1	Title: Practical method for determination of air kerma by use of an ionization chamber
2	toward construction of a secondary X-ray field to be used in clinical examination rooms
3	
4	Authors:
5	Itsumi MAEHATA ¹⁾ , Hiroaki HAYASHI ^{2,#)} , Natsumi KIMOTO ¹⁾ ,
6	Kazuki TAKEGAMI ³⁾ , Hiroki OKINO ³⁾ , Yuki KANAZAWA ²⁾ , Masahide TOMINAGA ²⁾
7	
8	1) School of Health Sciences, Tokushima University
9	3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
10	2) Institute of Biomedical Sciences, Tokushima University Graduate School
11	3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
12	3) Graduate School of Health Sciences, Tokushima University
13	3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
14	
15	# Corresponding Author:
16	Hiroaki HAYASHI
17	Institute of Biomedical Sciences, Tokushima University Graduate School
18	3-18-5 Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan

- 19 +81-88-633-9054
- 20 <u>hayashi.hiroaki@tokushima-u.ac.jp</u>
- 21
- 22 Keywords: ionization chamber, air kerma, contamination rate, scattered X-rays,
- 23 diagnostic X-ray equipment, secondary X-ray field
- 24
- 25

26 Abstract

We propose a new practical method for the construction of an accurate secondary 27X-ray field by use of medical diagnostic X-ray equipment. For accurate measurement 2829of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. In order to determine the rate quantitatively, we performed the 30 31following studies. First, we developed a shield box in which an ionization chamber 32could be set at an inner of the box to prevent detection of the X-rays scattered from the In addition, we made collimator plates which were placed near the X-ray source for 33 air. 34estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose 35while changing the collimator plates, which had diameters of 25-90 mm^{ϕ}. The ideal 36 37value of the exposure dose was derived mathematically by extrapolation to 0 mm^{ϕ} . Tube voltages ranged from 40 kV to 130 kV. Under these irradiation conditions, we analyzed 3839the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7% and 2.3%, caused by air and the movable diaphragm, respectively. 40 The extrapolated value of the exposure dose has been determined to have an uncertainty 4142of 0.7%. The ionization chamber used in this study was calibrated with an accuracy of By using kind of this ionization chamber, we can construct a secondary X-ray field 435%.

44 with an uncertainty of 5%.

45 1. Introduction

46	Currently, X-ray examinations are widely used for diagnosis in the medical
47	field, and the risk of cancer in Japan caused by the diagnostic X-rays is estimated to have
48	the highest value in the world [1]. Radiologic technologists should make efforts to
49	reduce patient doses in addition to improving image quality [2]. In the diagnostic X-ray
50	region, reducing the entrance skin dose (ESD) [3] is important, in addition to optimizing
51	the exposure dose. Generally speaking, the ESD is estimated in terms of the air kerma
52	with a correction for the back-scatter factor (BSF). The original idea for this procedure
53	was reported previously [4,5], and recently Kato proposed a new method for calculating
54	the BSF [6]. Because the BSF is determined accurately, technologists need to measure
55	the air kerma with ionization chambers. Generally speaking, the ionization chambers
56	should be calibrated well with a standard X-ray field in which monoenergetic sources can
57	be provided within the special large room to reduce contamination by scattered X-rays.
58	Some institutions can provide calibration factors with accuracies of several percent, but
59	the calibrations are expensive and not convenient. If we can construct a secondary X-
60	ray field by using medical diagnostic X-ray equipment, inexpensive and convenient
61	calibrations will be available. As is generally known, the experimental environment by
62	means of medically-used X-ray equipment has many limitations; continuous X-rays with

63	contamination by scattered X-rays are generated. If these disadvantages caused by the
64	use of the diagnostic X-ray equipment are evaluated quantitatively, the secondary X-ray
65	field will become valuable under the limitation.
66	The diagnostic X-ray equipment used in clinics consists of an X-ray tube and a
67	movable diaphragm. It is well known that the movable diaphragm generates scattered
68	X-rays [7-9]. Therefore, the contributions of the scattered X-rays to the direct X-rays
69	should be estimated. Recently, Takegami et al. developed and suggested a new
70	collimator that has multiple-stage shields to reduce scattered X-rays coming from the
71	movable diaphragm [8], but the irradiation area formed by the equipment is limited to a
72	relatively small area [9]. For calibration of an ionization chamber without the
73	contamination of scattered X-rays, a relatively large irradiation area will be needed. We
74	propose here a new method for a practical calibration method used in the secondary-X-
75	ray field.

