
INTRODUCTION

Cell division is a fundamental process whose error-
free execution is essential for the continuity of all living
organisms. In higher eukaryotes, there is an additional
need for cell to stop dividing in order to differentiate
and to maintain the correct balance of tissues and cell
types (1). Aberrant cell growth thereforeunderliesmany
hypo-and hyper-proliferativedisorders, including cancer,
and a better understanding of themechanisms involved
could lead to new strategies for treatment andprevention
of cancer (2).

In contrast to cancer cells, most human normal
somatic cells permanently stop dividing after a finite
number of cell divisions in culture and enter a state
termed cellular or replicative senescence (3). These
cells are irreversibly arrested in the G1 phase of the

cell cycle and no longer able to divide despite remaining
viable and metabolically active for long periods of time
(Figure 1). Most tumors contain cells that appear to
have bypassed this limit and evaded replicative senes-
cence. Immortality, or even an extended replicative
lifespan, greatly increases susceptibility to malignant
progression because it permits the extensive cell di-
visions needed to acquire successivemutations. Thus,
cellular senescencemay act as a barrier to cancer and
play an important role in tumor suppression (4).

A number of hypotheses have been proposed to
explain the mechanisms of cellular senescence, and
they can be grouped into two broad categories (5).
One set proposes that the loss of proliferative potential
is due to random accumulation of damage or stress,
while the other proposes that genetically programmed
processes. Although numbers of reports suggest that
that senescence in human cells is genetically controlled ,
at least, through a cell division counting mechanism
(telomere-shortening)(6), accumulating evidences
strongly suggest that it can also be induced by variety
of extrinsic physiological stresses (7-9). Thus, the truth
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probably lies somewhere in between. Indeed, it has
become apparent that the p16INK4a-RB tumor suppressor
pathway is activated by a variety of distinct physiological
stresses, and is playing a central role in induction
and maintenance of cellular senescence.

In this review, wewill discuss possiblemechanisms
that induce cellular senescence and elucidate how these
mechanisms are perturbed in cancer cells. We also
discuss the biological role of cellular senescence in
living organism.

TELOMERESHORTENINGANDSENESCENCE

At the end of eukaryotic chromosomes specialized
DNA structure called telomeres stabilize the chromo-
some ends and prevent chromosomal abnomarilties
(6). Telomeres are maintained by a specific enzyme
called telomerase,which isnot expressed inmost normal
human somatic cells (10). In these cells, telomere length
is sequentially reduced at each cell division due to the
end-replication problem. When the telomere reaches
a critical length, it is thought to initiate DNA damage
response signals and activate p53-dependent check-
points that contribute to onset of cellular senescence
(11). Telomere length therefore functions as amitotic
clock that counts the cell division number in human
normal somatic cells. In accordwith thismodel, ectopic
expression of the catalytic subunit of telomerase en-
zyme, hTERT, in some human fibroblasts, halts the
erosion of telomeres and prevents the onset of cellular
senescence (12, 13). This is suggesting that telomere
shortening is indeed a mechanism of onset of cellular

senescence. Recent studies have suggested, however,
that the altered telomere state rather than loss of te-
lomeric DNA induces cellular senescence (14). The
structure of telomeres, the nucleoproteins complex
that serves as a protective “cap” for the chromosome
end, may undergo changes during cellular proliferation,
possibly as a results of telomere-shortening. More
recently, unexpected role of endogenous telomerase
has been uncovered in normal human somatic cells
(15). It has long been believed that normal human
somatic cells do not express detectable level of hTERT
gene and therefore do not express substantial level of
telomerase activity. However, Matsutomi et al (2003)
has shown that hTERT is actually expressed in normal
human fibroblasts and plays important role in main-
tenance of proper structure of the chromosome end.
Indeed, RNA interference (RNAi)-mediated inhibition
of endogenous hTERT rapidly induced senescence-
like cell cycle arrest in human primary fibroblasts (15).
These evidences are also indicating that the “capping”
state of telomeres, but not the overall length of te-
lomeres, correlates with the induction of cellulasr se-
nescence.

While telomere shortening occurs in normal human
cells, telomere length is maintained either by overex-
pression of telomerase or by a mechanism known as
alternative lengthening of telomeres (ALT) in most
human cancer cells (16). Whatever mechanism, it is
clear that telomere maintenance is essential for im-
mortality and its controlmight be a possible therapeutic
target in human cancer.

