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The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and

organogenesis, where signal strength-dependent cellular responses are of particular importance.

To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent

bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line

R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal

promoter to confer a graded response to the reporter depending on Wnt signal strengths. The

histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell

resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an

orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into

Wnt3a�/� and Wnt3avt/� mutant mouse embryos and compared with wild-type embryos to

assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues

and responded in a graded fashion to signal intensity. This analysis also indicated that the major

Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-

WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes.

Introduction

Wnt signaling via the canonical intracellular pathway
plays a central role in embryogenesis and organogenesis,
providing tissue specificities and identities (review, Lien
& Fuchs 2014). Growing evidence indicates that

canonical Wnt signaling affects cells differently depend-
ing on the signal strength in individual cells (Lien &
Fuchs 2014). Therefore, elucidation of Wnt signal-
dependent events would be facilitated by the availability
of Wnt reporter transgenic lines that allow for the assess-
ment of Wnt signal strength with single-cell resolution.

Various Wnt reporter transgenic lines have been pro-
duced (Korinek et al. 1997; DasGupta & Fuchs 1999;
Lustig et al. 2002; Maretto et al. 2003; Mohamed et al.
2004; Moriyama et al. 2007), but none has satisfied all
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desired features. A common approach was to join multi-
meric TCF/LEF1 binding sites, acting as a Wnt-depen-
dent enhancer, to a nonspecific promoter to activate the
transcription of an enzyme or fluorescent protein gene,
and such constructs were inserted in the mouse genome
via random integration. These earlier Wnt-responsive
transgenes displayed background (Wnt-independent)
expression and tissue bias in Wnt-dependent gene
activation, probably reflecting the local chromosomal
environments (Al Alam et al. 2011).

Fusion proteins comprising histone H2B and fluores-
cent protein that accumulates in nuclei can offer an
excellent reporter system to assess responses of individual
responding cells (Kanda et al. 1998; Kurotaki et al. 2007;
Abe et al. 2011). Ferrer-Vaquer et al. (2010) reported a
Wnt reporter transgenic line, in which EGFP was fused
to H2B, significantly improving the resolution. How-
ever, this line was also constructed using random trans-
gene insertion. Moreover, the hsp68 promoter used in
the transgene provides minimally graded responses.

We first constructed a Wnt reporter transgene by
combining the TCF/LEF1 sites, viral minimal pro-
moter and sequence encoding the histone H2B-EGFP
fusion protein. The transgene was then inserted into
the ROSA26 locus, which supports the most tissue-
unbiased expression of exogenous genes (Zambrowicz
et al. 1997; Soriano 1999). The transgene responded in
a graded fashion to the Wnt signal levels in individual
cells, as showed using hypomorphic Wnt3avt/�

heterozygote. This reporter transgene, designated as
R26-WntVis (ROSA26-based Wnt signal visualizing
reporter), will be useful for studies on Wnt-dependent
developmental and organogenic processes.

Results and discussion

Rationale for the Wnt reporter design

It is widely appreciated that a nearly ubiquitous gene
expression is attained by insertion of a protein-encoding
sequence in the ROSA26 gene locus. This feature of
the ROSA26 locus is conferred by the unique tran-
scriptional competency of the chromosomal locus
(Nyabi et al. 2009). Although the locus is transcribed
from a nonspecific promoter (Kisseberth et al. 1999),
previous reports indicate that exogenous genes in the
ROSA26 locus are more actively transcribed when
inserted in the opposite rather than the same orienta-
tion as the endogenous transcripts (Strathdee et al.
2006; Nyabi et al. 2009). We sought to use the
ROSA26 locus to achieve tissue-unbiased and Wnt
signal-dependent activation of the transgene.

