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Abstract

Consider the initial boundary value problem for degenerate dissi-
pative wave equations of Kirchhoff type with attractive force terms.
We are interested in the case of 0 < γ < 1 for the degeneracy of
nonlinear term Φ(r) = rγ . We prove the global solvability prob-
lem, provided that the initial data belong to the potential well and
satisfy a suitable smallness condition. Moreover, we derive optimal
decay estimates of the solutions.
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1 Introduction

In this paper, we investigate on the global existence and decay estimates
of solutions to the initial boundary value problem for the following degenerate
dissipative wave equations of Kirchhoff type with the attractive force term : utt + ut = Φ

(∫ ℓ

0

|ux(x, t)|2 dx

)
uxx + f(u) in (0, ℓ)× (0,∞) ,

u(x, 0) = u0(x) , ut(x, 0) = u1(x) and u(0, t) = u(ℓ, t) = 0 ,

(1.1)

where u = u(x, t) is an unknown real value function, ut = ∂tu = ∂u/∂t,
ux = ∂xu = ∂u/∂x, ℓ > 0, and

Φ(r) = rγ with γ > 0 and f(u) = |u|pu with p > 0 .

Equation (1.1) describes small amplitude vibrations of an elastic stretched
string. Kirchhoff [9] first studied such integrate-differential equations without
any dissipation (see [3], [5], [13]).
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We define the energy E(u, ut) and the potential J(u) associated with the
degenerate equation (1.1) by

E(u, ut) ≡ ∥ut∥2 + J(u) (1.2)

and

J(u) ≡ 1

γ + 1
∥ux∥2(γ+1) − 2

p+ 2
∥u∥p+2

p+2 , (1.3)

respectively. We introduce the potential well W by

W ≡ {u ∈ H1
0

∣∣ J(u) < d , K(u) ≥ 0} , (1.4)

where

K(u) ≡ ∥ux∥2(γ+1) − ∥u∥p+2
p+2 (1.5)

and the potential well depth d is defined by

d = inf{J(u)
∣∣ K(u) = 0 , u ̸= 0} (1.6)

(see [8], [12], [19], [22]). If p > 2γ, it is easy to see that

J(u) =
1

γ + 1
K(u) +

p− 2γ

(γ + 1)(p+ 2)
∥u∥p+2

p+2

=
2

p+ 2
K(u) +

p− 2γ

(γ + 1)(p+ 2)
∥ux∥2(γ+1) ,

and hence,

J(u) ≥ max

{
1

γ + 1
K(u) ,

p− 2γ

(γ + 1)(p+ 2)
∥ux∥2(γ+1)

}
. (1.7)

Moreover, when u ∈ W, we have

K(u) ≥

(
1−

(
J(u)

d

) p−2γ
2(γ+1)

)
∥ux∥2(γ+1) . (1.8)

Indeed, taking λ > 0 such that K(λu) = 0 for u ̸= 0, that is,

K(λu) = λ2(γ+1)∥ux∥2(γ+1) − λp+2∥u∥p+2
p+2 = 0 ,

we have

λp−2γ∥u∥p+2
p+2 = ∥ux∥2(γ+1) and λ =

(
∥ux∥2(γ+1)

∥u∥p+2
p+2

) 1
p−2γ

(1.9)



and λ ≥ 1 by u ∈ W. On the other hand, we have

d ≤ J(λu) =
λ2(γ+1)

γ + 1
∥ux∥2(γ+1) − 2λp+2

p+ 2
∥u∥p+2

p+2 ≤ λ2(γ+1)J(u) . (1.10)

Thus, we observe from (1.9) and (1.10) that

K(u) =

(
1−

(
1

λ

)p−2γ
)
∥ux∥2(γ+1) ≥

(
1−

(
J(u)

d

) p−2γ
2(γ+1)

)
∥ux∥2(γ+1) .

When the initial data belong to usual Sobolev spaces, Arosio and Garavaldi
[1] have carried out detailed analysis about the existence of local solutions for
the Kirchhoff type equations (also see [2], [4], [15] and the references cited
therein).

In order to prove the existence of global solutions, we need to derive suit-
able a-priori estimates including the uniformly estimates for the second order
derivatives in addition to the usual energy estimate, which is the main difficulty
of problems for Kirchhoff type equations.

In the case of non-degenerate type Φ(r) ≥ C0 > 0 (e.g. Φ(r) = 1 + rγ),
Hosoya and Yamada [7] have proved the exponential decay estimates and the
global existence of solutions under small data conditions (see also [16]).

In the case of degenerate type Φ(r) ≥ 0 (e.g. Φ(r) = rγ), the situations
are more delicate and difficult. Fortunately, applying the general theory on the
energy decay of hyperbolic equations in [11], we see that the energy decays at
a certain algebraic rate. In particular, when f(u) ≡ 0, we have derived the
detailed estimates of the solutions in previous paper [18] (also see [6], [14] and
the references cited therein).