Figure 1 (a) illustrates the ideal situation in which we measure only direct X-76 rays with an ionization chamber. In reality, scattered X-rays are additionally 77superimposed on the direct X-rays, as shown in Fig.1 (b); (A) and (B) indicate scattered 78X-rays generated by air and by the movable diaphragm, respectively. Figure 1 (c) 79shows a schematic drawing of the method we propose in this study. The ionization 80

81	chamber is located in a shield box, which was newly developed for the reduction of
82	scattered X-rays generated by air (indicated by (A) in Fig. 1 (c)). Also, a collimator
83	plate is placed in front of the movable diaphragm. In order to estimate the contamination
84	rate due to scattered X-rays (indicated by (B) in Fig. 1 (c)), we applied an extrapolation
85	method [10] in which experimental values associated with different collimator plates are
86	measured. In general, the exposure doses are analyzed based on the X-ray quality, which
87	is described by the half-value layers (HVLs) [11] of aluminum. Appropriate research
88	on the above-mentioned extrapolation method for deriving accurate half-value layers has
89	been performed [12,13]. We applied the extrapolation method to correct the exposure
90	dose measured with an ionization chamber.
91	In this paper, we propose a new method for constructing the secondary X-ray
92	field by using medical diagnostic X-ray equipment, and we developed a shield box for
93	the reduction of contamination from scattered X-rays. The rates of contamination by
94	scattered X-rays were determined, and we also evaluated the precision and accuracy of
95	the air kerma that was determined.
96	
97	2. Materials and methods

98 2-1. Exposure dose measurements with ionization chambers

 $\overline{7}$

99 2-1-1. Development of apparatus

Figure 2 shows a schematic drawing of the shield box which was newly 100 developed. We used commercially available materials to develop the apparatus. 101 The 102 outer size of this shield box was 284 mm high, 334 mm wide, and 300 mm long. The sides of the box were composed of 2 mm lead supported by 2 mm aluminum. We did 103 104 not add a shield at the back surface to prevent unnecessary scattered X-rays, which are generated by the shield. The front surface was made of 2 mm aluminum and 2 mm lead, 105106 and in addition to this, 2 mm of copper was used for reducing the characteristic X-rays from lead [14]. The incident X-rays were limited by a shield-box-collimator placed at 107 108 the center of the front surface of the shield box. The size of this shield-box-collimator, consisted of 2 mm aluminum and 2 mm lead, was 210 mm \times 165 mm, and had a 109 110 diameter of 100 mm⁶. According to a well-known database [15], the mean range of secondary electrons produced with X-rays having a tube voltage of 130 kV (effective 111 112energy of 42 keV) was estimated to be 42 mm; therefore, the irradiation area formed by the shield-box-collimator of 100 mm⁶ was sufficient for achieving secondary-electron 113equilibration. The ionization chamber was held together by a clamp which was fixed to 114 115the upper side of the shield box. At the rear of the shield box, a phosphor plate can be 116 set to confirm both the irradiation area and the position of the ionization chamber by use

117 of X-rays.