An important decision in designing a reporter
gene is whether to use a promoter with graded or
with nongraded responses in combination with the
multimeric TCF/LEF1 binding sites. A typical non-
graded response promoter is the hsp68 promoter,
which was used in combination with various enhan-
cers to produce transgenic mouse lines with highly
tissue-specific expression (Rossant et al. 1991; Sasaki
& Hogan 1996). However, to achieve graded out-
puts of Wnt signaling, we needed a promoter that
would show a graded response to enhancers of vari-
ous strengths. One such example is the HSVtk pro-
moter, which we used in this study (Uchikawa et al.
2003; Takemoto et al. 2006). The transcripts starting
from the promoter should encode a reporter protein
to be detected with high sensitivity, such as fusion

Figure 1 Organization of the R26-WntVis reporter transgene and its expression in mouse embryos from E6.5 to E12. (A) Schematic

representation of the WntVis transgene organization before integration into the mouse genome. 7 9 TCF/LEF1, heptameric TCF/

LEF1 binding sequences; tkPro, minimal promoter of the Herpes simplex virus thymidine kinase gene; H2B-EGFP-pA, transcrip-

tional unit of the reporter gene, consisting of the coding sequence for the histone H2B-EGFP fusion protein and an SV40 late polyA

addition signal; inverted 2 9 pA, two copies of rabbit b-globin polyA signal placed to block transcription from downstream; arrow

with lettering, direction of the endogenous transcription from ROSA26 locus. The scheme is not drawn on scale. (B–G) R26-WntVis

reporter activity at various developmental stages of mouse embryos. (B) EGFP fluorescence (right) in E6.5 embryo and differential

interference contrast (DIC) image of the same embryo (left). The bar indicates 50 lm. (C) Stacked EGFP fluorescence images using a

confocal microscope of an E7.5 embryo (right) and DIC image of the same embryo (left), showing the graded signal intensities toward

the posterior side of the embryo. The bar indicates 200 lm. (D) An E8.5 embryo in lateral (left) and dorsal view (right), where

bright-field and fluorescent images are compared. A strong signal was observed confined to the posterior tissues surrounding the prim-

itive streak. The bars indicate 1 mm. (E) An E9.5 embryo, where new signal-positive tissues not observed at E8.5 have emerged, e.g.,

the dorsal midline of the brain, dorsal part of the otic placode and somites. The bar indicates 500 lm. (F) An E10.5 embryo, where

the fluorescent signal was prominent in the otic placode, tip of the limb buds, and chordoneural hinge of the tail, confirmed using

dissected portions of embryos. The bars indicate 500 lm. (G) An E12 embryo, where the signal in the roof of the forebrain, whisker

placodes, mammary glands and apical ectodermal ridge (AER) are clearly visible by external inspection. The bar indicates 1 mm.

Abbreviations: A, anterior; P, posterior; cnh, chordoneural hinge; ep, epiblast; fl, forelimb; hl, hindlimb; ie., inner ear; mg, mammary

gland; op, otic placode; ps, primitive streak; rb, roof of brain; rf, roof of forebrain; sm, somites; tb, tail bud; wp, whisker placodes.
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protein consisting of a fluorescent protein and a his-
tone subunit that will be concentrated in a nucleus
(Kanda et al. 1998; Kurotaki et al. 2007; Ferrer-
Vaquer et al. 2010; Abe et al. 2011; Shioi et al.
2011).

We thus used the following protocol to construct
and insert a Wnt reporter gene into the ROSA26

locus. A heptameric TCF/LEF1 binding sequence
was inserted upstream of herpes simplex virus thymi-
dine kinase (HSVtk) promoter (220 bp) (Uchikawa
et al. 2003) that controls the H2B-EGFP fusion pro-
tein transcription. Transcription is terminated by the
SV40 late polyA signal inserted downstream of the
coding sequence. Tandem polyA signals derived from
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the rabbit b-globin gene were further inserted down-
stream of the gene in the opposite orientation to
inhibit transcriptional read-through from the endoge-
nous ROSA26 promoter (Fig. 1A).

The transgene was inserted into the Gateway cas-
sette (Hohenstein et al. 2008; Abe et al. 2011) to
construct the gene-targeting vector for ROSA26
locus integration with the transgene oriented opposite
to that of the endogenous gene. Using this targeting
vector, homologous recombinant ES cells were
selected by neo-resistance. Wnt reporter mice were
generated by injection of the ES cells carrying R26-
WntVis into 8-cell stage embryos, and the Neo cas-
sette was removed by crossing with the FLP recom-
binase-expressing mouse (Abe et al. 2011).