Figure 1. Tumor suppression by cellular senescence
Expression of CDK inhibitors, p 16INK4a and p 21Cip1, is induced in both replicative senescence and
premature senescence.
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TELOMERE-INDEPENDENTMECHANISMS
FOR SENESCENCE

In contrast to human cells, there is no strong evidence
in rodent cells that cellular senescence is dependent
on telomere erosion (8). Telomere in rodent cells are
very long, andmost rodent somatic cellshave significant
level of telomerase expression. Moreover, cellulasr
senescence in rodent cells occurs without detectable
telomere-shortening (8). How is cellular senescence
induced without telomere shortening in rodent cells?
This telomere-independent proliferation block may
reflect a cell cycle checkpoint response to inappropriate
cell culture condition rather than an intrinsic limita-
tion imposed by a cell-division counting mechanism.
It is likely therefore that there is a telomere-independent
cellular senescence mechanism in higher eukaryotic
cells. Indeed, accumulating evidences have demon-
strated that various physiological stresses, such as
oxidative stress and aberrant mitogenic stimulation,
are involved in cellular senescence. For example, it
was recently reported that when mouse embryonic
fibroblasts (MEFs) are cultured in low (3%) oxygen,
rather than normal (20%) oxygen condition, MEFs
avoid cellular senescence and continue to proliferate,
like a immortalized cells (17). This study also reported
that the rapid accumulation of DNA damage was ob-
served in MEFs, when grown in 20% oxygen, but not

in 3% oxygen condition. This is consistent with previous
observation that human primary fibroblasts are able
to undergo more cell divisions prior to cellular senes-
cence when cells were cultured in low (1-3%) oxygen
condition (18, 19, 29). These evidences, therefore, sug-
gest that extrinsic physiological stress, such as oxidative
stress, is a common factor which induces cellular se-
nescence in both human and rodent cells. Taken to-
gether, it is clear that telomere shortening is not a sole
mechanism that cause cellular senescence (21, 22).

p16INK4a-RB PATHWAY IN HUMAN CANCER

In higher eukaryotes, the retinoblastoma (RB) and
p53 tumors suppressor proteins are crucial gatekeeper
of cellular senescence (23, 24). The activities of RB
and p53are tightly regulatedbyvariouspost-translational
modifications, such as phosphorylation, acetylation
and ubiquitination (25, 26). RB is thought to impose
a block on G1 progression that is alleviated by phos-
phorylation. In particular, the cyclin-dependentkinases,
CDK 2, CDK 4 and CDK 6 play a crtical role in phos-
phorylation of RB. When RB is phosphorylated by
CDKs it loses its function and releases its target, the
E2F family transcription factors (E2F1-3), resulting
in the initiation of DNA replication (Figure 2)(27, 28).
Deregulated activity of the D-type cyclin-dependent

Figure 2. p16INK4a/RB-pathway in cell cycle control
Following mitogenic stimulation, cyclinD and cyclinE in complex with CDK4/6 or CDK2 respectively,
sequentially phosphorylate RB thus releasing it from its transcriptionally repressive complexes with
E2Fs facilitating S phase progression. Expression of p16INK4a and/or p21Cip1 is induced by distinct stresses,
thereby inhibiting CDK activity.
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kinases, CDK 4 and CDK 6, is widely observed in
various tumor cells, illustrating their importance in
controlling cell cycle (29). The cyclin D1 gene is am-
plified and over-expressed in a varietyofhumancancers,
particularly breast cancer and squamous cell carcino-
mas, aswell asbeingactivatedby chromosomal translo-
cation in mantle cell lymphoma. Similarly, CDK4 is
amplified in human sarcomas and more recently, a
mutant (R24C) which does not bind to its negative
regulators, the INK4 family proteins, is found inmela-
noma (29). More frequently, the p16INK4a gene, a pro-
totype of the INK 4 gene family, is inactivated by
various mechanism in awide range of human cancers
(30). All these abnormalities cause deregulation of RB
function. The p16INK4a/CDK/RB pathway is therefore
considered to be an attractive target for therapeutic
intervention but more information is needed regarding
the detailed mechanisms involved in order to identify
the most appropriate strategies for tumor suppression.