When Φ(r) = rγ ∈ C1([0,∞)) (i.e. γ ≥ 1), under the conditions that
p > 2γ, u0 ∈ W, u0 ̸= 0, and the initial data are small, we have proved the
global existence of solutions for (1.1), and we have derived some upper decay
estimates of the solutions in [16] (also see [17] for decay properties, and [15] for
f(u) = −|u|pu). In order to get the a-priori estimate in H2 ×H1, we used the
function H(t) ≡ ∥uxt(t)∥2/∥ux(t)∥2γ + ∥uxx(t)∥2 when γ ≥ 1.

However, in the case of 0 < γ < 1, the method in [16] can not be applied
directly to the problem (1.1). Since Φ(r) is not C1 at the origin, this situation
is more delicate and difficult. To prove the existence of global solutions of (1.1)
for γ > 0, we need to modify the function H(t) including the H2×H1 norm of
[u(t), ut(t)]. The main difficulty is generated by the degeneracy of Φ(r) ≡ rγ

with 0 < γ < 1. A key point of the analysis is to show that the non-local
term Φ(∥ux(t)∥2) > 0 for each time t and the decay rate of the H2 norm of the
solution is −1/γ which is optimal (see (1.11)).

In what follows, we denote E(t) ≡ E(u(t), ut(t)), J(t) ≡ J(u(t)), K(t) ≡
K(u(t)) for simplicity of the notations. Moreover, we denote the Sobolev–
Poincaré constant by c∗, that is, ∥v∥p ≤ c∗∥vx∥ for 1 ≤ p ≤ ∞.



Our purpose in this paper is to the existence of global solutions of (1.1) in
the case of γ > 0 (in particular 0 < γ < 1) and to derive the detailed decay
estimates of the solutions.

Our main result is as follows.

Theorem 1.1 Let the initial data [u0, u1] belong to H2 ∩W ×H1
0 and u0 ̸= 0.

Suppose that p > 2γ. There exists ε0 (0 < ε0 < d) such that if E(0) ≡
E(u0, u1) ≤ ε for ε ≤ ε0 (see (3.1) and (3.2)), then the problem (1.1) ad-
mits a global solution u(t) in the class C0([0,∞);H2 ∩W) ∩ C1([0,∞);H1

0 ) ∩
C2([0,∞);L2) and the solution u(t) satisfies

C ′(1 + t)−
1
γ ≤ ∥∂k

xu(t)∥2 ≤ C(1 + t)−
1
γ for k = 0, 1, 2 , (1.11)

∥∂j
x∂tu(t)∥2 ≤ C(1 + t)−2− 1

γ for j = 0, 1 , (1.12)

∥∂2
t u(t)∥2 ≤ C(1 + t)−3− 1

γ for t ≥ 0 , (1.13)

where C and C ′ are some positive constants depending on the initial data
[u0, u1].

Theorem 1.1 follows from Theorems 3.1–4.4 in the continuing sections, and
Theorem 1.1 can be applied to Equation (1.1) with the nonlinear term f(u) =
±|u|p+1.

The notations we use in this paper are standard. The symbol (·, ·) means
the inner product in L2 = L2(Ω) with Ω = (0, ℓ) or sometimes duality between
the space X and its dual X ′. The spaces Hk = Hk(Ω) and Lq = Lq(Ω) have
the usual norms ∥ · ∥Hk and ∥ · ∥q (∥ · ∥ = ∥ · ∥2 for q = 2), respectively. We
put (a)+ = max{0, a} where 1/(a)+ = ∞ if (a)+ = 0. Positive constants will
be denoted by C and will change from line to line.

2 Preliminaries

The proof of the following local existence theorem is standard and we omit
it here (see [2], [15], [20], [21]).

Theorem 2.1 Suppose that the initial data [u0, u1] belong to H2 ∩ H1
0 × H1

0

and u0 ̸= 0. Then, the problem (1.1) admits a local solution u(t) in the class
C0([0, T );H2∩H1

0 )∩C1([0, T );H1
0 )∩C2([0, T );L2) for some T > 0. Moreover,

if ∥ux(t)∥ > 0 and ∥u(t)∥H2 + ∥ut(t)∥H1 < ∞ for 0 ≤ t ≤ T , we can take
T = ∞.

In what follows, we denote M(t) ≡ ∥ux(t)∥2 for simplicity of the notation.

