
INTRODUCTION

A proper balance between adhesion to and repul-
sion from other cells or extracellular matrix (ECM)
determines cellular morphogenesis and plays a cen-
tral role in a wide variety of physiological and patho-
logical events (1). A number of signals such as he-
patocyte growth factor (HGF)/scatter factor (SF)
and Semaphorin are able to control the balance be-
tween cell adhesion and repulsion through the com-
plex intracellular signaling pathways (2, 3). While

cell adhesion to other cells and ECM is mediated by
cell adhesion molecules (CAMs) and ECM recep-
tors, cell repulsion is achieved by the downregula-
tion of cell adhesion and the extensive changes of
cytoskeletal dynamics. In order to balance adhesion
with repulsion, cells need to regulate the adhesive
activities of CAMs and ECM receptors and the cy-
toskeletal dynamics. Now accumulating evidences
are demonstrating the importance of the endocytic
recycling of CAMs and ECM receptors to control
their adhesive activities (4).

Epithelial cell adhesion or repulsion

Epithelial cell-cell interactions are theoretically
controlled by one of the two signals : adhesive and
repulsive signals. The ability of epithelial cells to re-
spond to these signals is fundamental to epithelial-
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mesenchymal transition (EMT) and mesenchymal-
epithelial transition (MET) (Figure 1). EMT is char-
acterized by epithelial cell scattering, which involves
the disassembly of cell-cell junctions followed by
cell-cell dissociation and acquisition of migratory
phenotype, and physiologically observed during em-
bryonic development and organ regeneration. De-
regulation of EMT is frequently detected in carci-
noma and often associated with progression towards
malignancy (5, 6).

Epithelial cell adhesion

Cell-cell adhesion ---In epithelial cells, cell-cell ad-
hesion is mediated through apical junctional com-
plex (AJC). The organization of the AJC is defined
by tight junction (TJ), which seals the intercellular
space and delineates the boundaries between the
apical and basolateral membranes, and adherens
junction (AJ), which principally initiates and main-
tains cell-cell contacts (Figure 1) (7). At TJ, the
transmembrane proteins claudins function as essen-
tial CAMs (8, 9). Claudins comprise claudin fam-
ily consisting of at least 24 members in mammal-
ian cells (10). Two other transmembrane proteins,
occludin and junction adhesion molecules (JAMs),
have been identified as CAMs at TJ (11, 12). Oc-
cludin is the first identified CAM, whose physi-
ological function remains to be established, whereas
JAMs are involved in accumulation of cell polarity
proteins including Par-3/Par-6/atypical protein
kinase C (aPKC) (13). At AJ, the transmembrane
protein E-cadherin is a key CAM. E-cadherin is a
member of cadherin superfamily that comprises
over 100 members, each of which is expressed in
non-epithelial cells as well as in epithelial cells (14,
15). Nectins are other IgG superfamily CAMs at AJ
and involved in the organization of AJ either in co-

operation with or independently of E-cadherin (16,
17). These transmembrane CAMs are clustered by
AJC plaque proteins, which in turn bind to actin cy-
toskeleton. AJC plaque proteins form an organizing
platform for a variety of scaffolding, signaling, and
membrane traffic proteins, including ZO proteins
(ZO-1, ZO-2, and ZO-3), catenins, Rab3B, Rab8, and
Rab13 (18). As exemplified in EMT/MET, AJC is
very plastic cellular structure ; it is subjected to re-
modeling and highly motile even within apparently
stable, confluent cultured monolayers (19, 20).

Cell-ECM adhesion ---Cell-ECM adhesion is formed
by the interaction of integrins with ECM proteins,
such as collagen, fibronectin, laminin, and vitronectin
(Figure 1). In the cytoplasm, integrins are linked to
the actin cytoskeleton and recruit a large number of
plaque proteins that are assembled into macro-
molecular structures termed focal adhesion (FA)
(21). They include focal adhesion kinase (FAK), Src,
and Crk-associated substrate (Cas) family proteins
that comprise p130Cas, Crk-associated substrate in
lymphocyte/human enhancer of filamentation 1/
neural precursor cell-expressed, developmentally
down - regulated gene 9 (CasL/HEF1/NEDD9),
and embryonal fyn substrate/Src interacting (Efs/
Sin). Cas family members have conserved domain
structure and many, but not all, functional interac-
tions, and serve as key scaffolding proteins bridg-
ing integrins and the actin cytoskeleton (22). CasL/
HEF1/NEDD9 is identified independently as a
highly phosphorylated 105 -kDa protein after β1

integrin stimulation in lymphocytes, a human pro-
tein that regulates filamentous budding in yeast,
and a developmentally down - regulated gene in
mouse brain (23-26). CasL/HEF1/NEDD9 is shown
to regulate the scattering of Jurkat T cells and epi-
thelial MCF7 cells (27, 28), and is recently identi-
fied as a metastasis gene for melanoma and impli-
cated in the invasion of glioblastoma (29, 30).