Wnt reporter activity in embryos at early stages of

development

We investigated the Wnt reporter activity of R26-
WntVis in mouse embryos during stages E6.5–E12.
During these stages, Wnt3 and Wnt3a are the major
Wnt proteins expressed and involved in the canonical
pathway. Wnt3 expression begins in the epiblast
before gastrulation, and its expression increases on the
posterior side of embryos where gastrulation initiates
(Liu et al. 1999). Wnt3 expression then becomes
confined to the posterior epiblast and its adjacent vis-
ceral endoderm. After the initiation of gastrulation,
Wnt3a begins to be expressed in the posterior epiblast
(Takada et al. 1994). At the early head-fold stage
(E7.25), Wnt3a continues to be expressed in the
primitive streak region, whereas Wnt3 expression
ceases. In the early somite stage (E8.5), Wnt3a is
strongly expressed in the region of epiblast abutting
the primitive streak and very weakly in the nascent
mesoderm (Takemoto et al. 2011).

Strong R26-WntVis activity was detected in the
epiblast of pregastrulation embryos (Fig. 1B). After
initiation of gastrulation, the reporter activity became
high in the posterior epiblast and adjacent visceral
endoderm as shown in an E7.5 embryo (Fig. 1C),
consistent with the endogenous Wnt expression pat-
terns described above.

At E8.5, the Wnt reporter activity became promi-
nent in the primitive streak and surrounding tissues at
the posterior end of embryos (Fig. 1D) that included
the notochord and epiblast abutting the primitive
streak, the latter serving as neuro-mesodermal bipoten-
tial precursor called axial stem cells (Kondoh & Take-
moto 2012). At E9.5, strong Wnt reporter activity in
the growing posterior end of the trunk continued

(Fig. 1E). In addition, the reporter activity was clearly
visible in the somites, limb buds, dorsal aspect of the
otic vesicle and the dorsal midline of the brain. The
emergence of Wnt activity in this region of the brain
corresponds to the expression of Wnt1 and Wnt3a
(Parr et al. 1993). At E10.5, the Wnt reporter activity
in the posterior end of the trunk significantly decreased
with strong activity remaining only in the chordoneu-
ral hinge region (Fig. 1F). Strong Wnt reporter activity
was observed in the otic placodes and apical ectodermal
ridge (AER) of the limb buds. At E12, strong Wnt
reporter activity was additionally observed in the
developing mammary glands and whisker hair placodes
(Fig. 1G). Analysis of individual cells in histological
sections of E12 embryos through the hindlimb AER
and rudimentary mammary gland showed strict local-
ization of cell populations with signal input, indicating
that Wnt signaling is short-ranged in these tissues.

Comparison to previously published Wnt

reporters

Wnt signal detection during stages E11–E12 is com-
pared between R26-WntVis and representative Wnt
signal reporters (DasGupta & Fuchs 1999; Lustig et al.
2002; Maretto et al. 2003; Ferrer-Vaquer et al. 2010)
in Table S1 (Supporting Information). All major tis-
sues showing Wnt signaling in whole-mount speci-
mens via other reporters were also positive using the
R26-WntVis reporter. Positive tissues included the
roof of the telencephalon, whisker placodes, inner
ear, somites, limb AER, rudimentary mammary
glands and tail tip. The fluorescent signals from the
R26-WntVis reporter had no background, showing
no indication of Wnt-independent responses. These
features were also observed for the TCF/Lef:H2B-
GFP reporter (Ferrer-Vaquer et al. 2010). However,
response to Wnt signal levels are significantly differ-
ent between R26-WntVis and TCF/Lef:H2B-GFP
reporters, as will be discussed below.

Wnt reporter activity in Wnt3a-null mutants

during early gastrulation stages

To test the analytical power of the R26-WntVis
reporter, we introduced the reporter into Wnt3a
homozygous mutant (Wnt3a�/�) embryos and ana-
lyzed the reporter signals in comparison with wild-
type embryos.