Proposition 2.2 Let u(t) be a solution of (1.1). Suppose that u0 ∈ W and
E(0) < d and p > 2γ. Then, it holds that

κ−1M(t)γ+1 ≤ E(t) < d (2.1)



and

(γ + 1)δJ(t) ≤ δM(t)γ+1 ≤ K(t) ≤ (γ + 1)J(t) (2.2)

where κ > 0 and 0 < δ < 1 are defined by

κ =
(γ + 1)(p+ 2)

p− 2γ
and δ =

(
1−

(
E(0)

d

) p−2γ
2(γ+1)

)
. (2.3)

Proof. Multiplying (1.1) by ut and integrating it over Ω = (0, ℓ), we have

d

dt
E(t) + 2∥ut(t)∥2 = 0 (2.4)

and

E(t) + 2

∫ t

0

∥ut(s)∥2 ds = E(0) . (2.5)

From (1.2), (1.7), and (2.5), we observe that

p− 2γ

(γ + 1)(p+ 2)
M(t)γ+1 ≤ J(t) ≤ E(t) ≤ E(0) < d (2.6)

which implies (2.1). Thus, from (1.8) and (2.6) we observe that

K(t) ≥

(
1−

(
J(t)

d

) p−2γ
2(γ+1)

)
M(t)γ+1 ≥ δM(t)γ+1 , (2.7)

and hence, from (1.3), (1.7), and (2.7) we obtain the desired estimate (2.2). □

In what follows, let u(t) be a solution and we assume that

E(0) ≤ min{ 1 , d } . (2.8)

Proposition 2.3 Under the assumption of Proposition 2.2, the energy E(t)
satisfies that

E(t) ≤
(
E(0)−

γ
γ+1 + d−1

1 (t− 1)+
)− γ+1

γ

(2.9)

where d1 = (γ + 1)γ−1(2(2 + δ−1) + 5δ−1κ
1

2(γ+1) )2 is a positive constant.

Proof. Integrating (2.4) over [t, t+ 1], we observe

2

∫ t+1

t

∥ut(s)∥2 ds = E(t)− E(t+ 1) (≡ 2D(t)2) . (2.10)



There exist two numbers t1 ∈ [t, t+ 1/4] and t2 ∈ [t+ 3/4, t+ 1] such that

∥ut(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.11)

On the other hand, multiplying (1.1) by u(t) and integrating it over Ω× [t1, t2],
we have from (2.10) and (2.11) that∫ t2

t1

K(s) ds =

∫ t2

t1

(
∥ut(s)∥2 −

d

dt
(ut(s), u(s))− (ut(s), u(s))

)
ds

≤
∫ t+1

t

∥ut(s)∥2 ds+
2∑

j=1

∥ut(tj)∥∥u(tj)∥+
∫ t+1

t

∥ut(s)∥∥u(s)∥ ds

≤ D(t)2 + 5D(t) sup
t≤s≤t+1

∥u(s)∥

and from (2.2), (2.10), and (2.11) that∫ t2

t1

E(s) ds =

∫ t2

t1

(
∥ut(s)∥2 + J(s)

)
ds

≤
∫ t+1

t

∥ut(s)∥2 ds+ δ−1

∫ t2

t1

K(s) ds

≤ (1 + δ−1)D(t)2 + 5δ−1D(t) sup
t≤s≤t+1

∥u(s)∥ (2.12)

Moreover, integrating (2.4) over [t, t2] we have from (2.10) and (2.12) that

E(t) = E(t2) + 2

∫ t2

t

∥ut(s)∥2 ds

≤ 2

∫ t2

t1

E(s) ds+ 2

∫ t+1

t

∥ut(s)∥2 ds

≤ 2(2 + δ−1)D(t)2 + 5δ−1D(t) sup
t≤s≤t+1

∥u(s)∥ .

Since it follows from the Sobolev–Poincaré inequality and (2.1) and (2.4) that

sup
t≤s≤t+1

∥u(s)∥ ≤ sup
t≤s≤t+1

c∗M(s)
1
2 ≤ c∗(κE(t))

1
2(γ+1) , (2.13)

and from (2.8) and (2.10) that

D(t) ≤ E(t)
1
2 ≤ E(0)

γ
2(γ+1)E(t)

1
2(γ+1) ≤ E(t)

1
2(γ+1) ,

we have

E(t) ≤ (2(2 + δ−1) + 5δ−1κ
1

2(γ+1) )D(t)E(t)
1

2(γ+1) ,



and from (2.10) that

E(t)1+
γ

γ+1 ≤ (2(2 + δ−1) + 5δ−1κ
1

2(γ+1) )2(E(t)− E(t+ 1)) . (2.14)

Thus, applying Lemma 2.4 to (2.14), we obtain the desired estimate (2.9). □

In order to derive the energy decay, we used the following inequality (see
Nakao [11] and [12] for the proof).

Lemma 2.4 Let ϕ(t) be a non-increasing non-negative function on [0,∞) and
satisfy

ϕ(t)1+α ≤ k (ϕ(t)− ϕ(t+ 1))

with certain constants k ≥ 0 and α > 0. Then, the function ϕ(t) satisfies

ϕ(t) ≤
(
ϕ(0)−α + αk−1(t− 1)+

)− 1
α for t ≥ 0 .

Corollary 2.5 If q > γ, then it holds that∫ t

0

M(s)q ds ≤ d2E(0)
q−γ
γ+1 (2.15)

where d2 = κ
q

(γ+1) (1 + γ(q − γ)−1d1) is a positive constant.

