
A Study on Music Similarity Analysis and
Repeating Pattern Detection Based on

Audio Fingerprinting

Chen Mei

A Thesis submitted to Tokushima University in partial
fulfillment of the requirements for the degree of Doctor

of Philosophy

March, 2016

Department of Information Science and Intelligent Systems
Graduate School of Advanced Technology and Science

Tokushima University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tokushima University Institutional Repository

https://core.ac.uk/display/197207407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgment

Many people have offered me valuable help in my thesis writing, including my

supervisor, my classmates, my parents, and so on.

First and foremost, I would like to show my sincere gratitude to my supervi-

sor, Professor Kenji Kita, who was a responsible and resourceful scholar, gave me

valuable guidance in every stage of the writing of this thesis by providing me with

necessary materials, advice of great value, inspiration of new ideas, etc. It is his sug-

gestions that draw my attention to a number of deficiencies and make many things

clearer. Without his help, I could not have completed my thesis well. His keen and

vigorous academic observation enlightens me not only in this thesis but also in my

future study. Meanwhile, I would thank Professor Fuji Ren and Professor Masami

Shishibori, who had contributed a lot of time and efforts in reviewing my thesis.

And their valuable recommendations helped to improve this thesis.

Then, I would also like to thank all my teachers who have helped me to de-

velop the fundamental and essential academic competence. Specially, I would thank

Instructor Kazuyuki Matsumoto and Vice Professor Minoru Yoshida, who had con-

tributed so much time in my doctoral terms. Besides, I would thank the Department

of Information Science, Intelligent Systems, and etc. all teachers, who helped me a

lot when I was taking my doctoral courses.

Besides, I am pleased to acknowledge the members of A2 group for their sup-

port, encouragement throughout the preparation of the original manuscript. Their

suggestion on works and papers gave me much inspiration in my study.

Finally, I thank my family members who have given me their constant encour-

agement and support in my academic terms. Without all these people, I could not

have completed the.

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Metadata-Based Music Retrieval 1