At the early head-fold stage (Downs & Davies
1993), the R26-WntVis reporter signal was already
down-regulated in Wnt3a�/� embryos. However, the
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distribution of the reporter activity was similar to that
of Wnt3a+/+ embryos, with the activity detected in
the epiblast and some visceral enododermal cells and
stronger signals toward the posterior side of the
embryos (Fig. 2A). At the late head-fold stage, the
R26-WntVis reporter activity in Wnt3a�/� embryos
was decreased further (Fig. 2B), indicating that the
major Wnt activity switches from Wnt3 to Wnt3a
during the head-fold stages. Indeed, at the 2- to 3-
somite stage, the Wnt reporter activity was strong in
tissues and areas surrounding the primitive streak in

Wnt3a+/+ embryos but negligible in Wnt3a�/�

embryos (Fig. 2C).
These observations indicated that the H2B-EGFP

fusion protein derived from the R26-WntVis trans-
gene is lost from the nucleus fairly quickly after
the Wnt signaling is turned off, although normal
(untagged) histones are considered to be long-lived.
Thus, the WntVis reporter is suitable not only for
the analysis of spatial distribution of signal strength,
but also for the analysis of temporal changes in
Wnt signaling.

EHF

LHF

2-3 s

R26-WntVis Bright field
Wnt3a+/+

Bright field
Wnt3a—/—

R26-WntVis
(A)

(B)

(C)

(D)

7-8 s

Figure 2 R26-WntVis reporter signals in Wnt3a+/+ and Wnt3a�/� embryos. (A–C) Embryos at the early head-fold (EHF) (A),

late head-fold (LHF) (B) and 2- to 3-somite (2–3 s) stages (C). Stacked EGFP fluorescence images using a confocal microscope of

the embryos are presented in comparison with the bright-field images on the right. The bars indicate 100 lm. (D) E8.5 (7- to

8-somite stage) embryos showing fluorescent signal of R26-WntVis, which is grossly absent in Wnt3a�/� embryos (right). The bar

indicates 200 lm.
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Wnt3a�/� embryos fail to develop paraxial meso-
derm approximately posterior to somite 8, because
the maintenance of axial stem cells in the posterior
trunk depends on Wnt signal input (Garriock et al.
2015) and the paraxial mesoderm precursors that have
ingressed through the primitive streak develop as
ectopic neural tissue (Takada et al. 1994; Yoshikawa
et al. 1997). We investigated the distribution of cellu-
lar Wnt signal inputs at the 7- to 8-somite stage using
R26-WntVis transgenic embryos (Fig. 2D). In the
whole-mount view, Wnt3a+/+ embryos displayed
strong Wnt signaling in tissues proximal to the primi-
tive streak (Fig. 2D). In contrast, Wnt3a�/� embryos
overtly lacked these signals, including the primitive
streak-proximal tissues (Fig. 2D), confirming that
Wnt3a is the major Wnt ligand of canonical pathway
during these stages.

Differential Wnt signal inputs at E8.5 (7- to 8-

somite stage) comparing Wnt3a+/+ and Wnt3avt/�

embryos

We investigated the responses of R26-WntVis trans-
gene in embryos with altered Wnt signal levels.
Wnt3a+/� heterozygous embryos were found to
express a Wnt3a transcript level indistinguishable from
Wnt3a+/+ wild-type embryos, as assessed by in situ
hybridization (data not shown), suggesting a regula-
tory feedback mechanism to sustain the Wnt3a
expression level. However, the Wnt3a transcript level
was reduced in Wnt3avt/� heterozygous embryos
with a hypomorphic vestigial tail (vt) allele (Greco
et al. 1996) compared with sibling Wnt3a+/+ embryos
(Fig. 3A). The R26-WntVis signal in the region
abutting the primitive streak was also reduced in
Wnt3avt/� embryos (Fig. 3B).

R26-WntVis signals in individual cells were exam-
ined using a series of cross-sections at axial levels pos-
terior to the node (Fig. 3C). In Wnt3a+/+ embryos,
the epiblast abutting the primitive streak showed a
stronger R26-WntVis signal in their nuclei than cells
in the primitive streak or paraxial mesoderm. Similar
tissue-dependent differences in R26-WntVis signals
were also observed in Wnt3avt/� embryos, although
overall signal intensities were reduced as compared to
Wnt3a+/+ embryos.

