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Abstract 

Effective delivery of extraneous molecules into the cytoplasm of the target cells is 

important for several drug therapies. Previously, we showed effective in vivo transdermal 

delivery of naked siRNA into skin cells induced by faint electric treatment (ET) iontophoresis, 

and significant suppression of target mRNA levels (Kigasawa et al., Int. J. Pharm., 2010). This 

result indicates that electricity promoted the delivery of siRNA into cytoplasm. In the present 

study, we analyzed the intracellular delivery of naked anti-luciferase siRNA by faint ET, and 

found that the luciferase activity of cells expressing luciferase was reduced by in vitro ET like in 

vivo iontophoresis. Cellular uptake of fluorescent-label siRNA was increased by ET, while low 

temperature exposure, macropinocytosis inhibitor amiloride and caveolae-mediated endocytosis 

inhibitor filipin significantly prevented siRNA uptake. These results indicate that the cellular 

uptake mechanism involved endocytosis. In addition, voltage sensitive fluorescent dye DiBAC4 

(3) penetration was increased by ET, and the transient receptor potential channel inhibitor 

SKF96365 reduced siRNA uptake, suggesting that faint ET reduced membrane potentials by 

changing intracellular ion levels. Moreover, to analyze cytoplasmic delivery, we used in-stem 

molecular beacon (ISMB), which fluoresces upon binding to target mRNA in the cytoplasm. 

Surprisingly, cytoplasmic ISMB fluorescence appeared rapidly and homogeneously after ET, 

indicating that cytoplasmic delivery is markedly enhanced by ET. In conclusion, we 

demonstrated for the first time that faint ET can enhance cellular uptake and cytoplasmic 

delivery of extraneous molecules. 
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1. Introduction 

Over the last decade, the delivery of extraneous hydrophilic molecules across the plasma 

membrane has been a subject of intense study. For effective therapies, small chemical molecules 

or large biological medicines, such as functional nucleic acids, must be delivered into the 

cytoplasm or nucleus of target cells. The lipophilic plasma membrane presents a dynamic barrier 

that restricts entry of extraneous hydrophilic or charged molecules into cells, while inefficient 

endosomal escape is another obstacle to effective delivery of macromolecular medicines [1, 2]. 

To overcome these cellular barriers, various strategies, including development of nanocarriers, 

cell penetrating peptides, and physical methods such as electroporation, have been studied [3, 4]. 

However, given the fundamental challenges of intracellular delivery, the versatile application of 

these systems remains unsatisfactory due to issues with delivery efficiency and toxicity of the 

carrier [5, 6]. Therefore, safer and more effective methods to deliver extraneous hydrophilic 

molecules into cells are needed. 

Iontophoresis has recently attracted the attention of researchers studying drug delivery 

systems. Iontophoresis is the promising non-invasive transdermal drug delivery technology [7-9]. 

Iontophoresis facilitates transdermal delivery of water soluble and ionized molecules by 

application of small electrical current (0.5 mA/cm2 or less) with electrodes on the skin surface. 

Thus, electric treatment of the skin provides the driving force for transdermal delivery of drug 

molecules. Previously, we demonstrated non-invasive in vivo transdermal delivery of naked 

siRNA induced by iontophoresis that significantly suppressed levels of target mRNA [10]. This 

result indicates that hydrophilic siRNA molecules could be delivered non-invasively into the 

cytoplasm of skin cells by faint electric treatment (ET) without the need for any modification of 

the siRNA to promote effective cellular association and endosomal escape. A mechanistic 
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analysis of the transdermal penetration of this macromolecule revealed that ET induced the 

dissociation of intracellular junctions via activation of cell signaling pathways mediated by 

protein kinase C (PKC) [11]. However the mechanism of cellular uptake and cytoplasmic 

delivery of siRNA and other hydrophilic molecules are still unclear. Here we explored whether 

faint ET could enhance cellular uptake and cytoplasmic delivery of extraneous hydrophilic 

molecules by affecting cellular physiology. 