Epithelial cell repulsion

Cell repulsion requires the downregulation of cell
adhesion to other cells and to ECM and the exten-
sive changes in cytoskeletal dynamics (1). Typical
cell repulsion can be observed in the epithelial cell
scattering. A variety of extracellular signals such
as HGF/SF and Semaphorin are shown to induce
cell repulsion through the complex intracellular sig-
naling pathways (2, 3).

Extracellular signals

Among various extracellular signals, HGF/SF

Figure 1. Cell adhesion and repulsion. A dynamic balance be-
tween cell adhesion and repulsion in epithelial cells is shown.
TJ : tight junction, AJ : adherens junction, FA : focal adhesion,
ECM : extracellular matrix, N : nucleus, EMT : epithelial-mes-
enchymal transition, MET : mesenchymal-epithelial transition.
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plays a major role in epithelial cell repulsion. HGF
and SF are discovered independently as a potent
growth stimulator for primary hepatocytes kept in
culture (“HGF”) (31) and as a factor capable of in-
ducing scatter of epithelial cells (“scatter factor”)
(32), respectively, and proved to be identical. HGF/
SF receptor Met has tyrosine kinase activities and
is identified as a proto-oncogene product (33). Ac-
tivation of Met by HGF/SF evokes pleiotrophic bio-
logical effects in addition to epithelial cell scattering,
and constitutive activation of HGF/SF--Met signal-
ing results in the development and malignant pro-
gression of carcinoma, particularly in invasiveness
and metastatic potential (2). In addition to HGF/SF,
Semaphorins can induce scattering of epithelial cells.
Semaphorins are a family of secreted or membrane-
associated glycoproteins identified initially through
their role in axon guidance (3). They have more
than 20 members and are divided into 1-7 classes
according to their structural features. Plexins are a
family of Semaphorin receptors having an intrinsic
GTPase activating protein (GAP) activity for R-Ras
and are grouped into A-D classes on the basis of
overall homology. Membrane - associated Sema-
phorins bind directly to Plexins, whereas secreted
Semaphorins also require Neuropilins (Nrp1 and
Nrp2) as obligate co-receptors. While HGF/SF be-
longs to plasminogen family, Met, Semaphorins, and
Plexins are members of semaphorin superfamily
based on the presence of a conserved Sema domain,
an atypical motif made by over 500 amino acids, in
the extracellular moiety (34, 35). There are func-
tional interdependences between Met and Plexins.
Members of Plexin B interacts constitutively with
Met, and stimulation of Plexin B1 with its natural
ligand Semaphorin 4D induces Plexin clustering
and consequent HGF/SF-independent Met activa-
tion (36, 37).

Endocytic recycling of CAMs and ECM receptors

Endocytosis is a complex, multistep process,
which involves invagination/budding of the plasma
membrane, and formation of membrane vesicles
followed by their delivery and fusion with specific
intracellular compartments (38). Endocytosis occurs
by one of four major mechanisms. The first is the
formation of large actin-coated vacuolae that are
responsible for uptake of liquids from the cell exte-
rior and is referred to as macropinocytosis. The sec-
ond involves polymerization of a specific coat pro-
tein, clathrin, on the intracellular face of the plasma
membrane resulting in formation of clathrin-coated

pits and is referred to as clathrin-dependent endocy-
tosis. The third involves invagination of cholesterol-
enriched microdomains within the plasma mem-
brane that may contain a coat protein, caveolin, and
is referred to as caveolin-dependent endocytosis.
The fourth does not form actin-coated vacuolae,
clathrin-coated pits, and caveolin-containing invagi-
nation and is referred to as clathrin- and caveolin-
independent endocytosis. After separation from the
plasma membrane, endocytic vesicles first fuse with
a juxtamembrane cytosolic compartment, early en-
dosomes. Then, internalized proteins may directly
return to the plasma membrane (short-loop recy-
cling), enter recycling endosomes for the subse-
quent recycling (long-loop recycling), or be deliv-
ered to late endosomes where they become tar-
geted for degradation in lysosomes (Figure 2).

These pathways are strictly regulated by soluble
N -ethylmaleimide-sensitive fusion protein attach-
ment protein receptor (SNARE) proteins that drive
intermembrane fusion (39). SNARE proteins have
36 members in humans and a characteristic SNARE
motif, an evolutionarily conserved stretch of 60 -70
amino acids arranged in heptad repeats. Each en-
dosomal vesicle would have carried a specific‘v-
SNARE’ which interacts with a cognate ‘t-SNARE’
on the target membrane. In polarized epithelial cells,
two major t-SNARE proteins, syntaxin 3 and 4 ap-
pear to be spatially segregated into different plasma
membrane domains with syntaxin 3 confined to the
apical surface, and syntaxin 4 confined to the lateral
plasma membrane (40). While the apical targeting
requires the tetanus neurotoxin (TeNT)-resistant v-
SNARE TI-VAMP (VAMP7), the basolateral tar-
geting is recently shown to involve the TeNT-
sensitive v-SNARE cellubrevin (VAMP3) (41, 42).