To validate the differences in R26-WntVis
responses among tissues and between genotypes, we
measured relative fluorescence intensities of 40 ran-
domly selected nuclei in each of the epiblast (E),
primitive streak (P) and mesoderm (M) tissues
(Fig. S2 in Supporting Information). The results

shown in Fig. 3D indicate considerable variations in
Wnt signal levels within a tissue, which was also evi-
dent by visual inspection, but the differences in aver-
age R26-WntVis signal levels between tissues was
evident (Fig. 3E). Analysis of genotype dependence
of R26-WntVis signal intensity in individual tissues
indicated interesting differences. Although the R26-
WntVis signal intensities in the epiblast and paraxial
mesoderm were significantly reduced in Wnt3avt/�

embryos, they were not significantly affected in the
primitive streak. This raises the interesting possibility
that cells in the primitive streak regulate intracellular
signaling to sustain a level, which compensates for
the reduction in external Wnt signals.

Finally, we should mention the difference in the
response to Wnt signal intensities between the R26-
WntVis and the previously published TCF/Lef:H2B-
GFP reporters (Ferrer-Vaquer et al. 2010), which
have analogous TCF/Lef1 site multimers but bear
different promoters, HSVtk for the graded response
and hsp68 for the less graded response, respectively.
We examined an online version of a figure panel
(Fig. 7A5) of Ferrer-Vaquer et al. (2010) as an exam-
ple of the TCF/Lef:H2B-GFP response, in compar-
ison with a stage- and position-matched node-level
cross-section of an E8.5 R26-WntVis embryo,
assuming published online data maintains the original
linearity between fluorescence intensity and its pho-
torecording. In these sections, the ventral node dis-
played a higher Wnt response than the epiblast and
paraxial mesoderm. Relative signal intensities in the
nuclei of these tissues were investigated (Fig. S3 in
Supporting Information). The R26-WntVis reporter
responded to Wnt signals with large tissue-dependent
variations, whereas the TCF/Lef:H2B-GFP response
was within a narrow range. It was also noted that
TCF/Lef:H2B-GFP produces a high reporter signal
with a low level of signal inputs indicated by R26-
WntVis data. However, this occurs at the expense of
a graded response to Wnt signal strengths. Which
type of reporter suits will depend on the aim of
investigation.

Experimental procedures

Production of the R26-WntVis reporter mouse

line

Heptameric TCF/LEF1 binding sequence, human histone

H2B cDNA sequence and reversely oriented two copies of

the rabbit b-globin polyA addition sequence were inserted

into the SmaI, AgeI and SalI sites, respectively, of ptkEGFP
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Figure 3 Comparison of R26-WntVis signal between Wnt3a+/+ and Wnt3avt/� embryos. A. Comparison of Wnt3a in situ

hybridization signals between sibling Wnt3a+/+ and Wnt3avt/� embryos at E8.5 showing reduced Wnt3a expression in the latter.

The bar indicates 200 lm. B. Comparison of R26-WntVis signal between sibling Wnt3a+/+ and Wnt3avt/� embryos at E8.5.

Bright-field images on the left and EGFP fluorescence on the right were compared. Solid white arrowheads indicate the node

position, whereas open arrowheads indicate the epiblast area abutting the primitive streak where a decrease in the R26-WntVis

signal in the Wnt3avt/� embryo is appreciable. The bar indicates 200 lm. C. R26-WntVis signals in serial cryosections at levels

posterior to the node of Wnt3a+/+ and Wnt3avt/� embryos shown in B. The bar indicates 100 lm. Regardless of the genotype,

the signals observed in the epiblast (E) were generally higher than those in the primitive streak (PS) or paraxial mesoderm (M).

Moreover, a general reduction in R26-WntVis fluorescence signals was noted for Wnt3avt/� embryos. To quantitate the differ-

ences in the R26-WntVis signals, 40 nuclei were randomly chosen from these sections for each of the three tissues in each geno-

type, and fluorescence intensities in individual nuclei were quantified using Image J (Schneider et al. 2012). The actual nuclei

chosen for the analysis are indicated in Fig. S2. D. Histograms of the distribution of fluorescence intensities derived from the anal-

ysis of the sections shown in C. The data are normalized to the mean of signals in the epiblast nuclei of Wnt3a+/+ embryos, as