We examined the effect of faint ET in the presence of siRNA targeting luciferase in cells 

stably expressing luciferase. Uptake mechanisms were analyzed by assessing the effect of low 

temperature and endocytosis inhibitors such as the clathrin-mediated endocytosis inhibitor 

hypertonic sucrose [12], the caveolae-mediated endocytosis inhibitor filipin [13], and the 

macropinocytosis inhibitor amiloride [14], on the cellular uptake of fluorescent labeled-siRNA. 

In addition, the effect of ET on membrane potential and the effect of a transient receptor 

potential (TRP) channel inhibitor on fluorescent labeled-siRNA uptake were also examined. We 

also analyzed the cytoplasmic delivery using a functional oligonucleotide in-stem molecular 

beacon (ISMB), which fluoresces upon specific binding with target mRNA in the cytoplasm [15]. 

The present study offers ET as an effective and safe technology for cytoplasmic delivery of 

functional hydrophilic molecules and describes its mechanism. 
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2. Materials and Methods 

2.1 Materials 

In-stem molecular beacon (ISMB) against luciferase (5'-

C(Cy3:YD)TGG(YD)GTTGGCACCAGCAGCGCAC(Nitromethylred:Nm)(Nm)CCA(Nm)(Nm)G -

3': ISMB-Luc) and ISMB against GFP (5'-

G(YD)GTT(YD)GAAGAAGATGGTGCGCTCTC(Nm)(Nm)AAC(Nm)(Nm)C-3': ISMB-GFP) 

were synthesized by Tsukuba Oligo Service, Inc. (Tsukuba, Japan). Calcein, amiloride 

hydrochloride hydrate and filipin were purchased from Sigma-Aldrich, Inc. (St. Louis, MO, 

USA). SKF 96356 and sucrose were from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). 

DiBAC4(3)  was obtained from Dojindo Molecular Technologies, Inc. (Rockville, MD, USA). 

Lipofectamine 2000, anti-luciferase siRNA (21-mer, 5’-GCGCUGCUGGUGCCAACCCTT-3’, 

5’-GGGUUGGCACCAGCAGCGCTT-3’: anti-Luc) and anti-GFP siRNA (21-mer, 5’-

GCUGACCCUGAAGUUCAUCTT-3’, 5’-GAUGAACUUCAGGGUCAGCTT-3’: anti-GFP) were 

obtained from Invitrogen Life Technologies (Carlsbad, CA, U.S.A). Cell lysis buffer was 

purchased from Promega Corporation (Madison WI, USA). The mouse melanoma cell line B16-

F1 was obtained from Dainippon Sumitomo Pharma Biomedical Co, Ltd. (Osaka, Japan), and 

stable transformants of B16-F1 cells expressing luciferase (B16-F1-Luc) were established in our 

laboratory [16]. These cells were cultivated in DMEM supplemented with 10% FBS at 37 oC in 

5% CO2.  

 

2.2 Electric treatment of the cells 

For in vitro ET, cells were cultivated in 35 mm dishes. The number of cells used is 

mentioned in each section below. After 18 hr of cultivation, cells were washed with PBS, and 
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then 1 ml serum free DMEM containing 0.5 μg ISMB-Luc, 25 μM calcein, 100 pmol anti-Luc 

siRNA or anti-GFP siRNA was added to the cells. Ag-AgCl electrodes with 2.5 cm2 surface area 

(3M Health Care, Minneapolis, MN, USA) were placed into the dish, and cells were treated with 

a constant current of 0.34 mA/cm2 for 15 min. 

 

2.3 Transfection and measurement of luciferase activity 

B16-F1-Luc cells were cultivated at a density of 1x104 cells in 35 mm culture dishes. 

After 18 hr of incubation, cells were washed with PBS, and 1 ml serum free DMEM containing 

100 pmol anti-luc siRNA was added before the cells were treated with electricity as described 

above. After 3 hr of ET, 1 ml DMEM containing 10% FBS was added, and the cells were further 

incubated for 45 hr. After the incubation, the cells were lysed with Reporter Lysis Buffer 

(Promega) according to the manufacturer’s protocols. The luciferase assay substrate (Promega) 

was added to cell lysates, and chemiluminescence intensity was measured by a luminometer 

(Luminescensor-PSN, ATTO). The total protein concentration was measured with BCA protein 

assay kit (Thermo Scientific). 