Figure 2. Rab family small G proteins. Subcellular localization
of human Rab proteins is shown.
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The critical components of regulatory machinery
for the endocytic recycling of CAM and ECM re-
ceptors include ARF and Rab family small G pro-
teins (43). ARF proteins have six members in mam-
malian cells and regulate membrane traffic and or-
ganella structures. Each member of ARF proteins
localizes to distinct subsets of intracellular mem-
branes and uses the guanine nucleotide-dependent
switch mechanism to carry out its specific function.
While ARF6 activation results in the internalization of
E-cadherin from AJC into early endosomes, block-
ing ARF6 activation inhibits its internalization and
prevents cell-cell dissociation (44). ARF6 and its
GAP ACAP1 also regulate the endocytic recycling of
β1 integrin (45, 46).

Rab family small G proteins

Rab family small G proteins comprise the larg-
est family of the Ras superfamily small G proteins
(47- 49). To date, 63 Rab proteins have been identi-
fied in human and phylogenetic analyses allow their
arrangement into eight Rab functional groups (50).
Rab proteins behave as membrane-associated mo-
lecular switches, cycling between GTP-bound ac-
tive and GDP-bound inactive states. This switch is
controlled by guanine nucleotide exchange factor
(GEF), which trigger the binding of GTP, and GAP,
which accelerate hydrolysis of the bound GTP to
GDP. Rab proteins also undergo a membrane as-
sociation and dissociation cycle, which is coupled
to the GTP/GDP cycle. Most Rab proteins are post-
translationally modified with geranylgeranyl moie-
ties that enables their membrane association. GDP
dissociation inhibitor (GDI) binds to geranylger-
anylated Rab proteins in their GDP-bound form,
masking their geranylgeranyl anchor and thereby
maintaining the Rab proteins in the cytosol. Mem-
brane attachment of Rab proteins therefore requires
the function of a GDI displacement factor (GDF).
Once dissociated from GDI, Rab proteins are con-
verted to their GTP-bound form by their specific
GEFs. The active, membrane-bound Rab proteins
are then able to fulfill their various functions in
membrane traffic by binding to their specific effec-
tors. After inactivation by their specific GAP, the
GDP-bound Rab proteins can be extracted from the
membrane by GDI and recycled back to the cytosol.

A vital aspect of Rab function is the specific lo-
calization of each Rab protein to a particular sub-
cellular compartment, and its involvement in a spe-
cific transport step. In other words, each subcellu-
lar compartment has a unique combination of Rab

proteins, which have been frequently used as mark-
ers of the particular organella (Figure 2). For ex-
ample, Rab5 is associated with early endosomes,
whereas Rab4 and Rab11 are markers for recycling
endosomes and Rab7 and Rab9 are primarily asso-
ciated with the late endosomal compartment. How-
ever, the molecular mechanisms controlling Rab
localization are not fully understood. A unique, hy-
pervariable C-terminal domain of Rab proteins is
first thought to be the signal sequences for the cor-
rect targeting of Rab proteins to their specific mem-
branes. However, accumulating evidences suggest
that multiple factors including GDI, GDF, GEF, and
effector proteins contribute to the specificity of Rab
localization and the close coordination of membrane
targeting with Rab activation (47-49).

Several members of Rab proteins have been im-
plicated in the regulation of endocytic recycling of
CAMs and ECM receptors. Rab5 regulates the en-
docytosis of E- cadherin in response to HGF/SF-Met
activation in MDCK cells (51, 52). We have revealed
that Rab13 regulates the endocytic recycling of oc-
cludin and the formation of functional TJ in epithe-
lial cells (53, 54). For the endocytic recycling of
integrins, Rab4 and Rab11 are implicated in their
short-loop and long-loop recycling, respectively, and
are known to influence the cell adhesion and migra-
tion (45, 55). Recently, Rab5, Rab21, and Rab25 are
also implicated in the endocytic recycling of in-
tegrins (Figure 4) (56, 57).