indicated by broken vertical lines. It is evident that the fluorescence in the nuclei in the epiblast and paraxial mesoderm was

reduced in Wnt3avt/� embryos to approximately two-thirds of the level of Wnt3a+/+ embryos. However, the fluorescence in the

primitive streak was not significantly affected. E. Statistics that validate the above conclusions. Mean � standard deviations, one-

way ANOVA scores to compare tissues from individual genotypes, and two-tailed t-test scores comparing tissues between two

genotypes are shown.
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(Uchikawa et al. 2003) to produce pWntVis (Fig. S1 in Sup-

porting Information). To generate target vector, the blunt-

ended KpnI and SpeI fragment of pWntVis was inserted into

the XmnI site of pENTR2B (pENTR2B-WntVis). Separately,

Neo cassette (neomycin-resistant gene with Pgk1 promoter and

polyA signal sequence) flanked by FRT was inserted into

pMC1-DT-A-ROSA26 (Abe et al. 2011), then the WntVis

sequence was inserted using the Gateway system (Abe et al.

2011). This targeting vector was electroporated into HK3i ES

cells (Kiyonari et al. 2010), and G418-resistant colonies were

screened by PCR using primers 50-TTGGGCTAGCACG
CGTAAGAGCTCG-30 (forward) and 50-TTGACTCCTAG
ACTTGTGACCCAGC-30 (reverse) to detect homologous

recombinants (3.4 kb), and the candidates were further tested

by Southern hybridization. The homologous recombinant ES

cells were injected into 8-cell stage ICR embryos to generate

germ-line chimeras, which were then crossed with Tg

(ACTFLPe)9205Dym/J mice to remove the Neo cassette,

establishing the R26-WntVis reporter line. Embryos were

genotyped using yolk sac DNAs by PCR using primers shown

in Table S2 (Supporting Information). Wnt3avt allele was

genotyped using unpublished primer information provided by

Chikara Meno. All experiments using animals were carried

out in Osaka University, Tokushima University, and RIKEN

Center for Life Science Technologies, in accordance with

guidelines of respective institutions.

Immunohistology and microscopy

Embryos were fixed for 5 h with 4% paraformaldehyde in

PBS, passed through 15% and 25% sucrose in PBS, and embed-

ded in OCT compound (Sakura Finetek), and made into

cryosections with thickness of 7 lm. EGFP fluorescence

images were taken using an M205FA microscope (Leica) with

DP73 CCD camera (Olympus), or FV1200 confocal micro-

scope (Olympus), and fluorescent intensities of individual

nuclei were measured using Image J (Schneider et al. 2012).

Acknowledgements

We thank C. Meno of Kyusu University for provision of

information concerning vt mutant allele genotyping. This

study was supported by Grants-in-Aid for Scientific Research

24116707 and 24687029 to TT, and 22247035 and 26251024

to HK from MEXT Japan, Mitsubishi Foundation Grant to

TT, and National Institute for Basic Biology Collaborative

Research Grant.

References

Abe, T., Kiyonari, H., Shioi, G., Inoue, K., Nakao, K.,

Aizawa, S. & Fujimori, T. (2011) Establishment of condi-

tional reporter mouse lines at ROSA26 locus for live cell

imaging. Genesis 49, 579–590.
Al Alam, D., Green, M., Tabatabai Irani, R., Parsa, S., Dano-

poulos, S., Sala, F.G., Branch, J., El Agha, E., Tiozzo, C.,

Voswinckel, R., Jesudason, E.C., Warburton, D. & Bel-

lusci, S. (2011) Contrasting expression of canonical Wnt sig-

naling reporters TOPGAL, BATGAL and Axin2(LacZ)

during murine lung development and repair. PLoS One 6,

e23139.

DasGupta, R. & Fuchs, E. (1999) Multiple roles for activated

LEF/TCF transcription complexes during hair follicle devel-

opment and differentiation. Development 126, 4557–4568.
Downs, K.M. & Davies, T. (1993) Staging of gastrulating

mouse embryos by morphological landmarks in the dissect-

ing microscope. Development 118, 1255–1266.
Ferrer-Vaquer, A., Piliszek, A., Tian, G., Aho, R.J., Dufort,

D. & Hadjantonakis, A.K. (2010) A sensitive and bright sin-

gle-cell resolution live imaging reporter of Wnt/ss-catenin

signaling in the mouse. BMC Dev. Biol. 10, 121.