118	The collimator plates placed in front of the movable diaphragm (see Fig. 1 (c))
119	were composed of lead and aluminum, each 210 mm high, 165 mm wide, and 2 mm thick.
120	A hole was bored through the center of the plate. The diameters of the holes were 25
121	mm ^{ϕ} , 30 mm ^{ϕ} , 40 mm ^{ϕ} , 50 mm ^{ϕ} , 60 mm ^{ϕ} , 70 mm ^{ϕ} , 80 mm ^{ϕ} , and 90 mm ^{ϕ} .
122	
123	2-1-2. Experimental procedures
124	In order to measure exposure doses, we used diagnostic X-ray equipment
125	(MRAD-A 50S/70, Toshiba Medical Systems Corporation, Nasu, Japan), collimator
126	plates, a shield box, ionization chambers having a 3 cc detection volume (DC300, PTW,
127	Freiburg, Germany) and a 0.6 cc detection volume (30013 type, PTW, Freiburg,
128	Germany), a dosimeter (EMF521, EMF Japan Ltd., Osaka, Japan) for ionization
129	chambers. With help of the schematic drawing of Fig. 1 (c), we explain the experiment.
130	Figure 3 shows photographs of the experimental set up. Our experiments were
131	performed under the following four conditions: in setup A, the ionization chamber was
132	located in the shield box, and in setup B, the ionization chamber was placed in a free-air
133	condition (without shield box). For these conditions, ionization chambers having
134	different detection volumes were used; one had a detection volume of 0.6 cc and the other,

135	3 cc. By use of a commercially available standard X-ray field (Japan Quality Assurance
136	(JQA) organization, Japan), the calibration factors of the ionization chambers were
137	determined to be 13.91×10^5 (C/kg)/C for the 0.6 cc chamber and $2.83 - 2.99 \times 10^5$ (C/kg)/C
138	for the 3 cc chamber, with an uncertainty of 5%. The temperature and air pressure were
139	recorded, and the values measured with the ionization chambers were corrected so as to
140	agree with the standard temperature and pressure [16]. The collimator plates for
141	applying the extrapolation method were placed near the movable diaphragm (35 cm from
142	the X-ray source), as shown in the graph on the right in Fig. 3 . An acrylic guide for the
143	collimator plates was set on a tripod for easy adjustment. The distances between the X-
144	ray source and the collimator-plate and ionization chamber were 35 cm and 250 cm,
145	respectively. Movable diaphragms was full open; the size of the irradiation area at the
146	end of an emission port is formed to be 13 cm $ imes$ 13 cm at the distance of 27 cm from
147	the X-ray source. Irradiation conditions were a current of 200 mA, an irradiation time
148	of 0.5 s, and tube voltages of 40 kV, 70 kV, 100 kV, and 130 kV. For each condition,
149	five measurements were performed for estimates of the statistical uncertainty [14].
150	Before measurements with the ionization chambers, we set a phosphor plate (RP-
151	4S, Konica Minolta Health Care Co., Ltd., Tokyo, Japan) at the rear of the shield box to
152	check the X-ray irradiation area and the position of the ionization chambers. In order to

153	check the exposure doses preliminary, the pixel value in the obtained image was analyzed
154	using a software ImageJ [17]. Then, based on the following mathematical formula
155	between digital value (DV) and dose (D), we estimated the doses from the pixel values
156	[18,19];
157	$D \propto \text{Exp}(0.00218 \times \text{DV}).$ (1)
158	We used derived values to check the consistency of the measured values between the
159	ionization chambers and the phosphor plates.
160	
161	2-1-3. Analysis
162	We describe the extrapolation method for estimating the contamination rate of
163	scattered X-rays measured with ionization chambers. According to that method [10],
164	the amount of scattered X-rays is considered to be proportional to the diameter of the

165

166

collimator plates which are set in front of the X-ray equipment. Here, the adopted value

corresponding to the ideal situation in Fig. 1 (a) can be obtained when we plot the

- measured values as a function of the diameter of the collimator plates, 25 mm⁶ to 90 mm⁶, 167
- and the extrapolated values to 0 mm^{ϕ} . Note that the X axis is diameters of the collimator 168
- 169plates, and not the diameters of the irradiation field. In our experiments, the detection
- part of the ionization chamber was covered fully in the irradiation field even when the 170