 

2.4 Cytotoxicity assay of ET treated cells 

For determination of cytotoxicity, 4x105 B16-F1-Luc cells were cultivated in 35 mm 

culture dishes. After 18 hr of cultivation, cells were washed by PBS and added 1ml of serum free 

DMEM medium followed by ET for 15 min. Since the cytotoxicity by electricity-based delivery 

system, such as electroporation, had been observed at immediately after the treatment [17], we 

evaluated the cell viability at immediately after ET in this study. Immediate after ET, cells were 

collected from the dish by trypsin treatment, and taken 10 μl of cell suspension into a micro tube. 

An equal volume (10 μl) of 0.4% trypan blue solution (Wako Pure Chemical Industries, Ltd. 



7 
 

Osaka, Japan) was added to the cell suspension, and the mixture was incubated for 2 min. Then, 

the numbers of stained and non-stained cells were counted. The percentage of viability was 

calculated by the formula (100 x number of non-stained cells/ total number of cells). 

 

2.5 Treatment with low temperature or pharmacological inhibitors and measurement of 

fluorescence intensity 

For mechanistic studies, B16-F1 cells were seeded at a density of 1x105 cells in 35 mm 

culture dishes. After 18 h of cultivation, cells were washed with PBS. For low temperature 

experiments, 1 ml serum free DMEM containing 100 pmol rhodamine-labeled siRNA was added 

into the dish, and ET was then performed on ice. For pharmacological inhibitor experiments, 1 

ml serum free DMEM containing either 0.45 M sucrose, 1 mM amiloride, 0.5 μg filipin, or 25 

μM SKF96365 was added into the dish, and the dish was incubated for 15 min. After the 

incubation, rhodamine labeled siRNA (100 pmol) was added to the dish, and the cells were 

treated with electricity as described above. After the ET, the cells were incubated for 1 hr at 

37 °C. The cells were then lysed with reporter lysis buffer (Promega) according to the 

manufacturer’s protocols. Fluorescence intensity of the cell lysates was measured with a 

microplate reader Infinite 200 (Tecan Group Ltd., Männedorf, Switzerland )  at excitation and 

emission wavelengths of 546 nm and 576 nm, respectively. 

 

2.6 Membrane potential measurement 

To measure membrane potential, 5x104 cells were seeded in 35 mm culture dishes. After 

18 hr, cells were washed with PBS, and 2 ml DMEM containing 5 μM DiBAC4(3) dye was 

added before the cells were incubated for 30 min at room temperature. After incubation the cells 
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were treated with electricity for 15 min. ET was performed on ice in case of low temperature 

exposure. Then the cells were washed with PBS. The cells were lysed with reporter lysis buffer 

(Promega) according to the manufacturer’s protocols. Fluorescence intensity of the cell lysate 

was measured using the microplate reader. 

 

2.7 Confocal laser scanning microscopic observation of the cells after electric treatment 

For evaluation of intracellular delivery of ISMB-Luc, 5x104 cells were seeded on 0.002% 

poly-L-lysine coated 35 mm glass bottom dishes. After 18 hr, cells were washed with PBS and 

treated with ET (0.34 mA/cm2 for 15 min). After ET, the cells were incubated for 1 hr at 37 °C in 

5% CO2. After incubation, the cells were observed with a confocal laser scanning microscope 

A1R+ (Nikon Co. Ltd., Japan). For time-lapse imaging, observation was performed immediately 

after ET.   