Proof. From (2.1) and (2.9) we observe that∫ t

0

M(s)q ds ≤
(∫ 1

0

+

∫ t

1

)
(κE(s))

q
γ+1 ds

≤ κ
q

γ+1

(
E(0)

q
γ+1 +

∫ t

1

(
E(0)−

γ
γ+1 + d−1

1 (s− 1)
)− q

γ

ds

)
≤ κ

q
γ+1

(
E(0)

q
γ+1 +

γ

q − γ
d1E(0)

q−γ
γ+1

)
and we obtain (2.15). □

We introduce the function µ(t) by

µ(t) ≡ sup
0≤s≤t

∥ut(s)∥2

M(s)2γ+1
. (2.16)

Proposition 2.6 Suppose that

p > 2γ and
|M ′(t)|
M(t)

≤ 1

γ + 1
(2.17)



and the initial energy E(0) satisfies

22cp+2
∗ (κE(0))

1
γ+1 < 1 . (2.18)

Then, it holds that

∥uxx(t)∥2

M(t)
≤ G(t) ≤ 2

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)µ(t)

1
2

)2
(2.19)

where d0 = 2(γ + 1)(p+ 1)cp∗d2 is a positive constant, and G(t) is defined by

G(t) ≡ ∥uxx(t)∥2

M(t)
+Q(t) +

2

M(t)γ+1
(f(u(t)), uxx(t)) (2.20)

with

Q(t) ≡ 1

M(t)γ+2

(
M(t)∥uxt(t)∥2 −

1

4
|M ′(t)|2

)
. (2.21)

Proof. We observe from the definition of Q(t) that

∥uxt(t)∥2

M(t)γ
≥ Q(t) ≥ 0 , (2.22)

and from the Sobolev-Poincaré inequality and (2.6) that

2|(f(u(t)), uxx(t))|
M(t)γ+1

≤ 2cp+2
∗

M(t)γ+1
∥ux(t)∥p∥uxx(t)∥2

≤ 2cp+2
∗ M(t)

1
2 (p−2γ) ∥uxx(t)∥2

M(t)

≤ 2cp+2
∗ (κE(0))

1
γ+1

∥uxx(t)∥2

M(t)
. (2.23)

If E(0) is small such that

2cp+2
∗ (κE(0))

1
γ+1 <

1

2
, (2.24)

we have

1

2

∥uxx(t)∥2

M(t)
≤ G(t) ≤ 2

∥uxx(t)∥2

M(t)
+

∥uxt(t)∥2

M(t)γ
. (2.25)

Using Equation (1.1), we observe

d

dt

∥uxx(t)∥2

M(t)
=

1

M(t)γ+2
(2(M(t)γuxx, uxxt)M(t)− (M(t)γuxx, uxx)M

′(t))

=
−2

M(t)γ+2

(
∥uxt(t)∥2 + (uxtt, uxt) +

d

dt
(f(u), uxx)− ((f(u))t, uxx)

)
M(t)

+
1

M(t)γ+2

(
1

2
M ′(t)− ∥uxt(t)∥2 +

1

2
M ′′(t)− ((f(u))x, ux)

)
M ′(t)



and

d

dt

(f(u), uxx)

M(t)γ+1
=

1

M(t)γ+1

d

dt
(f(u), uxx) + (γ + 1)

M ′(t)

M(t)γ+2
((f(u))x, ux) .

Thus, we have

d

dt

(
∥uxx(t)∥2

M(t)
+

2((f(u))x, ux)

M(t)γ+1

)
= −2Q(t)−R(t) + S(t) , (2.26)

where Q(t) is defined by (2.21) and

R(t) ≡ 1

M(t)γ+2

(
2(uxtt, uxt)M(t) +

(
∥uxt(t)∥2 −

1

2
M ′′(t)

)
M ′(t)

)
,

S(t) ≡ 1

M(t)γ+2
((2γ + 1)((f(u))x, ux)M

′(t) + 2((f(u))t, uxx)M(t)) .

On the other hand, we observe

d

dt
Q(t) = −(γ + 2)

M ′(t)

M(t)
Q(t) +R(t) . (2.27)

Summing up (2.26) and (2.27), we have

d

dt
G(t) + 2

(
1 +

γ + 2

2

M ′(t)

M(t)

)
Q(t) = S(t) , (2.28)

where G(t) is defined by (2.20).
Moreover, we observe from (2.17) that

1 +
γ + 2

2

M ′(t)

M(t)
≥ 0

and from the Sobolev-Poincaré inequality that

|S(t)| ≤ 2(2γ + 1)(p+ 1)

M(t)γ+2
∥u(t)∥p∞∥ux(t)∥2∥ut(t)∥∥uxx(t)∥

+
2(p+ 1)

M(t)γ+1
∥u(t)∥p∞∥ut(t)∥∥uxx(t)∥

≤ 4(γ + 1)(p+ 1)cp∗
M(t)γ+1

∥ut(t)∥∥uxx(t)∥∥ux(t)∥p

≤ 4(γ + 1)(p+ 1)cp∗
∥ut(t)∥
M(t)γ+

1
2

G(t)
1
2M(t)

p
2 .

