target genes [28]. Indeed, IS stimulation promoted nuclear translocation of AhR in 

HepG2 cells at 30 minutes or later in the present study (Figure 1C). Therefore, we used 

RNA interference to check whether AhR is involved in IS-induced hepcidin 

upregulation and observed that the siRNA reduced AhR mRNA levels to 27.0 ± 3.0% 

of the control (p < 0.01) and reduced AhR protein levels to 38.9 ± 16.7% of the control 

(p < 0.01). Silencing of AhR diminished IS-induced hepcidin expression (Figure 1D). 

Similarly, pharmacological AhR inhibition using CH-223191 suppressed IS-induced 

hepcidin expression (Figure 1E). These findings suggest that IS increases hepcidin 

expression via an AhR-mediated pathway. 

 

Influence of albumin on IS-induced hepcidin expression 

 Uremic toxins such as IS exist as protein-bound toxins in the blood. 

Therefore, we tested IS action on hepcidin in HepG2 cells cultured with BSA 

containing DMEM, and confirmed that IS augmented hepcidin mRNA expression 

similarly in HepG2 cells cultured with DMEM with BSA as in those cultured with 
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DMEM without BSA (Figure 1F). Moreover, there was no difference in basal hepcidin 

expression regardless of BSA inclusion.  

 

Involvement of oxidative stress in IS-induced hepcidin expression  

IS causes oxidative stress and the consequent activation of the NF-ĸB 

pathway in endothelial cells and proximal tubular cells [29-31]. Similar to previous 

findings, IS caused oxidative stress in HepG2 cells in the present study (Figure 2A), 

and the IS-induced oxidative stress was suppressed by tempol, a superoxide scavenger 

(Figure 2B). IS-induced hepcidin upregulation was also suppressed by NAC or 

BAY11-7082, an inhibitor of NF-ĸB (Figures 2C, D, and E). With regard to the 

relationship between oxidative stress and the AhR pathway, tempol failed to block 

IS-induced translocation of AhR to the nucleus from the cytosol (Figure 2F). 

Conversely, AhR knockdown did not prevent IS-mediated oxidative stress in HepG2 

cells (Figure 2G). Moreover, concomitant treatment with AhR siRNA and 

BAY-11-7082 almost blocked IS-induced hepcidin expression (Figure 2H). These 

results suggest that IS-induced hepcidin expression is also mediated via the oxidative 

stress-NF-ĸB pathway, and that it is independent of the AhR pathway. 

 

Changes in hepcidin levels in adenine-induced CKD mice 
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 To assess iron metabolism in CKD, we used mice with adenine-induced 

CKD. In adenine-induced CKD mice, hepatic hepcidin expression and plasma hepcidin 

concentration were significantly increased four weeks after the start of adenine 

administration (Figure 3A and B). These increases in both hepatic hepcidin expression 

and plasma hepcidin concentration were diminished by AST-120 treatment. As shown 

in Figure 3C, hepcidin concentration was positively correlated with IS levels, 

suggesting that IS is closely associated with hepcidin levels. These results indicate that 

IS accumulation involves hepcidin regulation in CKD mice. 

 

Alterations in tissue iron content in adenine-induced CKD mice  

We examined the impact of IS accumulation on the tissue iron content in 

adenine-induced CKD mice. As shown in Table 2, iron content was elevated in the 

spleen and skeletal muscle in adenine-induced CKD mice, and these increases in iron 

content were subsequently restored by AST-120 treatment. Duodenal iron content was 

also increased in adenine-induced CKD mice, but it was not changed by AST-120 

treatment. On the other hand, while CKD mice presented with decreased iron content 

in the liver and kidney, AST-120 did not ameliorate this effect. The findings of 

decreased plasma iron levels and increased plasma ferritin levels in the adenine-induced 

CKD mice are compatible with functional iron deficiency, and both in the iron and 
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ferritin levels in the blood were ameliorated by AST-120 treatment. These results 

indicate impaired iron distribution and utilization in CKD mice. 