We and others have shown that the p16INK4a tumor
suppressor gene plays a key role in cellular senescence
in human cells. Although the level of p16INK4a is ex-
tremely low innormal proliferatingcells, the expression
of p16INK4a is significantly induced during cellular se-
nescence (31, 32).Moreover, overexpression ofp16INK4a

results in senescence-like growth arrest, identifying
p16INK4a as a strong candidate for mediating cellular
senescence (33, 34) So, how is p16INK4a expression in-
duced in senescence? Although we cannot completely
preclude the connection between p16INK4a expression
and telomere-shortening, its expression ismore likely
to be regulated by extrinsic stress signaling pathways.
This is because accumulation of p16INK4a is observed
in both human and rodent senescent cells. Furthermore,
Serrano et al (1997) have shown that aberrant growth
signals provided by constitutive active form (oncogenic)
Ras rapidly induce p16INK4a expressionwithout telomere
shortening inbothhumanandrodent cells (35)(Figure1).
In remarkable contrast to previous observations using
established cell lines (36, 37), introduction of oncogenic
Ras into normal primary cells results in the induction
of various antiproliferative proteins, including the
p16INK4a and p53 tumor suppressors ; the accompanying
cell cycle arrest resembles cellular senescence and
is termed “premature-senescence” (35)(Figure 1).
Normal cellsmust therefore have a sensor that detects
aberrant growth signals, such as toomany cell divisions
and/or oncogene activation, and that may induce
p16INK4a expression.

In rodent cells, targeted inactivation of RB or p53
gene overrides cellular senescence (38, 39).Moreover,
triple knock-out MEFs lacking all Rb-family genes (Rb,

p107 and p130) do not senesce despite the presence
of high levels of p53, suggesting that RB-family proteins
play a role downstream of the p53 pathway in mouse
cell senescence (40, 41). In human cells, however,
inactivation of both RB and p53 is required to over-
ride cellular senescence inmost cell types, suggesting
that p53 and RB have overlapping, but distinct, roles
in human cell senescence (23, 24).

TRANSCRIPTIONAL REGULATION OF
p16INK4aEXPRESSION

Previous experiments with Ras mutants, which are
unable to activate one or another effector pathway of
Ras signaling, have identified that the Ras/MEK signal
transduction pathway is crucial for Ras-induced cellular
senescence (42, 43). We have shown that p16INK4a ex-
pression is controlled by the Ets 1 andEts 2 (Ets1/2)
transcription factor, which are down-streammediators
of the Ras/Raf/MEK-pathway (44). Normally, the Ets
1/2 transcription factor is phosphorylated by MAP
kinase at certain points in the cell cycle. Id1, a tran-
scriptional inhibitor, counter-balances this activity by
binding to and inactivating Ets 1/2. In replicative se-
nescence, which is provoked by cumulative cell divi-
sions, expression levels of Ets1 increase whilst Id1
levels decline. Thus Ets1 likely to induce p16INK4a ex-
pression aided by the concomitant down-regulation
of Id1. In premature senescence, which is provoked
by oncogenic Ras, Ets1/2 is constitutively activated
by oncogenic Ras signals. This aberrant activation
overrides the steady state and results in induction of
p16INK4a expression and premature senescence. This
model is further supported by recent study using der-
mal fibroblasts, Q34 cells, from an individual carrying
biallelic mutation in p16INK4a gene (45). Bothmutations
alter the aminoacids sequence of p16INK4a and function-
ally impaired the activity of p16INK4a protein. In contrast,
only one of the mutations affects the sequence of p14ARF

protein, causing an apparently innocuouschanges near
its carboxy terminus (Figure 3). Ectopic expression
of oncogenic Ras or its downstream effectors Ets1and
Ets 2 failed to induce premature senescence in Q34
fibroblasts, although the similar levels of oncogenic
ras or Est1/2s expression efficiently induced premature
senescence in normal (wild type) human fibroblasts
(45). This is suggesting that p16INK4a is a critical down-
stream mediator for Ras/Ets-pathway in premature
senescence. This data also imply that p 16INK4a, but
not p14ARF, assumes the principal role in Ras-induced
premature senescence in human fibroblasts. It is,
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however, important to note that other factors are in-
volved in this process. In particularly, chromatin re-
modeling factors such as SNF5 and BMI-1 are likely
to be associated with Ras/Ets/p16INK4a-pathway (46-
49).