 

2.8 Measurement of fluorescent intensity of the cells treated with ISMB 

For the comparison of ET based delivery with LFN based delivery of ISMB, B16-F1 

cells were cultivated at a density of 0.5x105 cells in 35 mm culture dishes. After 18 hr of 

cultivation, cells were washed with PBS. For ET, 800 μl of serum free DMEM containing 0.5 μg 

ISNB-Luc added into the dish. For LFN treatment, 800 μl of serum free DMEM containing 

ISMB-Luc/LFN lipoplex prepared with 0.5 μg ISNB-Luc and 1 μl LFN (according to the 

manufacturer guide line) was added into the dish. The cells were washed with PBS after ET 

(0.34 mA/cm2, 15 min) with ISMB-Luc or addition of LFN/ISMB-Luc lipoplex at various time 

points, and lysed cell with reporter lysis buffer (Promega) according to the manufacturer’s 

protocols. Fluorescence intensity of the cell lysates was measured by a microplate reader Infinite 
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200 (Tecan Group Ltd., Männedorf, Switzerland) at excitation and emission wavelengths of 525 

nm and 580 nm, respectively. 

 

2.9 Statistical analysis  

Statistical analysis was determined using one-way ANOVA followed by Turkey-Kramer HSD 

test. P values <0.05 were considered to be significant.   
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3. Results 

3.1 Effect of in vitro electric treatment on luciferase expression of cells with anti-luciferase 

siRNA 

To evaluate in vitro faint electric treatment (ET) on cellular uptake, the effect of ET with 

anti-luciferase (Luc) siRNA on luciferase activity of B16-F1-Luc cells stably expressing 

luciferase was examined. ET with anti-Luc siRNA significantly suppressed luciferase activity, 

which was similar to our previous report of iontophoresis of anti-interleukin 10 siRNA in vivo 

[10], although the RNAi effect was weaker than that for positive control cells incubated with 

Lipofectamine 2000/anti-Luc siRNA lipoplexes (Fig. 1). No suppression effect was observed for 

cells exposed to anti-GFP siRNA, indicating that the suppression effect was specific for anti-Luc 

siRNA. The cytotoxicity was evaluated immediately after ET. No cytotoxicity was recognized 

even after ET (Supplemental Fig. 1). This result indicates that ET did promote delivery of siRNA 

into the cytoplasm without the need for any modification of siRNA or other functional devices.  

 

Figure 1.  Effect of anti-Luc siRNA on luciferase activity in the presence of 

in vitro electric treatment (ET) 
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Luciferase activity of cells expressing luciferase was measured after 48 hr of 

ET (0.34 mA/cm2, for 15 min) in the presence of naked siRNA solution. 

Lipofectamine 2000/anti-Luc siRNA lipoplex was used as a positive control.  

LFN: lipofectamine 2000, ET: electric treatment. Data are expressed as 

mean±SD.  *p<0.05.  

 

3.2 Effect of low temperature and pharmacological inhibitors on ET-induced cellular uptake of 

siRNA 

 To study the mechanism of ET-mediated intracellular delivery, the effects of low 

temperature (0-4 °C) and endocytosis inhibitors on cellular uptake of rhodamone-labeled siRNA 

were examined. The fluorescence intensity of cellular lysates was significantly increased by ET 

at room temperature (Fig. 2), indicating that cellular uptake of rhodamone-labeled siRNA was  

Figure 2.  Effects of low temperature and endocytosis inhibitors on cellular 

uptake of rhodamine-labeled siRNA 

For low temperature treatment, ET of cells was performed on ice. To 

examine the effect of inhibitors, cells were pre-treated for 15 min with 

inhibitors prior to the exposure to electricity (0.34 mA/cm2, for 15 min) in 

the presence of siRNA solution. After 1 hr of ET, the cells were lysed, and the 

fluorescence intensity of the lysate was measured. Data are expressed as 

mean±SD.  *p<0.05. 
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enhanced by ET. Low temperature (0-4 °C) treatment is commonly used to nonspecifically 

inhibit energy-dependent cellular uptake [18]. Thus, we assessed the effect of low temperature 

on ET-mediated cellular uptake by treating cells with electricity in the presence of rhodamone-

labeled siRNA on ice. As a result, low temperature treatment significantly reduced the 

fluorescence intensity, which implies that cellular uptake of siRNA was inhibited (Fig. 2). This 

result suggests that ET activated biological processes involving energy-dependent pathways.  