Thus, we have from (2.28) that

d

dt
G(t) ≤ 4(γ + 1)(p+ 1)cp∗

∥ut(t)∥
M(t)γ+

1
2

G(t)
1
2M(t)

p
2



or

d

dt
G(t)

1
2 ≤ 2(γ + 1)(p+ 1)cp∗

∥ut(t)∥
M(t)γ+

1
2

M(t)
p
2 .

If p > 2γ, we observe from Corollary 2.5 that

G(t)
1
2 ≤ G(0)

1
2 + 2(γ + 1)(p+ 1)cp∗µ(t)

1
2

∫ t

0

M(s)
p
2 ds

≤ G(0)
1
2 + d0E(0)

p−2γ
2(γ+1)µ(t)

1
2 , d0 = 2(γ + 1)(p+ 1)cp∗d2 , (2.29)

and hence, from (2.25) and (2.29) we obtain the desired estimate (2.19). □

Proposition 2.7 Under the assumption of Proposition 2.6, suppose that the
initial energy E(0) satisfies

27(γ + 1)2d20E(0)
p−2γ
γ+1 < 1 . (2.30)

Then, it holds that

∥ut(t)∥2

M(t)2γ+1
≤ B(0) (2.31)

and

∥uxx(t)∥2

M(t)
≤ 2

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)B(0)

1
2

)2
, (2.32)

where B(0) is defined by

B(0) ≡ max

{
∥u1∥2

M(0)2γ+1
, 27(γ + 1)2G(0)

}
. (2.33)

Proof. Multiplying (1.1) by 2ut and M(t)−γ−1 and integrating it over Ω, we
have from the Sobolev-Poincaré inequality and (2.6) that

d

dt

∥ut(t)∥2

M(t)2γ+1
+ 2

(
1 +

2γ + 1

2

M ′(t)

M(t)

)
∥ut(t)∥2

M(t)2γ+1

= − M ′(t)

M(t)γ+1
+

2

M(t)2γ+1
(f(u), ut)

≤ 2

M(t)γ+1
∥ut(t)∥∥uxx(t)∥+

2cp+2
∗

M(t)γ+1
∥ux(t)∥p∥uxx(t)∥∥ut(t)∥

≤ 2
(
1 + cp+2

∗ M(t)
1
2 (p−2γ)

) ∥ut(t)∥
M(t)γ+

1
2

∥uxx(t)∥
M(t)

1
2

≤ 2
(
1 + cp+2

∗ (κE(0))
p−2γ
2(γ+1)

) ∥ut(t)∥
M(t)γ+

1
2

∥uxx(t)∥
M(t)

1
2

≤ 22
∥ut(t)∥
M(t)γ+

1
2

∥uxx(t)∥
M(t)

1
2

,



where we used (2.18) at the last inequality. Since it follows from (2.17) that

1 +
2γ + 1

2

M ′(t)

M(t)
≥ 1

2(γ + 1)
,

we observe from the Young inequality and (2.19) that

d

dt

∥ut(t)∥2

M(t)2γ+1
+

1

2(γ + 1)

∥ut(t)∥2

M(t)2γ+1
≤ 23(γ + 1)

∥uxx(t)∥2

M(t)

≤ 25(γ + 1)
(
G(0) + d20E(0)

p−2γ
γ+1 µ(t)

)
.

Thus, by the standard calculation for ODE, we obtain

∥ut(t)∥2

M(t)2γ+1
≤ max

{
∥u1∥2

M(0)2γ+1
, 26(γ + 1)2

(
G(0) + d20E(0)

p−2γ
γ+1 µ(t)

) }
.

If E(0) is small such that

26(γ + 1)2d20E(0)
p−2γ
γ+1 <

1

2
,

we have that

µ(t) ≤ max

{
∥u1∥2

M(0)2γ+1
, 27(γ + 1)2G(0)

}
(2.34)

which gives the desired estimate (2.31).
Moreover, from (2.19) and (2.34) we obtain

∥uxx(t)∥2

M(t)
≤ 2

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)B(0)

1
2

)2
which implies (2.32) □

Proposition 2.8 Under the assumption of Proposition 2.7, the function M(t)
satisfies

M(t) ≡ ∥ux(t)∥2 ≥ C ′(1 + t)−
1
γ for t ≥ 0 (2.35)

with some positive constant C ′.