 

Ferroportin expression in the duodenum and spleen 

As described above, hepcidin regulates cellular iron efflux via the 

internalization and degradation of FPN; hepcidin upregulation in CKD mice might 

therefore reduce the expression of FPN. As expected, FPN expression was diminished 

in the duodenum of CKD mice (Figure 4A), and its expression levels were restored by 

AST-120 treatment. In contrast, splenic FPN expression was augmented in CKD mice, 

and this change was also reversed by AST-120 (Figure 5A). In the spleens of CKD 

mice, FPN mRNA expression was increased and IRP-IRE binding activity was reduced, 

which was consistent with the increased FPN protein expression. The changes in FPN 

mRNA and IRP activity were also improved by AST-120 treatment, which 

corresponded with the reduction of FPN expression (Figure 5G and H). IRP-IRE 

binding activity was regulated by iron content, and the change in IRP activity 

corresponded with changes in splenic iron content. These findings suggest that FPN is 

post-transcriptionally regulated, independently of hepcidin, in the spleens of CKD 

mice. 
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The protein expression of iron importers and iron storage in the duodenum and spleen 

Next, we examined the protein expression of iron importers and iron storage 

in the duodenum and spleen. In the duodenum, the expression levels of DMT1, FTH, 

and FTL did not differ among the three groups (Figure 4B-D). Although no difference 

in DMT1 expression was seen, levels of TfR were decreased, and those of FTH and 

FTL were elevated in the spleens of CKD mice. These changes were all reversed by 

AST-120 treatment (Figure 5B-E). Moreover, splenic hepcidin expression was 

significantly reduced in adenine-induced CKD mice, which tended to be restored by 

AST-120 treatment (Figure 5F). 

 

Effect of IS removal on anemia in adenine-induced CKD mice 

Adenine-induced CKD mice demonstrated microcytic hypochromic anemia 

after four weeks of adenine treatment (Table 3). Treatment using AST-120 improved 

impaired iron absorption and utilization in adenine-induced CKD mice, and renal anemia 

was partly prevented by AST-120 treatment. CKD-induced elevation of plasma creatinine 

was slightly suppressed by AST-120 at four weeks (Table 1), and renal EPO expression 

remained at low levels in CKD mice, despite AST-120 treatment (Figure 6). In addition, 

there were no differences in plasma creatinine and the degree of anemia between the 

adenine-CKD mice and the adenine-CKD mice treated with AST-120 after two weeks of 

adenine treatment and one week of AST-120 treatment (Tables 1 and 3). These data 



17 
 

suggest that AST-120 restored iron incorporation and utilization by suppressing a 

pathway that is hepcidin/FPN-dependent and EPO-independent. 

 

Changes in mRNA expression of the inflammatory cytokines  

 IL-6 plays an important role in hepcidin regulation [32]. We examined the 

participation of inflammatory cytokines in hepcidin expression in adenine-CKD mice. As 

shown in Figure 7, the mRNA expression of IL-6, as well as IL-1ß and TNF-α, was 

increased in the kidneys of adenine-CKD mice. In contrast, the mRNA expression of 

those genes was decreased in the livers of adenine-CKD mice, indicating a lack of 

involvement of inflammatory cytokines in hepcidin regulation in the livers of 

adenine-CKD mice. 

 

Direct effect of IS on hepcidin in mice with IS treatment 

We examined whether IS has a direct effect on hepatic hepcidin expression 

using mice that had been administered IS. IS treatment augmented hepatic hepcidin 

mRNA expression as well as plasma hepcidin concentration (Figure 8A and B). IS 

administration also induced mild anemia despite no difference in plasma creatinine 

levels between the control mice and those that were administered IS (Figure 8C and 
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Table 4). Therefore, IS directly affects hepcidin regulation independent of renal 

function.  

 

 

Discussion  

In the in vitro experiments of the present study, IS augmented hepatic 

hepcidin expression via a pathway that depended on both AhR and oxidative stress. 

Similarly, hepatic and plasma hepcidin levels were increased in the in vivo experiments 

using adenine-induced CKD mice. The CKD mice also showed decreased FPN 

expression in the duodenum and increased splenic iron concentrations. The alterations 

in iron metabolism in the CKD mice were ameliorated by AST-120, which removes IS. 

These observations suggest, for the first time, the involvement of IS in iron metabolism 

in CKD.  