 To specify the cellular uptake pathway induced by ET, effects of the macropinocytosis 

inhibitor amiloride, the caveolae-mediated endocytosis inhibitor filipin, and the clathrin-

mediated endocytosis inhibitor hypertonic sucrose on fluorescent-labeled siRNA uptake were 

examined. Clathrin-mediated endocytosis inhibitor hypertonic sucrose slightly inhibited siRNA 

uptake, although the inhibition was not statistical significant. Furthermore, macropinocytosis 

inhibitor amiloride and caveolae-mediated endocytosis inhibitor filipin showed significant 

reduction of fluorescent labeled-siRNA uptake. 

 

3.3 Evaluation of the effect of ET on membrane potential 

Since ET was previously suggested to affect intracellular ion balance [11], ET may also 

promote altered membrane potentials that could enhance the cellular uptake of extraneous 

materials. Thus, to evaluate the effect of ET on membrane potential, cells were treated with 

electricity in the presence of the voltage sensitive fluorescent dye DiBAC4(3) [19, 20]. After ET, 

the fluorescence intensity of cells treated with ET was higher than the control cells (Fig. 3), 

indicating that ET decreased the membrane potential of the cells through a process that may 

involve the influx of cations such as Ca2+. In quantitative measurements of fluorescence intensity, 

intracellular amounts of DiBAC4(3) increased by 13 % (Fig. 3). In order to confirm the 
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possibility of physical penetration of DiBAC4(3), the effect of low temperature on cellular 

staining with DiBAC4(3) dye was examined. As a result, the fluorescent intensity depending on 

DiBAC4(3) dye was almost the same as that of control cells (Fig. 3), indicating that the 

membrane potential was not changed at low temperature even after ET. This result suggested 

 

Figure 3. Evaluation of DiBAC4(3) cellular penetration in the presence of 

faint ET 

Cells were incubated for 30 min with DiBAC4(3) followed by ET (0.34 

mA/cm2) for 15 min. For low temperature exposure, ET was performed on ice. 

After ET, cells were lysed and the fluorescence intensity of the lysate was 

measured. Data are expressed as mean ± SD.  *p<0.05. 
 

that ET-induced activation of cation channels, such as transient receptor potential (TRP) 

channels, could have resulted in the observed alterations in membrane potential. Thus, to analyze 

the role of TRP channels in ET-mediated cellular uptake, the effect of the TRP channel blocker 

SKF96365 [21] on the fluorescence intensity of cells treated with ET in the presence of 

fluorescent-labeled siRNA was examined. ET-mediated cellular uptake of siRNA was 

significantly reduced by SKF96365 (Fig. 4). Nonetheless, this result suggests that activation of 

cation channels, including TRP channels, may have some involvement in ET-mediated cellular 

uptake.  
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Figure 4.  Effect of TRP channel inhibitor SKF96365 on cellular uptake of 

rhodamine-labeled siRNA 

Cells were pre-treated for 15 min with SKF96365 before being treated with 

electricity (0.34 mA/cm2, for 15 min) in the presence of rhodamine-labeled 

siRNA solution. After ET, cells were lysed and the fluorescence intensity of 

the lysate was measured. Data are expressed as mean ± SD.  *p<0.05. 
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As mentioned above, ET could induce cytoplasmic delivery during the uptake of 

extraneous materials. Thus, the materials must overcome membranous barriers, such as plasma 

membrane and endosomal membrane, after ET-mediated cellular uptake. To analyze cytoplasmic 

delivery  processes after ET-mediated cellular uptake, cytoplasmic delivery of in-stem molecular 

beacon (ISMB), which can show potent fluorescence signals upon association with target mRNA 

(here, luciferase, ISMB-Luc), into B16F1-Luc cells was evaluated by confocal laser scanning 

microscopy. One hour after ET, all cells showed potent red fluorescence signals, although no 
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(Fig. 5). On the other hand, no fluorescence signal was seen in the cells after 1 hr ET in the 

presence of ISMB against GFP (ISMB-GFP). These results indicated that ISMB-Luc efficiently  