Garriock, R.J., Chalamalasetty, R.B., Kennedy, M.W.,

Canizales, L.C., Lewandoski, M. & Yamaguchi, T.P. (2015)

Lineage tracing of neuromesodermal progenitors reveals

novel Wnt-dependent roles in trunk progenitor cell mainte-

nance and differentiation. Development 142, 1628–1638.
Greco, T.L., Takada, S., Newhouse, M.M., McMahon, J.A.,

McMahon, A.P. & Camper, S.A. (1996) Analysis of the vesti-

gial tail mutation demonstrates that Wnt-3a gene dosage reg-

ulates mouse axial development. Genes Dev. 10, 313–324.
Hohenstein, P., Slight, J., Ozdemir, D.D., Burn, S.F., Berry,

R. & Hastie, N.D. (2008) High-efficiency Rosa26 knock-

in vector construction for Cre-regulated overexpression and

RNAi. Pathogenetics 1, 3.

Kanda, T., Sullivan, K.F. & Wahl, G.M. (1998) Histone-GFP

fusion protein enables sensitive analysis of chromosome

dynamics in living mammalian cells. Curr. Biol. 8, 377–385.
Kisseberth, W.C., Brettingen, N.T., Lohse, J.K. & Sandgren,

E.P. (1999) Ubiquitous expression of marker transgenes in

mice and rats. Dev. Biol. 214, 128–138.
Kiyonari, H., Kaneko, M., Abe, S. & Aizawa, S. (2010) Three

inhibitors of FGF receptor, ERK, and GSK3 establishes

germline-competent embryonic stem cells of C57BL/6N

mouse strain with high efficiency and stability. Genesis 48,

317–327.
Kondoh, H. & Takemoto, T. (2012) Axial stem cells deriving

both posterior neural and mesodermal tissues during gastru-

lation. Curr. Opin. Genet. Dev. 22, 374–380.
Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de

Weger, R., Kinzler, K.W., Vogelstein, B. & Clevers, H.

(1997) Constitutive transcriptional activation by a beta-cate-

nin-Tcf complex in APC-/- colon carcinoma. Science 275,

1784–1787.
Kurotaki, Y., Hatta, K., Nakao, K., Nabeshima, Y. & Fujimori,

T. (2007) Blastocyst axis is specified independently of early cell

lineage but aligns with the ZP shape. Science 316, 719–723.
Lien, W.H. & Fuchs, E. (2014) Wnt some lose some: tran-

scriptional governance of stem cells by Wnt/beta-catenin

signaling. Genes Dev. 28, 1517–1532.
Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer,

R.R. & Bradley, A. (1999) Requirement for Wnt3 in ver-

tebrate axis formation. Nat. Genet. 22, 361–365.

Genes to Cells (2016) 21, 661–669 © 2016 The Authors.

Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd

T Takemoto et al.

668



Lustig, B., Jerchow, B., Sachs, M., Weiler, S., Pietsch, T.,

Karsten, U., van de Wetering, M., Clevers, H., Schlag,

P.M., Birchmeier, W. & Behrens, J. (2002) Negative feed-

back loop of Wnt signaling through upregulation of con-

ductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol.

22, 1184–1193.
Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broc-

coli, V., Hassan, A.B., Volpin, D., Bressan, G.M. & Pic-

colo, S. (2003) Mapping Wnt/beta-catenin signaling during

mouse development and in colorectal tumors. Proc. Natl

Acad. Sci. USA 100, 3299–3304.
Mohamed, O.A., Clarke, H.J. & Dufort, D. (2004) Beta-

catenin signaling marks the prospective site of primitive

streak formation in the mouse embryo. Dev. Dyn. 231,

416–424.
Moriyama, A., Kii, I., Sunabori, T., Kurihara, S., Takayama,

I., Shimazaki, M., Tanabe, H., Oginuma, M., Fukayama,

M., Matsuzaki, Y., Saga, Y. & Kudo, A. (2007) GFP trans-

genic mice reveal active canonical Wnt signal in neonatal

brain and in adult liver and spleen. Genesis 45, 90–100.
Nyabi, O., Naessens, M., Haigh, K., et al. (2009) Efficient

mouse transgenesis using Gateway-compatible ROSA26

locus targeting vectors and F1 hybrid ES cells. Nucleic Acids

Res. 37, e55.