p16INK4a VERSUS p14ARF IN HUMANCANCER

The INK4a/ARF gene locus has the unusual capacity
to encode two structurally distinct proteins, p16INK4a

and p14ARF (p19ARF in mouse cells), by reading a shared
second exon in different translational reading frames
(Figure 3). Although p16INK4a binds directly to and
inhibits the activity of CDK4 and CDK6, p14ARF binds
directly to MDM2, but not CDKs, resulting in the sta-
bilization and the activation of p53-target genes (30).
In mouse model system, p19ARF plays an important
protective role from tumorigenicity whereas p16INK4a

loss causes only a limited induction of tumors (50).
In MEFs, the levels of p19ARF is significantly induced
in both oncogenic Ras induced senescence and in
replicative senescence (35). However, this is not the
case in human primary fibroblasts, suggesting the dif-
ferential importance of INK 4 a/ARF gene locus in hu-
man andmouse (51, 52). To directly assess the individ-
ual contribution of p16INK4a and p14ARF genes to tumor
suppressor pathways in human, Voorthoeve andAgami
(2003) have specifically blocked p16INK4a and / or p14ARF

gene expression using RNAimediated-gene silencing
technology (53). Voorhoeve andAgami has shown that
suppression of p16INK4a expression, but not p14ARF ex-
pression, synergize with p53 loss to accelerate growth

and causes transformation. These results are consistent
with the notin that p16INK4a is acting as a tumor sup-
pressor gene in human cancer.

INACTIVATION OF p16INK4a-RB PATHWAY
IN HUMAN CANCER

It is evident that the expression of p16INK4a gene is
dramatically reduced in several human cancers due
to the hyper-methylation of p16INK4a gene promoter
(54). Recent studies, however, indicated that a different
mechanism blocking the p16INK4a gene expression is
existing in certain types of human cancers (55). The
latent membrane protein 1 (LMP 1) oncoprotein of
Epstein-Barr virus (EBV) is often present in EBV-
associated proliferative diseases and is critical for the
immortalizing and transforming activity of EBV. Unlike
other DNA tumor virus oncoproteins which possess
immortalizing activity, LMP1does not bind to RB, but
instead blocks the expression of the p16INK4a gene (55).
However, it has been unclear how LMP1 represses
the p16INK4a gene expression. We have now found that
LMP 1 promotes the CRM1-dependent nuclear export
of Ets2, thereby reducing the level of p16INK4a gene
expression (56). We further demonstrate that LMP1
also blocks the function of repressive E2Fs (E2F4
and E2F5), which primarily repress the E2F-target
gene expression, through promoting their nuclear
export in a CRM1-dependent manner (56). As E2F4
and E 2 F 5 are essential downstream mediators for
a p16INK4 a-induced cell cycle arrest (57), these results
indicate that the action of LMP 1 on nuclear export

Figure 3. INK 4 a/ARF tumor suppressor gene locus regulates RB/p53 pathways
INK4a/ARF locus encodes two proteins regulating RB or p53 tumor suppressor pathways. Although
p14ARF does not act as a CDK inhibitor, p14ARF induces p21Cip1, a CDK inhibitor, through activating p53-
pathway.
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has two effects on the p16INK4a-RB pathway : (i) repres-
sion of p16INK4a expression and (ii) blocking the down-
stream mediator of the p16INK4a-RB pathway. These
results reveal a novel activity of LMP1 and increase
an understanding of how viral oncoproteins perturb
the p16INK4a-RB pathway leading to cancer. Understand-
ing the mechanisms of LMP1-induced nuclear export
would help us to find a way of specific suppression of
EBV associated cancers.

CONCLUDING REMARKS

It has recently become evident that cellular senes-
cence, the final restingplaceof thecell, is a state induced
by a variety of distinct physiological stresses including
oncogene activation. These stresses activate cell cycle
checkpoint response such as induction of p16INK4a and
cause permanent growth arrest. Although we still do
not have definitive evidence that cellular senescence
occurs in vivo, physiological stresses includingoncogene
activation, rather than cumulative cell divisions, could
turn out to be a physiologically relevant senescence
trigger. The identification of senescent cells, especially
in the context of the human body, will provide valuable
new insights into the development of cancer and open
up new possibilities of its control.
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