Figure 5.  Cytoplasmic delivery of in-stem molecular beacon (ISMB) 

induced by faint ET 

Cells were treated with faint electricity (0.34 mA/cm2, 15 min) in the 

presence of ISMB solution. After 1 hr, the cells were observed with a 

confocal laser scanning microscope. Left and middle panel images are cells 

incubated in medium containing ISMB against luciferase mRNA (ISMB-

Luc) with or without ET. The image in the right panel shows cells incubated 

in medium with ISMB against GFP mRNA (ISMB-GFP) in the presence of 

ET. The scale bars indicate 50 μm.  

 

reach to the cytoplasm after ET-mediated cellular uptake and specifically bound with 

target luciferase mRNA in the cytoplasm.  

To evaluate cytoplasmic delivery processes, we next performed time-lapse imaging of 

cells immediately after ET. Surprisingly, ISMB fluorescence signals appeared in the cytoplasm 

immediately after ET, and the fluorescence intensity rapidly increased for 15 min (Supplemental 

Fig. 2). In contrast, no fluorescence signals were observed in cells without ET even after 15 min. 

This result confirmed that endosomal escape of extraneous materials after ET-mediated cellular 

uptake was very rapid and effective. Furthermore, to evaluate the speed of cytoplasmic delivery 

of ET method, fluorescent intensities of the cells treated by electricity in the presence of ISMB-

Luc at various time points were compared with the cells treated by LFN/ISMB-Luc lipoplex. As 

a result, the significant fluorescent intensity was observed in the cells of ET method even at 15 
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min. The fluorescent intensity of ET was over 4 fold higher than that of LFN at 30 min. 

(Supplemental Fig. 3) Furthermore the cells after ET with ISMB-Luc or transfection of 

LFN/ISMB-Luc were observed by confocal laser scanning microscopy. As a result, red 

fluorescent signals were observed in all cells treated with electricity, although heterogeneous 

distribution of red fluorescent signals recognized in the cells after transfection of LFN. 

(Supplemental Fig. 4) 
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4. Discussion 

Cytoplasmic delivery of hydrophilic molecular medicines, such as functional nucleic 

acids, is difficult to achieve due to membranous barriers, including the plasma membrane and 

endosomal membrane [22]. Thus, ineffective delivery is an important concern that must be 

addressed in order to improve drug delivery methods. Recently, we found that in vivo faint 

electric treatment (ET) iontophoresis can deliver functional siRNA into the cytoplasm of skin 

cells [10]. Based on this finding, we hypothesized that faint ET could enhance cellular uptake 

and cytoplasmic delivery of extraneous hydrophilic molecules by affecting cellular physiology.  

In this study, we first confirmed that the significant RNAi effect by faint ET in vitro (Fig. 

1). Although the suppression effect was lower than that of Lipofectamine 2000/siRNA lipoplexes, 

this result indicates that siRNA was delivered into the cytoplasm by electricity and without any 

modification of siRNA to promote effective cellular association and endosomal escape. The 

reduced effect of ET in facilitating RNAi may be due to the amount of siRNA that reached the 

cytoplasm. Although lipoplexes can deliver much higher amounts of siRNA as condensed 

particles into cells, ET induced cellular uptake of a homogenous siRNA solution rather than 

concentrated bodies. Thus, delivery efficiency could be improved with additional studies. 

We next found that the cellular uptake of siRNA was enhanced by ET in the presence of 

fluorescent-labeled siRNA (Fig. 2). The ET-enhanced cellular uptake of labeled siRNA was 

significantly reduced by low temperature treatment (Fig. 2), indicating that ET-mediated cellular 

uptake processes likely involved energy dependent pathways. In order to further characterize the 

uptake process, we used a wide range of endocytosis inhibitors, including the clathrin-mediated 

endocytosis inhibitor hypertonic sucrose [12], the caveolae-mediated endocytosis inhibitor filipin 

[13] and the macropinocytosis inhibitor amiloride [14]. Partial inhibitory effect was induced by 
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hypertonic treatment with sucrose, while significant inhibitory effects were obtained by 

amiloride and filipin treatment (Fig. 2). It was suggested that endocytosis, such as 

macropinocytosis or caveolae-mediated endocytosis, would be involved in ET mediated uptake 

of siRNA.  