111	collimator plate of 25 mm ^{ϕ} was used. For the extrapolation, a linear function was used,
172	and the weighted least-squares method was applied. Simultaneously, we estimated the
173	uncertainty of the extrapolated value by consideration of the statistical uncertainty of the
174	measured values [C] of the ionization chambers. Then, the air kerma [J/kg] was
175	obtained by multiplying both the calibration factor [(C/kg)/C] and the "W-value divided
176	by the elemental charge e" of $33.97 [J/C] [15]$ to the measured value [C].
177	
178	2-2. Exposure dose measurements using a CdTe detector
179	2-2-1. Experimental procedure
180	In order to check the effectiveness of the shield box based on a different
181	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF
181 182	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups
181 182 183	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups with use of the CdTe detector with and without the shield box, respectively; the CdTe
181 182 183 184	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups with use of the CdTe detector with and without the shield box, respectively; the CdTe detector was set in the place by use of a camera platform. The irradiation conditions
181 182 183 184 185	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups with use of the CdTe detector with and without the shield box, respectively; the CdTe detector was set in the place by use of a camera platform. The irradiation conditions were as follows: 70 kV, 200 mA, and 0.5 s. We applied the Compton scatter
181 182 183 184 185 186	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups with use of the CdTe detector with and without the shield box, respectively; the CdTe detector was set in the place by use of a camera platform. The irradiation conditions were as follows: 70 kV, 200 mA, and 0.5 s. We applied the Compton scatter spectroscopy method (scattering angle of 90 degrees) proposed by Maeda <i>et al.</i> [22]. A
181 182 183 184 185 186 187	procedure, we also measured the X-ray spectra by using a CdTe detector (EMF123, EMF Japan Ltd., Osaka, Japan) [20,21]. Setups C and D in Fig. 3 show experimental setups with use of the CdTe detector with and without the shield box, respectively; the CdTe detector was set in the place by use of a camera platform. The irradiation conditions were as follows: 70 kV, 200 mA, and 0.5 s. We applied the Compton scatter spectroscopy method (scattering angle of 90 degrees) proposed by Maeda <i>et al.</i> [22]. A carbon scatterer was used in place of the ionization chamber (see Fig. 3). In our

189 was kept below 1 kCPS to reduce the pulse pileup effect [23,24].

190

In order to analyze the exposure dose by use of the measured X-ray spectra of the CdTe detector, we applied the following analysis. First, by use of the Klein-Nishina formula and the response function of the CdTe detector, originally measured spectra were unfolded [22]. Then, we transformed the X-ray spectra $\Phi(E)$ to air kerma by using the following equation:

197 Air kerma =
$$\int \Phi(E) \times E \times \left(\frac{\mu_{tr}(E)}{\rho}\right) dE$$
, (2)

where E and $\mu_{tr}(E)/\rho$ are the energy [25] and the mass energy transfer coefficient, respectively.

201 3. Results

202 3-1. Exposure dose measurements by use of ionization chambers

Figure 4 shows X-ray images of the phosphor plate which we used to check the irradiation areas of the 3 cc chamber in setup A. Figures 4 (a) and (b) indicate the results based on the collimator plates of 25 mm^{ϕ} (smallest) and 90 mm^{ϕ} (largest), respectively. It is clearly seen that the detection area of the ionization chamber is

207	included sufficiently in the irradiation area. From a geometrically based consideration,
208	irradiation areas of 178 mm ^{ϕ} and 642 mm ^{ϕ} can be formed by use of the collimator-plates
209	of 25 mm ^{ϕ} and 90 mm ^{ϕ} , respectively, in setup B (without a shield box) at the position
210	where the chamber was set. On the other hand, in setup A (with a shield box), both
211	irradiation areas were limited to be 114 mm ^{ϕ} , as shown in Fig. 4 . This was caused by
212	the shield-box-collimator of 100 mm^{ϕ} placed in front of the shield box. In the irradiation
213	parts in the figure, DVs measured with the phosphor plate not including the ionization
214	chamber are also shown; namely, DV of 3537.5±0.9 for the 25 mm ⁶ collimator plate, and
215	that of 3542.2 \pm 0.9 for the 90 mm ^{ϕ} collimator plate. From equation (1), the relative doses
216	corresponding to the collimator plates of 25 mm $^{\phi}$ and 90 mm $^{\phi}$ were estimated to be
217	1.000±0.002 and 1.010±0.002, respectively. The difference in values was consistent
218	with the result, which is presented in the next paragraph (Fig. 5 (b)).