1.1.2 Content-Based Music Retrieval 2

1.1.3 Detection of Repeating Pattern 4

1.2 Motivation and Content of Research 5

1.3 Thesis Organization . 6

2 Related Work 8

2.1 Music Feature . 8

2.2 Algorithms of Detecting Repeating Pattern 9

2.2.1 Symbolization Technique . 10

2.2.2 Numeral Technique . 11

3 Extraction of Feature 13

3.1 Extracting Sub-fingerprint Feature 14

3.2 Related Concepts . 16

4 A Fast Music Retrieval 19

4.1 Related Works . 19

4.1.1 Philips’ Fingerprint Retrieval 20

4.1.2 Fibonacci Hashing Function 20

i

CONTENTS ii

4.2 Proposed Method . 25

4.2.1 Database Model . 25

4.2.2 Search Model . 27

4.3 Experiments and Analyses . 28

4.3.1 Evaluation on Algorithmn . 28

4.3.2 Analysis on Complexity . 29

4.4 Summary . 31

5 Similarity Analysis 37

5.1 Subsequent Similarities . 38

5.2 Non-Similar Similarities . 40

5.3 Similar Similarities . 42

6 Detecting Repeating Patterns Based on Similarity Analysis 45

6.1 Detection Algorithm . 45

6.1.1 Capturing Similar Blocks . 46

6.1.2 Mergence . 46

6.1.3 Boundary Refinement . 47

6.2 Experiments and Analyses . 48

6.2.1 Evaluation on Algorithm . 48

6.2.2 Analysis on Performance . 50

6.2.3 Analysis on Ability of Recognition 51

6.2.4 Analysis on Structure . 54

6.2.5 Analysis on Complexity . 55

6.2.6 Analysis on Redundancy Data 58

6.3 Summary . 59

7 Contribution and Futher Works 60

7.1 Conclusion . 60

7.2 Futher Researches . 61

List of Figures

3.1 Extracting Sub-Fingerprint Feature 14

4.1 Philips’ Database Model . 21

4.2 Philips’ Retrieval Model . 22

4.3 Structure of Hash Table . 23

4.4 Database Model . 32

4.5 Retrieval Model . 33

4.6 Average Search Time . 34

4.7 Usage Rate . 35

4.8 Average Usage Rate . 36

5.1 Distribution of Subsequent Similarities 39

5.2 Distribution of Random Similarities 40

5.3 Distribution of Non-Similar Similarities 41

5.4 Distribution of Similar Similarities 43

6.1 Hash Table of Storing Similar Blocks 46

6.2 Element-wise Similarities in Repeating Patterns 51

6.3 Element-wise Similarities in A Similar Block Pair 52

6.4 Duration of Repeating Pattern . 53

6.5 Overall Similarity of Repeating Pattern 54

6.6 Discovery Rate of Repeating Pattern 55

6.7 Similarity of Repeating Pattern . 56

iii

LIST OF FIGURES iv

6.8 Distribution of Misalignment Error 57

6.9 Distribution of Redundancy Data . 58

List of Tables

4.1 Values of C for Various Word Sizes 24

5.1 Domain of Non-Similar Similarities 42

6.1 Evaluation on Algorithm . 49

v

Abstract

As the techniques of audio signal process are fast developing, the music resources

are rapidly rising. Correspondingly, the techniques of music retrieval are changing

from metadata-based music retrieval to content-based music retrieval.

The content-based music retrieval, as a high-level application compared with

metadata-based music retrieval, can be applied in many of new scenarios. Therefore,

it is widely employed and a lot of relevant algorithms are proposed. Thereinto,

detecting repeating patterns is one of the most important applications in content-

based music retrieval.

In this thesis, based on the sub-fingerprint feature, we study content-based music

retrieval and lay stress on studying repeating patterns.

Currently, a lot of algorithms are presented to detect repeating patterns. How-

ever, current works mainly focus on the feature extraction, accuracy, the complexity

of time and space, etc., while the similarities of repeating patterns are not deeply

studied. As a matter of fact, a repeating pattern could be easily comprehended and

distinguished by human beings. This represents that both repeating patterns and

non-repeating patterns should have an approximate difference in similarities. This

motivates us to explore a new solution for detecting repeating patterns from the

aspect of similarity analysis.

In our method, we first segment a sub-fingerprint sequence of a piece of music

recording into fixed-length blocks. Next, we study the distribution of similarities

based on fingerprint blocks from three aspects: subsequent, similar and non-similar.

Finally, according to results of similarity analysis, a related method is also proposed

to detect repeating patterns. To evaluate the whole algorithm, experiments based

on a test corpus of 30 familiar songs are carried out. The results indicate that our

approach is promising.

Chapter 1

Introduction

1.1 Background

Music as one of the main cultures performs an important part in our daily lives

and largely influences our daily lives. Especially, in the past decades, with the

rapid development of the Internet, music information has become one of important

information resources in the Internet. The music recordings are changing from

previously fast increasing to now steeply rising. Accordingly, the dramatic shift also

causes a technology diversion of music retrieval from metadata-based music retrieval

to content-based music retrieval [1–5].

1.1.1 Metadata-Based Music Retrieval

In the early of music retrieval, people mainly make use of music metadata [1] [2]

to retrieve music. In music retrieval, metadata usually refers to some important

properties of the music object, such as title of music, artist, album, music type,

place and date of publication, duration of music, and so on as basic elements to

express a music object as accurately as possible. To achieve the effective search

of music recordings, it is required that metadata vocabulary of describing music

objects follows the same rules as far as possible, such as accurately, unambiguously,

1

1.1. BACKGROUND 2

easy-to-understand, succinctly and so on. To some extent, using the same rules can

ensure that metadata descriptions are consistent in different managers or application

scenarios. In addition, to achieve the generality of descriptions, such criteria as

articulation, spelling, standard characters, etc., are also essential. Because metadata

has the ability of rich expressions, it can basically meet most of requirements for

many of general users. Until the present, metadata-based music retrieval is still the

main method in many of music web sites or search tools, such as Google, Yahoo,

Baidu Music, Apple iTunes, Amazon, and so on.