The voltage clamping membrane potential was previously shown to vary between -25 

mV and -90 mV for BICR/MIR-k cells, and the fluorescence response of the voltage sensitive 

dye DiBAC4(3) was found to be about 1% per mV [20]. In the present study, we observed that 

ET significantly increased the fluorescence intensity of DiBAC4(3) by 13 % over that of control 

cells (Fig. 3). Thus, this result indicated that ET induced a membrane potential decrease in 

approximately 13 mV. The fluorescent intensity did not increase at low temperature. It was 

suggested that membrane potential change by ET would be due to biological mechanism, not 

physical factors such as membrane leak. Moreover, activation of non-specific cation channels- 

known as TRP channels- is known to alter cellular membrane potentials [23]. Here, cellular 

uptake of fluorescent-labeled siRNA was significantly reduced by the TRP channel blocker 

SKF96365 (Fig. 4), indicating that cationic channels would be involved in ET-mediated cellular 

uptake processes. Together these findings implicate membrane potential changes via activation 

of cationic channels, such as TRP channels, in contributing to ET-mediated cellular uptake of 

extraneous materials. Previously we reported that Ca2+ influx-mediated PKC activation could be 

responsible for iontophoresis-induced opening of intercellular junctions in the skin [11]. 

Therefore, combining the previous in vivo findings and the in vitro findings of the present study, 

faint ET appears to regulate physiology of tissues and cells by promoting cationic ion influx. 

Breakthrough of membranous barriers is also an important step for cargo molecules to be 

delivered to the cytoplasm following cellular uptake [24]. We monitored the cytoplasmic 
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delivery process using ISMB-Luc. The ISMB probe is a hairpin-shaped oligonucleotide that 

contains fluorophores and quenchers. In the absence of target mRNA, the fluorescence emission 

of the probe is quenched by interactions between the fluorophores and quenchers. In the presence 

of target mRNA, the ISMB hairpin structure opens, thus releasing the fluorophore to result in 

fluorescence emission [15]. Interestingly, we observed that all cells showed strong red 

fluorescence after 1 hr of ET with ISMB-Luc (Fig. 5), which supports that ET induced efficient 

cytoplasmic delivery of ISMB-Luc, and that ISMB-Luc could associate with luciferase mRNA in 

the cytoplasm. Surprisingly, fluorescence signals appeared immediately after ET, and the 

intensity of the signal increased rapidly for a short period (Supplemental Fig. 2), indicating that 

cytoplasmic delivery was indeed enhanced by faint electric treatment.  

Although the knockdown effect by siRNA treated with ET was weaker than that with 

LFN, the ET method homogenously and very rapidly delivered functional nucleotide ISMB into 

cytoplasm of all cells (Fig. 5 and Supplemental Figs. 2 and 4). Even 15 min after ET, red 

fluorescent signals were observed in cytoplasm (Supplemental Figs. 2 and 3), indicating that 

ISMB rapidly reached and bind with a target mRNA. Furthermore, from the results of 

comparison of ISMB cytoplasmic delivery between ET method and LFN, it was suggested that 