Proof. Multiplying (1.1) by 2ut and M(t)−2γ−1, and integrating it over Ω, we



have

d

dt

(
∥ut(t)∥2

M(t)2γ+1
+

1

M(t)γ

)
+ 2

(
1 +

2γ + 1

2

M ′(t)

M(t)

)
∥ut(t)∥2

M(t)2γ+1

= −(γ + 1)
M ′(t)

M(t)γ+1
+

2

M(t)2γ+1
(f(u), ut)

≤ 2(γ + 1)
∥ut(t)∥

M(t)
2γ+1

2

∥uxx(t)∥
M(t)

1
2

+ 2cp+1
∗

∥ut(t)∥
M(t)

2γ+1
2

M(t)
p−2γ

2

≤ C
∥ut(t)∥

M(t)
2γ+1

2

,

where we used the facts that ∥uxx(t)∥2/M(t) ≤ C and M(t) ≤ C at the last
inequality. Since it follows from (2.17) that

1 +
2γ + 1

2

M ′(t)

M(t)
≥ 1

γ + 1
> 0 ,

we observe from the Young inequality that

d

dt

(
∥ut(t)∥2

M(t)2γ+1
+

1

M(t)γ

)
≤ C or

∥ut(t)∥2

M(t)2γ+1
+

1

M(t)γ
≤ C(1 + t)

which gives the desired estimate (2.35). □

3 Global Solutions

Theorem 3.1 Let the initial data [u0, u1] belong to H2∩W×H1
0 and M(0) > 0

and E(0) < d. Suppose that p > 2γ and the initial data [u0, u1] satisfy

max
{
22cp+2

∗ (κE(0))
1

γ+1 , 27(γ + 1)2d20E(0)
p−2γ
γ+1

}
< 1 (3.1)

and

2(γ + 1)
2(γ+1)
(γ+1)

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)B(0)

1
2

)
B(0)

1
2E(0)

γ
γ+1 < 1 . (3.2)

where d0 is a positive constant given by (2.19), and G(0) and B(0) are defined
by (2.20) and (2.33), respectively.

Then, the problem (1.1) admits a global solution u(t) in the class C0([0,∞);



H2 ∩W) ∩ C1([0,∞);H1
0 ) ∩ C2([0,∞);L2) and the solution u(t) satisfies

|M ′(t)|
M(t)

<
1

γ + 1
, (3.3)

∥uxx(t)∥2

M(t)
≤ C ,

∥ut(t)∥2

M(t)2γ+1
≤ C , (3.4)

C ′(1 + t)−
1
γ ≤ ∥ux(t)∥2 ≤ C(1 + t)−

1
γ , (3.5)

C ′(1 + t)−
1
γ ≤ ∥uxx(t)∥2 ≤ C(1 + t)−

1
γ , (3.6)

∥ut(t)∥2 ≤ C(1 + t)−2− 1
γ for t ≥ 0 , (3.7)

where C and C ′ are some positive constants.

Proof. Let u(t) be a solution on [0, T ]. Since M(0) > 0, putting

T1 ≡ { t ∈ [0,∞)
∣∣M(s) > 0 for 0 ≤ s < t } ,

we have that T1 > 0. If T1 < T , then

M(t) > 0 for 0 ≤ t < T1 , M(T1) = 0 . (3.8)

We observe

|M ′(t)|
M(t)

≤ 2
∥ut(t)∥∥uxx(t)∥

M(t)
1
2

= 2
∥ut(t)∥
M(t)γ+

1
2

∥uxx(t)∥
M(t)

1
2

M(t)γ

≤ 2
∥ut(t)∥
M(t)γ+

1
2

∥uxx(t)∥
M(t)

1
2

((γ + 1)E(0))
γ

γ+1 . (3.9)

Since it follows from (2.20), (2.33), and (3.2) that

|M ′(0)|
M(0)

≤ 2B(0)
1
2

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)B(0)

1
2

)
((γ + 1)E(0))

γ
γ+1 <

1

γ + 1
,

putting

T2 ≡ sup

{
t ∈ [0,∞)

∣∣ |M ′(s)|
M(s)

<
1

γ + 1
for 0 ≤ s < t

}
,

we see that T1 > 0. If T2 < T1, then we have that

|M ′(t)|
M(t)

<
1

γ + 1
for 0 ≤ t < T2 ,

|M ′(T2)|
M(T2)

=
1

γ + 1
. (3.10)

On the other hand, we observe from (3.2), (3.9), and Proposition 2.7 that

|M ′(t)|
M(t)

≤ 2B(0)
1
2

(
G(0)

1
2 + d0E(0)

p−2γ
2(γ+1)B(0)

1
2

)
((γ + 1)E(0))

γ
γ+1

<
1

γ + 1
for 0 ≤ t ≤ T2 ,



which is a contradiction to (3.10), and hence, we have that T2 ≥ T1. Then, we
observe from Proposition 2.8 that

M(t) ≥ C ′(1 + t)−
1
γ > 0 for 0 ≤ t ≤ T1 ,

which is a contradiction to (3.8), and hence, we have that T1 ≥ T .
Multiplying (1.1) by (−2uxxt) and M(t)−γ and integrating it over Ω, we

have

d

dt
H(t) + 2

(
1 +

γ

2

M ′(t)

M(t)

)
∥uxt(t)∥2

M(t)γ
= − 1

M(t)γ
((f(u))x, uxt)

≤ 2(p+ 1)

M(t)γ
∥u(t)∥p∞∥ux(t)∥∥uxt(t)∥

≤ 2(p+ 1)cp∗M(t)
1
2 (p+1−γ) ∥uxt(t)∥

M(t)
γ
2

,

where H(t) is defined by

H(t) =
∥uxt(t)∥2

M(t)γ
+ ∥uxx(t)∥2 .