Figures 5 (a)-(d) shows a comparison of exposure doses measured with ionization chambers between setup A (with a shield box, solid circles) and setup B (without a shield box, open circles) in Fig. 3 for four tube voltages. The results of 3 cc chamber are presented. The X-axis shows the diameter of the collimator plate. A linear function was applied for fitting to the experimental data, and an extrapolated data corresponding to 0 mm^{ϕ} was obtained. Then the exposure doses were normalized by the

225	extrapolated value, and the normalized values are plotted on the Y-axis. It is clearly seen
226	that the data measured without the shield box are systematically larger than those with
227	the shield box. The differences in data with or without the shield box at 40 kV, 70 kV,
228	100 kV, and 130 kV were 0.9%, 1.3%, 1.1%, and 1.0%, respectively. The error bars in
229	the figure are standard deviations of the measured values for five measurements, and in
230	the extrapolated value, the contribution of these uncertainties is considered. As a result,
231	the statistical uncertainties of the extrapolated data for 40 kV, 70 kV, 100 kV, and 130 kV
232	were approximately 0.5%, 0.2%, 0.1%, and 0.3%, respectively.
233	Figure 6 (a) shows a comparison of the results for the two ionization chambers.
234	The solid and open circles indicate the results for the 3 cc and 0.6 cc chambers,
235	respectively. All of the air-kerma values measured with the 0.6 cc chamber are
236	consistent with those of the 3 cc chamber. This result indicates that our experiments did

not depend on the volume of the ionization chambers. 237

238

3-2. Exposure dose measurements with the CdTe detector 239

Figure 6 (b) shows X-ray spectra measured with a CdTe detector with or without 240the shield box. The X axis shows the energy [keV], and the Y axis shows the counts. 241Using equation (2), we derived corresponding dose with the spectra; the relative values 242

243	of derived air kerma of the conditions with (setup C in Fig. 3) and without the shield box
244	(setup D in Fig. 3) were 1.000±0.002 and 1.018±0.002, respectively. As described
245	above, the results measured with the ionization chamber shown in Fig. 5 (b) indicate a
246	1.6% difference between measured values with and without the shield box with use of the
247	90 mm $^{\phi}$ collimator plate; the result with the CdTe detector was consistent with that of the
248	ionization chamber.
249	
250	4. Discussion
251	In the present study, we proposed an accurate measurement method for air kerma
252	by use of diagnostic X-ray equipment. In general, diagnostic X-ray equipment has a
253	movable diaphragm, and this becomes a generator of scattered X-rays. To construct an
254	accurate X-ray field, we proposed to use a shield box to reduce the scattered X-rays, and
255	we estimated the contamination rate by the scattered X-rays.
256	It was considered that a free-air condition is suitable for calibration of ionization
257	chambers. We consider that our method is applicable only to the diagnostic X-ray region,
258	and that it is useful for reducing scattered X-rays from the movable diaphragm of clinical
259	X-ray equipment. As described above, the experiments were validated because the
260	contamination rate by the scattered X-rays measured with one ionization chamber was

consistent with that measured with another ionization chamber, the phosphor plate, and
the CdTe detector. This finding strongly support the verification of our method. Next,
we describe the evaluation of the accuracy of our method.

264As shown in **Fig. 5**, the extrapolation method works well because experimental data deviated evenly from a linear fitted line. The effect of the shield box was clearly 265presented by the data; the open circles (setup B, without a shield box) were systematically 266267larger than the closed circles (setup A, with a shield box). Here, we estimate the differences between these data corresponding to the X (diameter of shield-box-268collimator) = 100 mm° . As represented in **Fig. 5**, they were 1.5-1.7% for tube voltages 269270of 40-130 kV. The differences are considered to be due to contamination by scattered X-rays from air, which is indicated by (A) in **Fig. 1** (b). Reducing these scattered X-271rays is important for deriving an accurate exposure dose, because the extrapolated data 272(related to the 0 mm^{\u03c6} of the collimator plate) became systematically 0.9-1.3% larger than 273274the ideal values when extrapolation was applied to setup B (without a shield box). From these findings, we concluded that a more accurate value of exposure dose can be obtained 275with use of our shield box. 276