Hepcidin was first identified as an antimicrobial peptide and it plays an 

important role in the regulation of iron metabolism [3]. Specifically, hepcidin regulates 

cellular iron efflux via both the internalization and degradation of FPN [4]. Therefore, 

CKD-related increases in hepcidin levels contribute to the intracellular sequestration of 

iron, as well as impaired absorption of iron from the duodenum, and such changes 

promote functional iron deficiency in CKD. Indeed, several studies have shown that 
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the serum hepcidin concentration is elevated in CKD, which contributes to whole-body 

iron dysregulation. Moreover, elevated serum hepcidin levels are correlated with serum 

ferritin levels and inflammatory markers in patients with CKD [5]. Adenine-induced 

CKD animals show increases in hepatic hepcidin, as well as abnormal iron metabolism 

[6, 7]. In the present study, we found that hepatic hepcidin expression and plasma 

hepcidin concentration were elevated in adenine-induced CKD mice. These hepcidin 

increases were rectified by the removal of IS. The present study is the first to reveal the 

association between IS and hepcidin regulation.  

To investigate the mechanism by which IS regulates hepcidin concentrations, 

we used HepG2 cells and found that IS also increased hepcidin expression in these 

cells. Previously, Schroeder et al. demonstrated that IS is a ligand of AhR, and that IS 

acts via AhR [28]. In the current investigation, IS promoted the translocation of AhR to 

the nucleus from the cytosol in HepG2 cells, and the IS-induced hepcidin upregulation 

was reversed by AhR silencing. Similarly, previous studies have shown that various IS 

actions are prevented by AhR silencing [33]. Taken together, clearly the effect of IS on 

hepcidin is exerted through an AhR-mediated pathway.  

IS is known to cause oxidative stress; consequently, the toxin activates 

NF-κB signaling [29-31, 34]. In the present study, IS-induced hepcidin augmentation 

was suppressed by both a free radical scavenger and an NF-κB inhibitor, suggesting 

that the IS-induced oxidative stress-NF-κB axis is involved in hepcidin regulation. 
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However, IS-induced oxidative stress was not reduced by AhR siRNA, and tempol did 

not inhibit the IS-induced translocation of AhR to the nucleus. In addition, IS-induced 

hepcidin upregulation was almost completely abolished by the simultaneous inhibition 

of the AhR and NF-κB pathways. These results suggest that IS/oxidative stress-induced 

hepcidin expression occurs independently of any AhR-mediated pathway.  

In contrast to our results, several studies have shown that hepcidin is 

downregulated by oxidative stress induced by alcohol [35] or the hepatitis C virus [36]. 

However, pathophysiologically relevant H2O2 levels have been shown to upregulate 

hepcidin expression via STAT3 [37]. In terms of the effect of NF-κB on hepcidin, a 

previous study showed that LPS-induced hepcidin upregulation is mediated by NF-κB–

dependency, which is similar to our finding [38]. In contrast, ceramide-induced 

hepcidin regulation is not involved in the NF-κB pathway [39]. Therefore, oxidative 

stress and NF-κB have dual characteristics as either positive or negative regulators of 

hepcidin. 

Uremic solutes normally exist as protein-bound toxins, and several studies, 

including the present study, used high concentrations of IS relative to the 

concentrations in uremic CKD patients in the in vitro experiments [11, 40]. Therefore, 

we tested the IS effect on hepcidin in HepG2 cells by using both the free concentration 

(25µM) in albumin-free DMEM and the protein-bound maximum concentration (250 

µM) in DMEM containing BSA. Twenty-five µM of IS induced an approximately 
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twofold increase in hepcidin mRNA expression in HepG2 cultured with BSA-free 

DMEM, and 250 µM IS also increased hepcidin mRNA expression in HepG2 cultured 

with BSA-containing DMEM. In addition, there was no difference in basal hepcidin 

mRNA expression in DMEM regardless of BSA inclusion, indicating no impact of 

albumin on hepcidin expression (Figure 1F). Thus, hepcidin expression was 

upregulated by IS at the free concentration and protein-bound concentration doses in 

HepG2 cells under our experimental condition. 

Inflammatory cytokines (i.e., IL-6) are also important factors in hepcidin 

regulation [32]. As expected, the expression of IL-6, IL-1ß, and TNF-α mRNA was 

upregulated in the kidney in CKD mice. However, it was decreased in the liver. 

Although the reason for the discrepancy in inflammatory cytokine expression between 

the kidney and liver remains unclear, inflammatory cytokines might not be associated 

with the regulation of hepatic hepcidin in an adenine-induced CKD mouse model. 