Since it follows from (3.10) that

1 +
γ

2

M ′(t)

M(t)
≥ γ + 2

2(γ + 1)
≥ 0 ,

we observe from the Young inequality that

d

dt
H(t) ≤ CM(t)p+1−γ

and from Corollary 2.5 that if p+ 1 > 2γ,

H(t) ≤ H(0) + CE(0)
p+1−2γ

γ+1 . (3.11)

Thus, we obtain thatM(0) > 0 and ∥u(t)∥H2+∥ut(t)∥H1 ≤ C for 0 ≤ t ≤ T .
Therefore, the local solution u(t) of (1.1) in the sense of Proposition 2.2 can
be continued globally in time. Then, the estimates (2.9), (2.31), (2.32), and
(2.35) hold true for t ≥ 0, and hence, (3.5) follows from (2.9) and (2.35), (3.6)
follows from (2.32) and (2.35), (3.7) follows from (2.31) and (3.5). □

4 Decay Estimates

Proposition 4.1 Under the assumption of Theorem 3.1, it holds that

∥utt(t)∥2

M(t)γ
+ ∥uxt(t)∥2 ≤ C(1 + t)−2− 1

γ . (4.1)



Proof. Multiplying (1.1) differentiated with respect to t by 2utt and M(t)−γ ,
and integrating it over Ω, we have

d

dt
F (t) + 2

(
1 +

γ

2

M ′(t)

M(t)

)
∥utt(t)∥2

M(t)γ
(4.2)

= 2γ
M ′(t)

M(t)
(uxx, utt) +

2

M(t)γ
((f(u))t, utt)

≤ 4γ

M(t)
∥ut(t)∥∥uxx(t)∥2∥utt(t)∥+

2(p+ 1)cp∗
M(t)γ

∥ux(t)∥p∥ut(t)∥∥utt(t)∥

≤ C
∥utt(t)∥
M(t)

γ
2

(
∥uxx(t)∥2

M(t)
+M(t)

1
2 (p−2γ)

)
M(t)

γ
2 ∥ut(t)∥ ,

where F (t) is defined by

F (t) ≡ ∥utt(t)∥2

M(t)γ
+ ∥uxt(t)∥2 .

Since it follows from (3.3) that

1 +
γ

2

M ′(t)

M(t)
≥ γ + 2

2(γ + 1)
>

1

2
,

we observe from the Young inequality and (2.6) and (3.3) that

d

dt
F (t) +

∥utt(t)∥2

M(t)γ
≤ C

(
∥uxx(t)∥2

M(t)
+M(t)

1
2 (p−2γ)

)2

M(t)γ∥ut(t)∥2

≤ Cf(t)2 , f(t)2 ≡ M(t)γ∥ut(t)∥2 . (4.3)

Integrating (4.3) over [t, t+ 1], we have∫ t+1

t

∥utt(s)∥2

M(s)γ
ds ≤ F (t)− F (t+ 1) + C sup

t≤s≤t+1
f(s)2

(
≡ D(t)2

)
.

(4.4)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥utt(tj)∥2

M(tj)γ
≤ 4D(t)2 for j = 1, 2 . (4.5)

Moreover, there exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2

∫ t2

t1

F (s) ds . (4.6)



On the other hand, multiplying (1.1) differentiated with respect to t by ut

and M(t)−γ , and integrating it over Ω, we have

∥uxt(t)∥2 +
γ

2

|M ′(t)|
M(t)

=
∥utt(t)∥2

M(t)γ
− d

dt

(ut, utt)

M(t)γ
−
(
1 + γ

M ′(t)

M(t)

)
(ut, utt)

M(t)γ
+

((f(u))t, ut)

M(t)γ
,

and integrating the resulting equation over [t1, t2], we obtain from (3.3), (3.7),
(4.4), and (4.5) that∫ t2

t1

∥uxt(s)∥2 ds

≤
∫ t+1

t

∥utt(s)∥2

M(s)γ
ds+

2∑
j=1

∥ut(tj)∥
M(tj)

γ
2

∥utt(tj)∥
M(tj)

γ
2

+ C

∫ t+1

t

∥ut(s)∥
M(s)

γ
2

∥utt(s)∥
M(s)

γ
2

ds

+ C

∫ t+1

t

M(s)
1
2 (p−2γ)∥ut(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

h(s)2

with

g(t)2 ≡ ∥ut(t)∥2

M(t)γ
and h(t)2 ≡ M(t)

1
2 (p−2γ)∥ut(t)∥2 ,

and∫ t2

t1

F (s) ds =

∫ t2

t1

(
∥utt(s)∥2

M(s)γ
+ ∥uxt(s)∥2

)
ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 + C sup
t≤s≤t+1

h(s)2 . (4.7)

Moreover, for τ ∈ [t, t + 1], integrating (4.2) over [τ, t∗] (or [t∗, τ ]), we have
from (4.6) that