MICAL family proteins

Molecule interacting with CasL (MICAL) is origi-
nally identified as a novel binding protein of a FA
plaque protein CasL/HEF1/NEDD9 that regulates
the scattering of epithelial cells and the progression
and metastasis of cancer cells (58). MICAL is con-
served from flies to mammals, with two MICAL
family genes (D-MICAL and D-MICAL-L) identi-
fied in Drosophila and five (MICAL-1, MICAL-2,
MICAL-3, MICAL-L1, and JRAB/MICAL-L2) found
in mammals (59). While there seems to exist sev-
eral splicing variants for each MICAL family mem-
ber, their functions remain to be determined except
for MICAL-2 isoforms (PVa and PVb) that are re-
cently shown to be involved in the progression of
prostate cancer (60). MICAL family proteins are
large, multidomain, cytosolic proteins expressed in
specific neuronal and non-neuronal cells both during
development and in adulthood. Sequence analysis
reveals that MICAL family proteins contain calponin
homology (CH) and LIM domains, protein--protein

N. Nishimura, et al. Rab13 and JRAB/MICAL-L212



interaction domains implicated in signal transduc-
tion and cytoskeletal organization, plus coiled-coil
(CC) domain. D-MICAL, MICAL-1, MICAL-2, and
MICAL-3 also possess a flavin-adenine dinucleotide
(FAD)-binding monooxygenase domain (Figure 3).

In a search for a mediator of Semaphorin 1-
Plexin A signaling in Drosophila , D-MICAL is
identified as a Plexin A-interacting protein. D-
MICAL, MICAL-1, and MICAL-2 bind to the cyto-
plasmic region of Plexin A via its C-terminus con-
taining the CC domain (59). D-MICAL--Plexin A in-
teraction and monooxygenase activity of D-MICAL
are required for Semaphorin 1-induced motor axon
repulsion in the developing Drosophila . MICAL-
1, MICAL-2, and MICAL-3 also function downstream
of Semaphorin 3 receptor Plexin A and the selec-
tive monooxygenase inhibitor (-)-epigallocatechin
gallate (EGCG) abrogates Semaphorin 3A-mediated
repulsion of rat sensory axons in vitro (61). Con-
sistent with the need of the extensive changes in
cytoskeletal dynamics in cell repulsion, association
of MICAL proteins with vimentin and microtubules
has been reported (58, 62). We have also shown
that JRAB/MICAL-L2 is displaced from TJ upon
actin depolymerization and is distributed along ra-
diating actin cables and stress fibers in Ca2+-depleted
epithelial and fibroblastic cells, respectively (53).

A series of recent studies revealed the potential
role of MICAL family proteins in the regulation of a
proper balance between cell adhesion and repulsion.
MICAL-1 can interact with CasL/HEF1/NEDD9
that is implicated in the regulation of the adhesive

activities of integrins and responsible for the pro-
gression and metastasis of melanoma and glioblas-
toma (29, 30, 58). MICAL-2 isoforms (PVa and PVb)
are implicated in the progression of prostate can-
cer (60). We have identified JRAB/MICAL-L2 as a
Rab13 effector protein and found that Rab13 and
JRAB/MICAL-L2 mediate the scattering of epithe-
lial cells in response to 12-O -tetradecanoylphorbol-
13-acetate (TPA) (Figure 4) (53, 63).

CONCLUSIONS

Recent studies have begun to reveal the crucial
role of endocytic recycling of CAMs and ECM re-
ceptors in regulating cell adhesion and repulsion.
We have revealed that JRAB/MICAL-L2 functions
as a Rab13 effector protein and mediates the endo-
cytic recycling of occludin, the formation of func-
tional TJ, and the scattering of epithelial cells. While
Rab family small G proteins are key regulators of the
endocytic recycling pathways, MICAL family pro-
teins interact with receptors for cell repulsion sig-
nals, FA plaque proteins, and cytoskeletons. Given
the importance of regulating the endocytic recycling
of CAMs and ECM receptors and the cytoskeletal
dynamics for the proper balance between cell ad-
hesion and repulsion, JRAB/MICAL-L2 may serve
as a central scaffold to switch from adhesion to re-
pulsion and/or vice versa .

Figure 3. MICAL family proteins. Domain architecture of hu-
man MICAL proteins is shown. For simplicity, the representative
isoforms of each human MICAL family member are presented
[MICAL-1 (NM_022765), MICAL-2 (NM_014632), MICAL-2-
PVa (AB 110785), MICAL-2-PVb (AB 110786), MICAL-3 (NM_
015241), MICAL-L1 (NM_033386), and JRAB/MICAL-L2 (NM_
182924)]. FAD-binding : flavin-adenine dinucleotide-binding
domain, CH : calponin homology domain, LIM : LIM domain,
CC : coiled-coil domain.

Figure 4. Rab13 and JRAB/MICAL-L2. Role of Rab13 and
JRAB/MICAL-L2 in regulating the endocytic recycling of CAMs
is shown. CAMs : cell adhesion molecules, ECM : extracellular
matrix, EE : early endosome, RE : recycling endosome.
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