 Regarding alterations in iron distribution in CKD mice, iron concentrations 

in the spleen, duodenum, and skeletal muscle were increased. Plasma ferritin was also 

increased, though plasma iron was decreased, indicating that iron absorption and 

utilization were impaired. These alterations were mostly ameliorated by AST-120 

treatment. It follows that IS removal, and the resulting inhibition of hepcidin, might 

improve (1) iron metabolism and (2) iron utilization in CKD. Consistent with this 

result, decreased expression of FPN in the duodenum was restored by AST-120 
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treatment in CKD mice, indicating that IS removal affects hepcidin levels. Conversely, 

CKD mice showed increased FPN expression in the spleen, which was reduced by 

AST-120 treatment. It is not clear why the discrepancy of increased FPN expression in 

the spleen combined with elevated hepcidin in the liver and serum is present in CKD 

mice. FPN expression is controlled by both transcriptional and post-transcriptional 

regulation, as well as by the translational regulation of hepcidin-dependent internalization. 

In macrophages, FPN transcription is induced by iron, as well as by heme protein [41]. 

Additionally, FPN mRNA has an iron-responsive element in the 5′-region [42], and its 

translation is therefore increased by high iron levels because it can bind to iron 

regulatory protein 1 [43]. In the spleens of CKD mice, FPN mRNA was increased and 

IRP activity was reduced, which is consistent with the understanding that increased 

FPN protein expression is responsible for the transcriptional upregulation. Therefore, 

we suggest that the increased FPN expression seen in CKD mice is likely responsible 

for the accumulation of iron in the spleen, and that this accumulation overwhelms 

hepcidin-mediated mechanisms. In addition, hepcidin expression has been observed in 

not only the liver, but also the heart [44], kidney [45], brain [46], and spleen [47]. 

Although the function of extra-hepatic hepcidin remains unknown, it might influence 

local iron regulation. In the present study, hepcidin expression was reduced in the 

spleens of adenine-CKD mice, indicating the involvement of local hepcidin on the 

regulation of splenic FPN expression. Further examination is necessary to clarify 
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whether there is a coordinated regulation of (1) peripheral FPN expression or (2) 

hepatic hepcidin levels.  

 CKD mice showed renal anemia compatible with iron-deficient anemia, 

which is caused by iron sequestration and impaired iron utilization, as well as by 

reduced renal EPO production. The renal anemia was slightly improved by AST-120 

treatment, perhaps because consequent reductions in hepcidin restored iron utilization. 

In previous studies, hepcidin inhibition ameliorated erythropoiesis in (1) a model of 

CKD combined with renal anemia, (2) hepcidin-deficient mice, and (3) mice that had 

been treated with a hepcidin inhibitor [7, 48]. This suggests that hepcidin inhibition 

mobilizes iron and improves iron utilization. In the same way, the removal of IS using 

AST-120 ameliorated iron accumulation in the spleen and skeletal muscle, as well as 

elevated plasma ferritin levels. Conversely, the treatment reduced plasma iron levels in 

CKD mice, indicating that iron mobilization in tissues with ectopic iron accumulation 

had been improved. Moreover, AST-120 slowed the progression of renal dysfunction, 

as estimated by plasma creatinine level; however, the decrease of renal EPO expression 

in CKD mice was not changed by IS removal. Therefore, IS removal ameliorates renal 

anemia via the restoration of iron utilization rather than through increased EPO 

production. Additionally, cyanate, formed spontaneously from accumulated urea, 

decreases EPO activity in order to induce EPO carbamylation [49, 50], which might 

promote inadequate erythropoiesis in CKD.  
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A recent clinical study (Evaluating Prevention of Progression in CKD 

[EPPIC] trials) demonstrated that AST-120 fails to prevent disease progression in 

patients with moderate to severe CKD [51]. Moreover, a subgroup analysis within the 

EPPIC study revealed that AST-120 delays the primary end point (dialysis initiation, 

kidney transplantation, or serum creatinine doubling) in American patients [52]. Thus, 

it remains controversial whether IS removal prevents renal dysfunction in CKD. 

Nonetheless, the uremic toxicity of IS accumulation causes dysfunction in various 

organs through multiple pathways. Further examination is necessary to elucidate the 

effect of AST-120 on renal anemia in CKD. 

 In conclusion, IS induces hepcidin production via a pathway that involves 

both AhR and oxidative stress; this results in iron sequestration and impaired iron 

utilization in CKD. AST-120 ameliorates iron metabolism by inhibiting hepcidin 

increases, promoting iron mobilization, and ameliorating erythropoiesis. These findings 

suggest that a therapeutic strategy of uremic toxin removal may be useful for correcting 

impaired iron metabolism in CKD. 
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Table 1. Characteristics of the control mice and adenine-CKD mice with or without AST-120 treatment 

Data are presented as means ± SD; n = 4-15, respectively. *P < 0.05, **P < 0.01 vs. control mice at the same week. #P < 0.05, ##P < 0.01 vs. adenine diet at the same week. 