Because metadata mainly relies on manual annotations, the error easily occurs in

describing music objects. Especially as the amount of music recordings is steeply ris-

ing, it becomes more difficult to manage metadata descriptions. Firstly, for different

managers, they are accustomed to label music objects with individual conventions,

so it easily leads to non-uniform descriptions. The non-uniform descriptions will se-

riously influence the search performance. Secondly, as music resources are gradually

opening in Internet, for any user, they can not only freely download music resources,

but also freely upload their favorite music resources to share with families, friends,

relatives, and so on. In these scenarios, it is more difficult to supervise the meta-

data. Finally, with the increasing requirements, such as retrieving similar songs,

humming, searching the unknown songs, accurately classifying, etc., it is becoming

more and more difficult.

1.1.2 Content-Based Music Retrieval

To solve issues of metadata-based music retrieval, the content-based music retrieval

[6–11] is proposed. In this method, the feature can be automatically extracted from

the raw music signal by techniques of audio signal processing to represent the music

object. Based on the feature sequence, it can achieve many of applications [12–29]

, such as retrieving, classifying, identifying, managing, and so on.

In content-based music retrieval, the feature sequence can be seen as a condensed

1.1. BACKGROUND 3

digital summary of a music object. For the used features, it is not only required

to accurately reflect the concerned information, but also is seen as a strict notion

of similarity, which can be measured, computed, compared and so on. Currently,

there are many classification methods about music features [6] [7]. In this thesis,

we here introduce two categories: low-level features and high-level (sometimes also

called semantic features).

The low-level feature mainly relates to acoustic properties of music signal, such as

frequency, loudness, brightness, bandwidth and harmonicity. These features can be

easily extracted by using the techniques of signal processing from music recordings.

The high-level feature [24] refers to melody, theme, motif, and so on. The high-

level feature can allow more user-friendly descriptions and reduce the gap between

low-features and semantic descriptions. In content-based retrieval, generally using a

relatively small music clip is to achieve some relevant applications. In the content-

based music retrieval, because the music feature is extracted by techniques of audio

signal processing, the feature sequence of a music object is commonly considered

as fingerprint of this music object [25–29]. Currently, there are many of important

applications about the content-based music retrieval as follows.

Audio Identification

In content-based retrieval, audio identification is one of important applications.

For example, using a short music clip within a piece of song is to identify a corre-

sponding music recording. In the past decades, there are a lot of applications based

on audio identification to be proposed, such as broadcast monitoring, music copy-

right protection, automatic management of music collections, tune identification,

and so on.

Version Identification

Version identification is seen as music retrieval based on document-level, which

is comparing similarities between entire documents. In real applications, an original

recording may exist many of different versions, possibly having some changes in

1.1. BACKGROUND 4

timbre, harmony, melody, tonality, and so on. The aim of version identification is

to identify different versions of the same music recording.

Audio Searching

Audio searching is one of the main applications in content-based music retrieval.

In many cases, users may forget or do not know metadata of music, such as the tile

of songs, singer, date, and so on. But, they may usually remember or know a tune,

a melody, etc. At this time, users can hum a tune as a short query and send to

a server for searching the corresponding song in a music database. Besides, there

are also other important applications, such as category-based retrieval, structure

analyzing of music, suspicious sounds, and so on.

1.1.3 Detection of Repeating Pattern

In content-based audio retrieval, discovering repeating patterns is one of important

application fields [30–50] and becoming more and more popular. It is well known

that most of songs have repetitive structures, so a study on repeating patterns is

of important value in further studying and analyzing music. The main tasks of

detecting repeating patterns are to find repetitive structures in the same song and

that is also a prominent character compared with other applications of content-based

audio retrieval. As a matter of fact, the repetition refers to difference in similarity

based on some level of abstraction.