Here, we also discuss the contamination rate of scattered X-rays from a movable diaphragm, which is indicated by (B) in **Fig. 1** (b). In **Fig. 5**, the amount of these X-

rays was observed by the differences between the extrapolated value of the exposure dose and other data in setup A (with a shield box). In the present case, scattered X-rays from the movable diaphragm were estimated to be at most 1.8-2.3%. Although these estimated values are not common, they become a good example to explain our method when experiments are performed with diagnostic X-ray equipment installed in clinical examination rooms.

Figure 7 shows a relationship of the extrapolated values of the exposure dose in 285terms of the measured values [C] and air kerma [J/kg] at 70 kV. In the dimension of the 286287measured value [C], statistical uncertainty is considered only to these data. In the present case, the statistical uncertainty of the extrapolated value was 0.7%, as represented 288by the right-hand graph in **Fig. 7**. On the other hand, as shown in the left graph in **Fig.** 289290 7, the uncertainty of the air kerma (extrapolated value) was determined by consideration of both the statistical uncertainty (0.7%) and the uncertainty of the calibration factor (5%). 291292Therefore, the final uncertainty of the measured value becomes approximately 5%. When we want to calibrate another ionization chamber by using our secondary 293X-ray field, the ionization chamber can be calibrated with 5% uncertainty. At this time, 294295the calibration factor has a larger uncertainty compared with the contribution of scattered However, if we can use an accurately calibrated ionization chamber, our 296X-rays.

297	method of using a shield box may be more valuable. Our secondary X-ray field will
298	also play an important role in the calibration not only of ionization chambers, but also of
299	other radiation detectors such as solid detectors. We plan to calibrate an optically
300	stimulated luminescence (OSL) dosimeter by using our secondary X-ray field. The
301	detection efficiency of the OSL dosimeter is completely different from that of the
302	ionization chambers; for example, the relative efficiency of 20 keV X-rays is 20% larger
303	than that of 60 keV [26]. In other words, when an experimenter calibrates the OSL
304	dosimeter, the contribution of low energy X-rays (scattered X-rays) should be considered.
305	With the proposed calibration method, it is hoped that the contribution of the scattered X-
306	rays is properly estimated; firstly, the ionization chamber for standard is measured and
307	analyzed by the proposed method (as represented in Fig. 5), secondary, a radiation
308	detector which experimenter wants to calibrate is measured with the same condition and
309	also analyzed with the proposed method, and then, the extrapolated values are compared.
310	In this procedure, the effect of the low energy X-ray contamination on each detector was
311	properly corrected.

313 5. Conclusion

314

In conclusion, we proposed a practical calibration method for which we used an

315	original shield box and collimator plates to prevent scattered X-rays, and we evaluated
316	the contamination rates by them for construction of a secondary X-ray field by means of
317	general diagnostic X-ray equipment. Our equipment is portable; we considered that our
318	equipment was useful for calibration of ionization chambers with X-ray equipment used
319	in clinical examination rooms. We applied the method to a general experimental room
320	in Japan, and we found that the contamination rates of scattered X-rays from the air and
321	the movable diaphragm were less than 1.7% and 2.3%, respectively. The precision and
322	accuracy of the extrapolation method were approximately 0.7% in the measured value
323	[C], and 5% in the air kerma [J/kg]. We found that our method was more accurate than
324	the uncertainty of the calibration factor used. Our method will become valuable when
325	a more accurately calibrated ionization chamber is available.
326	
327	
328	Conflict of interest

We have no conflict of interest.