IS; indoxyl sulfate. 

  

 
1W  2W  4W 

  Control Adenine  Control Adenine Adenine+AST120  Control Adenine Adenine +AST120 

Body weight (g)  24.7 ± 2.2 22.5 ± 0.7  26.8 ± 1.1 20.8 ± 1.8** 20.4 ± 0.6**  28.2 ± 2.0 18.2 ± 1.5** 18.5 ± 1.3** 

Right kidney weight (mg) 131.5 ± 12.5 163.8 ± 14.4*  143.0 ± 10.4 179.3 ± 17.6* 148.5 ± 14.1#  156.9 ± 10.5 152.1 ± 13.3 158.9 ± 12.2 

Left kidney weight (mg) 122.3 ± 13.2 156.3 ± 14.2**  143.8 ± 13.4 170.3 ± 7.5 149 ± 15.2  149.7 ± 10.9 148.7 ± 17.5 153.9 ± 17.5 

Plasma creatinine (mg/dL) 0.50 ± 0.07 0.87 ± 0.15**  0.31 ± 0.07 1.08 ± 0.21** 0.97 ± 0.03**  0.36 ± 0.11 1.67 ± 0.38** 1.33 ± 0.33**# 



Table 2. Tissue iron content, plasma iron levels, and plasma ferritin concentration 

   Control Adenine Adenine + AST-120 

Spleen (µg/g tissue weight) 6.1 ± 1.1 19.0 ± 7.5* 8.4 ± 0.9# 

Liver (µg/g tissue weight) 19.9 ± 3.8 9.3 ± 1.3** 9.8 ± 1.3** 

Duodenum (µg/g tissue weight) 8.0 ± 3.9 14.3 ± 6.9* 11.5 ± 5.7 

Kidney (µg/g tissue weight) 7.6 ± 3.7 1.4 ± 0.7** 2.4 ± 1.5* 

Gastrocnemius muscle (µg/g tissue weight) 3.6 ± 2.7 7.7 ± 5.4** 3.1 ± 0.6# 

Plasma iron (µg/dL) 108.5 ± 16.8 78.6 ± 22.9* 111.7 ± 36.6# 

Plasma ferritin (ng/mL) 504 ± 146 2842 ± 726**  1882 ± 571**## 

Data are presented as means ± SD; n = 3-14, respectively. *P < 0.05, **P < 0.01 vs. control mice. #P < 0.05, ##P < 0.01 vs. adenine diet.  

  



Table 3. Hematological data of the control mice and adenine-CKD mice with or without AST-120 treatment 

Data are presented as means ± SD; n = 3-15, respectively. *P < 0.05, **P < 0.01 vs. control mice at the same week. #P < 0.05, ##P < 0.01 vs. adenine diet at the same week. 

RBC; red blood cell, Hb; hemoglobin, Ht; hematocrit, MCV; mean corpuscular volume, MCH; mean corpuscular hemoglobin, MCHC; mean corpuscular hemoglobin 

concentration, WBC; white blood cell, Plt; platelet. 

 

  1W  2W  4W 

  Control Adenine  Control Adenine Adenine+AST120  Control Adenine Adenine+AST120 

RBC (× 104/µL) 914 ± 79 726 ± 68*  857 ± 26 688 ± 93* 720 ± 40*  901 ± 63 643 ± 57** 718 ± 99**# 

Hb (g/dL) 14.2 ± 1.2 11.4 ± 1.0*  13.7 ± 0.3 10.1 ± 1.4** 10.6 ± 0.7*  13.7 ± 0.9 8.8 ± 0.7** 10.1 ± 1.5**# 

Ht (%) 43.4 ± 3.5 32.4 ± 3.1*  39.6 ± 0.9 29.7 ± 4.5** 31.4 ± 1.7**  40.7 ± 3.1 26.8 ± 2.5** 31.4 ± 7.0**# 

MCV (fL) 47.7 ± 0.6 44.5 ± 0.5**  46.3 ± 0.5 43.0 ± 1.3** 43.7 ± 0.5**  45.3 ± 0.8 41.7 ± 1.0** 43.4 ± 3.3 