F (τ) = F (t∗) +

∫ t∗

τ

((
2 + γ

M ′(s)

M(s)

)
∥utt(s)∥2

M(s)γ
− 2γ

M ′(s)

M(s)
(uxx, utt)

− 2

M(s)γ
((f(u))t, utt)

)
ds

≤ 2

∫ t2

t1

F (s) ds+ C

∫ t+1

t

∥utt(s)∥2

M(s)γ
ds

+ C

∫ t+1

t

∥utt(s)∥
M(s)

γ
2

(
∥uxx(s)∥2

M(s)
+M(s)

1
2 (p−2γ)

)
M(s)

γ
2 ∥ut(s)∥ ds



and from (3.4), (3.5), (3.7), (4.4), and (4.7) that

sup
t≤s≤t+1

F (s)

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 + C sup
t≤s≤t+1

h(s)2 .

Moreover, we observe from (4.4) that

sup
t≤s≤t+1

F (s)2

≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4 + C sup

t≤s≤t+1
h(s)4

≤ C

(
F (t) + sup

t≤s≤t+1
g(s)2

)(
F (t)− F (t+ 1) + C sup

t≤s≤t+1
f(s)2

)
+ C sup

t≤s≤t+1
f(s)4 + C sup

t≤s≤t+1
h(s)4

and from the Young inequality that

sup
t≤s≤t+1

F (s)2 ≤ C

(
F (t) + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C( sup
t≤s≤t+1

g(s)2 + sup
t≤s≤t+1

f(s)2) sup
t≤s≤t+1

f(s)2 + C sup
t≤s≤t+1

h(s)4 .

On the other hand, since it follows from (3.5) and (3.7) that

f(t)2 ≡ M(t)γ∥ut(t)∥2 ≤ C(1 + t)−3− 1
γ ,

g(t)2 ≡ ∥ut(t)∥2

M(t)γ
≤ C(1 + t)−1− 1

γ ,

h(t)2 ≡ M(t)
1
2 (p−2γ)∥ut(t)∥2 ≤ C(1 + t)−2− 1

γ ,

we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1− 1

γ

)
(F (t)− F (t+ 1)) + C(1 + t)−4− 2

γ .

(4.8)

Thus, applying Lemma 4.2 below to (4.8), we obtain the desired estimate
(4.1). □

In order to derive the decay estimate of the function G(t), we used the
following inequality (see [10], [11], [18] for the proof).

Lemma 4.2 Let ϕ(t) be a non-negative function on [0,∞) and satisfy

sup
t≤s≤t+1

ϕ(s)1+α ≤
(
k0ϕ(t)

α + k1(1 + t)−β
)
(ϕ(t)− ϕ(t+ 1)) + k2(1 + t)−γ



with certain constants k0, k1, k2 ≥ 0, α > 0, β > 0, and γ > 0. Then, the
function ϕ(t) satisfies

ϕ(t) ≤ C0(1 + t)−θ , θ = min

{
1 + β

α
,

γ

1 + α

}
for t ≥ 0 with some constant C0 depending on ϕ(0).

Proposition 4.3 Under the assumption of Theorem 3.1, it holds that

∥u(t)∥2 ≥ C ′(1 + t)−
1
γ (4.9)

with some positive constant C ′.

Proof. From Equation (1.1), we observe

d

dt

M(t)

∥u(t)∥2
=

−2

∥u(t)∥2
(uxx +

M(t)

∥u(t)∥2
u, ut)

=
−2M(t)γ

∥u(t)∥2
(uxx +

M(t)

∥u(t)∥2
u, uxx) +

2

∥u(t)∥2
(uxx +

M(t)

∥u(t)∥2
u, utt − f(u))

=
−2M(t)γ

∥u(t)∥2
∥uxx +

M(t)

∥u(t)∥2
u∥2 + 2

∥u(t)∥2
(uxx +

M(t)

∥u(t)∥2
u, utt − f(u)) .

Moreover, the Young inequality yields

d

dt

M(t)

∥u(t)∥2
≤ C

∥utt − f(u)∥2

∥u(t)∥2M(t)γ

≤ C

(
1

M(t)

∥utt(t)∥2

M(t)γ
+M(t)2γM(t)p−2γ

)
M(t)

∥u(t)∥2

≤ (1 + t)−2 M(t)

∥u(t)∥2

where we used (2.35), (3.5), and (4.1) at the last inequality. Thus, we obtain

M(t)

∥u(t)∥2
≤ C and ∥u(t)∥2 ≥ C−1M(t)

which gives the desired estimate (4.9). □
Summing up Propositions 4.1 and 4.3, we conclude the following theorem.

Theorem 4.4 Under the assumption of Theorem 3.1, the solution u(t) of (1.1)
satisfies

∥uxt(t)∥ ≤ C(1 + t)−2− 1
γ , ∥utt(t)∥2 ≤ C(1 + t)−3− 1

γ ,

∥u(t)∥2 ≥ C ′(1 + t)−
1
γ for t ≥ 0 ,

where C and C ′ are certain positive constants.
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