ISMB was delivered rapidly and homogeneously into cytoplasm by ET method, and the delivery 

speed into cytoplasm of ET method was faster than LFN (Supplemental Figs. 3 and 4). Thus, the 

rapid and homogenous delivery of functional nucleotides into cytoplasm is the advantage of ET, 

although the delivery efficiency should be improved in the future. Since functional nucleic acid 

medicines are easily degraded by degradation enzymes at the extracellular environment and 

inside of endosome, long stay in such situation reduce activity of the medicines. Thus, rapid 

cellular uptake and cytosolic delivery would be useful for effective therapy due to avoiding the 
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decrease in activity of nucleic acids. Furthermore, for effective therapy, medicines should be 

delivered into all target cells. Since heterogeneous delivery is the cause of inefficient RNAi 

effect [25], siRNA should be delivered into all cells for effective regulation of target genes. Thus, 

homogenous delivery would be useful for effective therapy. As mentioned above, the reason for 

lower RNAi effect by ET method than that of LFA would be due to less cellular uptake amount 

of siRNA. Thus, the cooperative effect by combination of ET method with cationic non-viral 

delivery system is expected to improve delivery efficiency of ET method. The accumulation of 

cargo on the cell surface would increase by cationic carriers, and cellular uptake and cytosolic 

delivery would be enhanced by ET method. Thus, we expected that ET method would be 

improved by combination with other delivery methods, such as cationic non-viral delivery 

systems. To our knowledge, this study represents the first report of rapid and effective 

cytoplasmic delivery of extraneous hydrophilic materials induced by faint ET, although the 

underlying mechanism for this rapid delivery into the cytoplasm await further investigation. 

 

5. Conclusion 

In the present study we found that faint electric treatment can enhance cellular uptake and 

rapid cytosolic delivery by inducing energy-dependent pathways along with the activation of 

cationic channels. Thus, faint electric treatment could be useful for effective and safe delivery of 

extraneous hydrophilic molecules, such as siRNA, miRNA and decoy-oligo DNA, into the 

cytoplasm of target cells. 
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Figure legends 

Figure 1.  Effect of anti-Luc siRNA on luciferase activity in the presence of in vitro electric 

treatment (ET) 

Luciferase activity of cells expressing luciferase was measured after 48 hr of ET (0.34 mA/cm2, 

for 15 min) in the presence of naked siRNA solution. Lipofectamine 2000/anti-Luc siRNA 

lipoplex was used as a positive control.  LFN: lipofectamine 2000, ET: electric treatment. Data 

are expressed as mean±SD.  *p<0.05.  

 

Figure 2.  Effects of low temperature and endocytosis inhibitors on cellular uptake of 

rhodamine-labeled siRNA 

For low temperature treatment, ET of cells was performed on ice. To examine the effect of 

inhibitors, cells were pre-treated for 15 min with inhibitors prior to the exposure to electricity 

(0.34 mA/cm2, for 15 min) in the presence of siRNA solution. After 1 hr of ET, the cells were 

lysed, and the fluorescence intensity of the lysate was measured. Data are expressed as mean±SD.  

*p<0.05. 

 

Figure 3.  Evaluation of DiBAC4(3) cellular penetration in the presence of faint ET 

Cells were incubated for 30 min with DiBAC4(3) followed by ET (0.34 mA/ cm2) for 15 min. 

For low temperature exposure, ET was performed on ice. After ET, cells were lysed and the 

fluorescence intensity of the lysate was measured. Data are expressed as mean ± SD.  *p<0.05. 

 

Figure 4.  Effect of TRP channel inhibitor SKF96365 on cellular uptake of rhodamine-labeled 

siRNA 
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Cells were pre-treated for 15 min with SKF96365 before being treated with electricity (0.34 

mA/cm2, for 15 min) in the presence of rhodamine-labeled siRNA solution. After ET, cells were 

lysed and the fluorescence intensity of the lysate was measured. Data are expressed as mean ± 

SD.  *p<0.05. 

 

Figure 5.  Cytoplasmic delivery of in-stem molecular beacon (ISMB) induced by faint ET 

Cells were treated with faint electricity (0.34 mA/cm2, 15 min) in the presence of ISMB solution. 

After 1 hr, the cells were observed with a confocal laser scanning microscope. Left and middle 

panel images are cells incubated in medium containing ISMB against luciferase mRNA (ISMB-

Luc) with or without ET. The image in the right panel shows cells incubated in medium with 

ISMB against GFP mRNA (ISMB-GFP) in the presence of ET. The scale bars indicate 50 μm.  
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