330 6. References

- 331 [1] Amy Berrington de Gonzalez, Sarah Darby. Risk of cancer from diagnostic X-ray:
- estimates for the UK and 14 other countries. The Lancet. 2004;363:345-351.
- [2] Uffmann M, Prokop CS. Digital radiography: The balance between image quality and
- required radiation dose. European Journal of Radiology. 2009;72:202-208.
- [3] Takegami K, Hayashi H, Okino H, Kimoto N, Maehata I, Kanazawa Y, Okazaki T,
- 336 Kobayashi I. Practical calibration curve of small-type optically stimulated
- luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic
- 338 X-ray region. Radiological Physics and Technology. 2015;8:286-294.
- [4] Grosswendt B. Backscatter factors for x-rays generated at voltages between 10 and
- 100 keV. Physics in Medical and Biology. 1954;29(5):579-591.
- [5] Klevenhagen SC. Experimentally determined backscatter factors for x-rays generated
- at voltages between 16 and 140 kV. Physics in Medical and Biology.
- 3431989;34(12):1871-1882.
- [6] Kato H, Method of calculating the Backscatter Factor for Diagnostic X-rays Using the
- 345 Differential Backscatter Factor. Japanese Journal of Radiological Technology.
- 3462001:57(12):1503-1510.
- [7] Hayashi H, Taniuchi S, Kamiya N, et al. Development of a Pin-hole Camera Using a

348	Phosphor Plate, and Visualization of the Scattered X-ray Distribution and Optical
349	Image. Japanese Journal of Radiological Technology. 2012;68(3):307-311.
350	[8] Takegami K, Hayashi H, Konishi Y, et al. Development of multistage collimator for
351	narrow beam production using filter guides of diagnostic X-ray equipment and
352	improvement of apparatuses for practical training. Medical Imaging and Information
353	Sciences. 2013;30(4):101-107.

- [9] Hayashi H, Takegami K, Okino H, et al. Procedure to measure angular dependences
- of personal dosimeters using diagnostic X-ray equipment. Medical Imaging and
 Information Sciences. 2015;32(1):8-14.
- 357 [10] Hayashi H, Takegami K, Konishi Y et al. Indirect Method of Measuring the Scatter
- 358 X-ray Fraction Using Collimators in the Diagnostic Domain. Japanese Journal of
- 359 Radiological Technology. 2014;70(3):213-222.
- 360 [11] Ariga E, Ito S, Deji S et al. Determination of half value layers of X-ray equipment
- using computed radiography imaging plates. Physica Medica 2012;28:71-75.
- 362 [12] Trout ED, Kelley JP, and Lucas AC. Determination of Half-Value Layer. Radiology.
- 363 1959;73:107-108.
- 364 [13] Trout ED, Kelley JP, and Lucas AC. Determination of Half-Value Layer. The
- 365 American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine.

366 1960;84(4):729-740.

- 367 [14] Knoll GF. Radiation Detection and Measurement third edition. John Wiley & Sons,
- 368 Inc. New York. 1999;321. ISBN 0-471-07338-5.
- 369 [15] Lucien P. Energy loss, range, and bremsstrahlung yield for 10-keV to 100-MeV
- electrons in various elements and chemical compounds. Atomic Data and Nuclear
- 371 Data Tables. 1972;4:1-127.
- [16] Khan FM. The Physics of Radiation Therapy fourth edition. Lippincott Williams &
- 373 Wilkins. 2010.
- [17] Rasband WS, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
- 375 http://imagej.nih.gov/ij/, 1997-2015.
- 376 [18] Kimoto N, Hayashi H, Maehata I, et al. Development of All-in-one Multi-slit
- Equipment for Measurements of the Input-output Characteristic of a Phosphor Plate,
- Japanese Journal of Radiological Technology, 2013;69(10):1165-1171.
- 379 [19] Maehata I, Hayashi H, Takegami K, et al. Fabrication of Improved Multi-slit
- Equipment to Obtain the Input-output Characteristics of Computed Radiography
- 381 Systems: Correction of the Heel Effect, and Application to High Tube-voltage
- Experiments, Japanese Journal of Radiological Technology, 2014;70(9):867-876.
- 383 [20] Okino H, Hayashi H, Nakagawa K et al. Measurement of response function of CdTe