Parr, B.A., Shea, M.J., Vassileva, G. & McMahon, A.P.

(1993) Mouse Wnt genes exhibit discrete domains of

expression in the early embryonic CNS and limb buds.

Development 119, 247–261.
Rossant, J., Zirngibl, R., Cado, D., Shago, M. & Giguere, V.

(1991) Expression of a retinoic acid response element-

hsplacZ transgene defines specific domains of transcriptional

activity during mouse embryogenesis. Genes Dev. 5, 1333–
1344.

Sasaki, H. & Hogan, B.L. (1996) Enhancer analysis of the

mouse HNF-3 beta gene: regulatory elements for node/no-

tochord and floor plate are independent and consist of mul-

tiple sub-elements. Genes Cells 1, 59–72.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH

Image to ImageJ: 25 years of image analysis. Nat. Methods 9,

671–675.
Shioi, G., Kiyonari, H., Abe, T., Nakao, K., Fujimori, T.,

Jang, C.W., Huang, C.C., Akiyama, H., Behringer, R.R.

& Aizawa, S. (2011) A mouse reporter line to conditionally

mark nuclei and cell membranes for in vivo live-imaging.

Genesis 49, 570–578.
Soriano, P. (1999) Generalized lacZ expression with the

ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71.
Strathdee, D., Ibbotson, H. & Grant, S.G. (2006) Expression

of transgenes targeted to the Gt(ROSA)26Sor locus is

orientation dependent. PLoS One 1, e4.

Takada, S., Stark, K.L., Shea, M.J., Vassileva, G., McMahon,

J.A. & McMahon, A.P. (1994) Wnt-3a regulates somite and

tailbud formation in the mouse embryo. Genes Dev. 8, 174–
189.

Takemoto, T., Uchikawa, M., Kamachi, Y. & Kondoh, H.

(2006) Convergence of Wnt and FGF signals in the genesis

of posterior neural plate through activation of the Sox2

enhancer N-1. Development 133, 297–306.
Takemoto, T., Uchikawa, M., Yoshida, M., Bell, D.M.,

Lovell-Badge, R., Papaioannou, V.E. & Kondoh, H. (2011)

Tbx6-dependent Sox2 regulation determines neural or

mesodermal fate in axial stem cells. Nature 470, 394–398.
Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. &

Kondoh, H. (2003) Functional analysis of chicken Sox2

enhancers highlights an array of diverse regulatory elements

that are conserved in mammals. Dev. Cell 4, 509–519.
Yoshikawa, Y., Fujimori, T., McMahon, A.P. & Takada, S.

(1997) Evidence that absence of Wnt-3a signaling promotes

neuralization instead of paraxial mesoderm development in

the mouse. Dev. Biol. 183, 234–242.
Zambrowicz, B.P., Imamoto, A., Fiering, S., Herzenberg,

L.A., Kerr, W.G. & Soriano, P. (1997) Disruption of over-

lapping transcripts in the ROSA beta geo 26 gene trap

strain leads to widespread expression of beta-galactosidase in

mouse embryos and hematopoietic cells. Proc. Natl Acad.

Sci. USA 94, 3789–3794.

Received: 10 December 2015

Accepted: 29 February 2016

Supporting Information

Additional Supporting Information may be found online in

the supporting information tab for this article:

Figure S1 The nucleotide sequence and genetic elements of

pWntVis.

Figure S2 Nuclei in the sections shown in Fig. 3C, which

were encircled and measured for fluorescence intensities.

Figure S3 Comparison of the response of R26-WntVis and

TCF/Lef:H2B-GFP to endogenous Wnt signaling in Wnt3a+/

+ embryos using on-line published data (Ferrer-Vaquer et al.

2010).

Table S1 Comparison of various Wnt reporter mouse lines

Table S2 Primer sequences for PCR used for determination

of embryo genotypes
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