MCH (pg) 15.5 ± 0.1 15.7 ± 0.6  15.9 ± 0.2 14.7 ± 0.2** 14.8 ± 0.2**  15.2 ± 0.4 14.0 ± 0.3** 14.0 ± 0.3** 

MCHC (g/dL) 32.7 ± 0.4 35.2 ± 1.2**  34.5 ± 0.1 34.2 ± 1.0 33.9 ± 0.4  33.8 ± 1.3 33.5 ± 1.1 32.5 ± 2.3 

WBC (/µL) 5200 ± 2100 3700 ± 700  3700 ± 1300 4300 ± 1800 4600 ± 2600  5200 ± 3200 2600 ± 1100** 2900 ± 1200* 

Plt (× 104/µL) 51.8 ± 5.2 68.0 ± 12.6*  51.0 ± 12.2 66.3 ± 17.9 63.6 ± 17.6  45.2 ± 16.2 79.3 ± 15.3** 94.6 ± 18.7** 



Table 4. Characteristics and hematological data of mice with vehicle- or IS-treatment for two 
weeks  

 Vehicle IS 

Body weight (g)  27.6 ± 2.4 27.8 ± 0.3 

Right kidney weight (mg) 155.3 ± 11.0 163.8 ± 22.5 

Left kidney weight (mg) 152.0 ± 9.9 159.5 ± 8.9 

Plasma creatinine (mg / dL) 0.37 ± 0.14 0.42 ± 0.22 

RBC (× 104/µL) 955 ± 53 721 ± 62** 

Hb (g/dL) 14.5 ± 0.9 11.3 ± 0.9** 

Ht (%) 44.7 ± 2.9 33.4 ± 3.1** 

MCV (fL) 46.5 ± 0.6 46.3 ± 0.5 

MCH (pg) 15.2 ± 0.1 15.7 ± 0.4 

MCHC (g/dL) 32.5 ± 0.5 33.9 ± 1.2 

WBC (/µL) 4300 ± 900 5600 ± 1400 

Plt (× 104/µL) 39.7 ± 7.0 50.7 ± 6.9 

Data are presented as means ± SD; n = 4, respectively. *P < 0.05, **P < 0.01 vs. vehicle mice. 



Figure legends 

Figure 1. Effect of indoxyl sulfate (IS) on hepcidin expression in liver and HepG2 cells. 

(A) IS induces hepcidin mRNA expression in HepG2 cells in a dose-dependent manner. 

Values are expressed as means ± SD. *P < 0.05, **P < 0.01 (vs. vehicle treatment); n = 

6-8 in each group. (B) Hepcidin concentration secreted from HepG2 cell to culture 

media. Values are expressed as means ± SD. *P < 0.05 (vs. vehicle treatment); n = 4 in 

each group. (C) IS translocates aryl hydrocarbon receptor (AhR) to the nucleus from the 

cytoplasm in HepG2 cells. Left panel: representative protein expression levels of AhR 

and tubulin, and semi-quantitative densitometry analysis of AhR expression in the 

cytoplasm. Right panels: representative protein expression of AhR and Histone-H3, and 

semi-quantitative densitometry analysis of AhR expression in the nucleus. Values are 

expressed as means ± SD. *P < 0.05, **P < 0.01 (vs. time at 0 min); n = 5 in each group. 

(D) Treatment with AhR siRNA inhibits IS-induced hepcidin upregulation in HepG2 

cells. Forty-eight hours after siRNA transfection, cells were treated with either IS or 

vehicle. Values are expressed as means ± SD. *P < 0.05, **P < 0.01; n = 14 in each 

group. (E) Treatment with CH-223191 inhibits IS-induced hepcidin upregulation in 

HepG2 cells. Cells were treated with either IS or vehicle 1 hour after CH-223191 

pretreatment. Values are expressed as means ± SD. **P < 0.01; n = 3 in each group. (F) 



High concentration of IS action on hepcidin mRNA in HepG2 cells cultured with or 

without BSA-containing DMEM. Values are expressed as means ± SD. *P < 0.05, **P 

< 0.01; n = 7 in each group. 

Figure 2. Effect of IS-induced oxidative stress on hepcidin expression in HepG2 cells. 