384	detector using diagnostic X-ray equipment and evaluation of Monte-Carlo simulation
385	code, Japanese Journal of Radiation Radiological Technology, 2014;70(12):381-1391.
386	[21] Fukuda I, Hayashi H, Takegami K et al. Development of an experimental apparatus
387	for energy calibration of a CdTe detector by means of diagnostic X-ray equipment,
388	Japanese Journal of Radiation Radiological Technology, 2013;69 (9):952-959.
389	[22] Maeda K, Matsumoto M and Taniguchi A. Compton-scattering measurement of
390	diagnostic x-ray spectrum using high-resolution Schottky CdTe detector. Med. Phys.
391	2005;32:1542-1547.
392	[23] Then SS, Geurink FDP, Bode P, et al. A pulse generator simulating Ge-detector
393	signals for dead-time and pile-up correction in gamma-ray spectrometry in INAA
394	without distortion of the detector spectrum. J. Radioanal. Nucl. Chem.
395	1997;215(2):249-252.
396	[24] Cano-Ott D, Tain JL, Gadea A. Pulse pileup correction of large NaI(Tl) total
397	absorption spectra using the true pulse shape. Nucl. Instrum. Methods. 1999;430:488-
398	497.

- 399 [25] Hubbell JH. Photon mass attenuation and energy-absorption coefficients, The
- 400 International Journal of Applied Radiation and Isotopes, 1982;33(11):1269-1290.
- 401 [26] Takegami K, Hayashi H, Okino H, et al. Energy dependence measurement of small-

402 type optically stimulated luminescence (OSL) dosimeter by means of characteristic
403 X-rays induced with general diagnostic X-ray equipment, Radiological Physics and
404 Technology, in press (DOI: 10.1007/s12194-015-0339-9).

406 Figure captions:

Comparison between ideal, real conditions in measurments with ionization 407Fig.1 chamber, and our proposed method. (a) Ideal condition of chamber; it measures only 408 (c) Our 409 direct X-rays. (b) Actual condition; it also measures scattered X-rays. proposed method for measuring only direct X-rays with an ionization chamber. 410 There 411 are a newly developed box and collimator plates to shield from scattered X-rays. These 412collimator plates have different diameters. (A) and (B) show scattered X-rays caused by the air and the movable diaphragm, respectively. 413

414

Fig.2 Schematic drawings of our newly developed shield box which is 284 mm high, 334 mm wide, and 300 mm thick. The front surface is made of 2 mm lead, 2 mm aluminum, and, in addition, 2 mm copper to absorb the characteristic X-rays of lead. The ionization chamber is held by a clamp which is fixed to the upper side of the shield box. For checking the irradiation area and a position of the ionization chamber, a phosphor plate can be inserted at the back.

421

Fig.3 Experimental conditions for the X-ray equipment and the detectors. We
performed the experiment by using four conditions (setups A-D); different combinations

424 of two kinds of detectors, and with or without shield box.

425

X-ray images of a phosphor plate which was placed at the rear of the shield box. 426 Fig.4 427(a) and (b): Results for 25 mm^{ϕ} and 90 mm^{ϕ} collimator plates. The detector was placed at the center of the irradiation field. The digital value (DV) of the image measured with 428429the phosphor plate and the converted dose from the DV are given. 430Experimental results measured with ionization chamber for 40 kV to 130 kV as 431Fig.5 432a function of diameter of collimator plate. The Y-axis shows dose, which was normalized by the extrapolated value. The solid and open circles refer to the conditions 433of setup A (with a shield box) and setup B (without a shield box), respectively. 434435Verification of our method. (a) Comparison of the results for 70 kV between Fig.6 436437two different-size ionization chambers. The solid-circle data (3 cc chamber) and open circle data (0.6 cc chamber) are consistent with each other. (b) X-ray spectrum 438measured with the CdTe detector with and without the shield box. We plotted the 439440 original and unfolded spectra, in which the lines with solid and closed circles represent measured data with shield box and without it, respectively. 441

 $\mathbf{27}$

Fig.7 Uncertainty estimation of our method. The data in the right figure have
statistical uncertainty. In this case, the extrapolated data have an uncertainty of 0.7%.
The data in the left figure show the total uncertainty in which both the statistical
uncertainty (0.7%) and that of the calibration factor (5%) are considered.

(a) Ideal

(b) Actual

X-ray equipment