(A) Time course of IS-induced oxidative stress, as detected using 2 ′ ,7 ′

-dichlorofluorescin diacetate fluorescence. IS induces oxidative stress at 15 minutes or 

later. Values are expressed as means ± SD. *P < 0.05, **P < 0.01 (vs. time at 0 min); n 

= 7–8 in each group. (B) Pre-treatment with tempol inhibits IS-induced oxidative stress 

in HepG2 cells. Cells were treated with either IS or vehicle for 24 hours after 

pre-treatment with either vehicle or tempol. Values are expressed as means ± SD. *P < 

0.05, **P < 0.01; n = 8 in each group. (C) The effect of tempol, a superoxide scavenger, 

(D) N-acetyl cysteine, an-anti-oxidant agent, or (E) BAY-11-7082, an NF-κB inhibitor, 

on IS-induced oxidative stress in HepG2 cells. Values are expressed as means ± SD. *P 

< 0.05, **P < 0.01; n = 4-9 in each group. (F) Tempol has no inhibitory effect on 

IS-induced AhR translocation to the nucleus from the cytosol. Values are expressed as 

means ± SD. *P < 0.05, **P < 0.01; n = 8 in each group. (G) Effect of AhR silencing on 

IS-induced oxidative stress. Values are expressed as means ± SD. **P < 0.01; n = 11–

16 in each group. (H) The concomitant effect of AhR siRNA transfection and NF-κB 



inhibitor administration on IS-induced hepcidin expression in HepG2 cells. Values are 

expressed as means ± SD. **P < 0.01; n = 4 in each group. 

Figure 3. Changes in hepcidin levels in adenine-induced CKD mice with or without 

AST-120 treatment. (A) Hepcidin mRNA expression. Values are expressed as means ± 

SD. *P < 0.05, **P < 0.01, n = 4–11 in each group. (B) Plasma hepcidin concentration. 

Values are expressed as means ± SD. **P < 0.01; n = 4–8 in each group. (C) Plasma 

indoxyl sulfate concentration. Values are expressed as means ± SD. *P < 0.05, **P < 

0.01; n = 4–8 in each group. (D) Positive correlation between plasma hepcidin and IS 

concentration. 

Figure 4. Changes in the expression of duodenal iron metabolism-related proteins in 

mice. Upper panel: Representative immunoblots for (A) FPN, (B) DMT1, (C) FTH, (D) 

FTL and protein staining. Lower panel: Semi-quantitative densitometric analyses of 

DMT1, FPN, FTH, and FTL protein levels normalized to protein staining. Values are 

expressed as means ± SD. **P < 0.01; n = 11–15 in each group. 

Figure 5. Alterations in iron metabolism-related proteins in the spleen of mice. Upper 

panel: Representative immunoblots for (A) FPN, (B) DMT1, (C) TfR, (D) FTH, (E) 

FTL and tubulin. Lower panel: Semi-quantitative densitometric analyses of FPN, 



DMT1, TfR, FTH, and FTL protein levels normalized to tubulin. Values are expressed 

as means ± SD. **P < 0.01; n = 14–18 in each group. The mRNA expression of (F) 

hepcidin and (G) FPN in the spleen of mice. Values are expressed as means ± SD. *P < 

0.05, **P < 0.01; n = 7–12 in each group. (H) Upper panel: Representative IRP–IRE- 

binding bands. Lower panel: Semi-quantitative densitometry analysis of IRP activity in 

the spleen. *P < 0.05, **P < 0.01; n = 5 in each group. 

Figure 6. Erythropoietin mRNA expression in the kidney. Values are expressed as 

means ± SD. **P < 0.01; n = 10–11 in each group.  

Figure 7. IL-6, IL-1ß, and TNF-α mRNA expression in the kidney and liver of control 

mice and adenine-CKD mice. Values are expressed as means ± SD. *P < 0.05, **P < 

0.01; n = 3-7 in each group. 

Figure 8. (A) Hepcidin mRNA expression in the liver of vehicle-treated or IS-treated 

mice at 2 weeks. Values are expressed as means ± SD. **P < 0.01 (vs. vehicle 

treatment); n = 3–4 in each group. (B) Plasma hepcidin concentration. Values are 

expressed as means ± SD. *P < 0.05 (vs. vehicle treatment); n = 7–11 in each group. (C) 

Plasma indoxyl sulfate concentration. Values are expressed as means ± SD. **P < 0.05 

(vs. vehicle treatment); n = 4–8 in each group. 
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Figure 2 continued 
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Figure 5 continued 
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