According to types of different features, the repeating pattern [30] is respectively

defined as a set of ontime-timbre, ontime-chords, or ontime-pitch, etc. which occur

at least twice with reference to the similarity measure. Because lengths of repeating

patterns are usually much shorter than that of the music objects, repeating patterns

can achieve some efficient applications in content-based music retrieval. Besides,

repeating patterns are easily comprehended from perceptually similar and commonly

considered as one of the most expressive and representative parts in music objects,

so it is also seen as fingerprint of a music object in content-based music retrieval.

1.2. MOTIVATION AND CONTENT OF RESEARCH 5

In a word, the repeating pattern is very helpful for further studying, analyzing and

understanding music, such as music summarization [42], discovering themes [37] [38]

and motifs [46–48], structure analysis [40], [45] [50] , music thumbnail [39, 40] and

so on.

1.2 Motivation and Content of Research

In this thesis, we study content-based music retrieval based on the sub-fingerprint

feature and mainly focus on repeating patterns by analyzing similarity. The whole

tasks of our researches mainly contain two parts as the following.

(1) The first part

In the first part, the main tasks are studying the content-based music retrieval

based on the sub-fingerprint feature and propose a fast music retrieval algorithm

as an extension of Philips’ method [29]. In this method, to search songs, a lookup

table is exploited containing all possible sub-fingerprints as entries, but in fact it

is unachieved in limited memory space. Beside, because the distribution of hash

values is non-uniform in hash table and a lot of memory space is out of use. In our

method, we first exploit Fibonacci Hashing function to provide a good distribution

of hash values. Secondly, we operate the right shift to adjust the size of hash table

according to the capacity of practical available memory. Finally, experiments are

carried out to evaluate the proposed approach.

(2) The second part

In the second part, our aims are to study similarities of repeating patterns. Since

repeating patterns are generally easily comprehended by human beings, so the study

on repeating patterns is to help us further understand and analyze music.

Currently, many algorithms [30–50] were proposed to find repeating patterns.

For example, L. Lu et. al. [33] mainly exploited a self-similarity matrix to analyze

the music data and extract similar melodies. J. J. Aucouturier and M. Sandler [39]

1.3. THESIS ORGANIZATION 6

used the techniques of image processing to look for repeating patterns. C. Wei and

B. Vercoe [40] detected the repeating segments with fixed length and used heuristic

rules to infer the structure. J. Lin et. al. [49] introduced a repeating discovery

algorithm based on the discrete representation of non-trivial motifs in the time

series. J. Paulus and A. Klapuri [50] presented a structural description method

to detect the repeating parts in the music. However, previous works are mainly

focusing on how to discover repeating patterns, improve the complexity of time and

space, and etc. but there are few literatures about studying similarities of repeating

patterns. This thesis focuses on similarities of repeating patterns. Since lengths of

repeating patterns considerably differ, it is very difficult to directly analyze repeating

patterns. In [29], a basic unit, which is containing 256 subsequent sub-fingerprints

corresponding to a granularity of 3 seconds, is used to identify a song. In this

thesis, we also consider that a pair of 256 subsequent sub-fingerprints can identify

a corresponding block within a repeating pattern. In reality, the similar block pairs

can be seen as shorter repeating patterns. This also gives a new idea, namely,

segmenting repeating patterns into blocks to study. Therefore, we firstly segment a

fingerprint sequence into blocks with fixed-length, then analyzes similarities of block

pairs, and finally presents a related approach to find repeating pattern according to

these analyses.

1.3 Thesis Organization

This thesis mainly studies content-based music retrieval and puts stress on detecting

repeating patterns. The work of the whole thesis includes two parts and is organized

in the rest chapters as follows.

Chapter 2: Related Work

In this chapter, we introduce some works and techniques relevant to our re-

searches from two aspects: extraction of music features and techniques of music

1.3. THESIS ORGANIZATION 7

retrieval, mainly focusing on detecting repeating patterns.

Chapter 3: Extraction of Feature

In this chapter, the goal is to introduce extraction of music features. In our

method, the sub-fingerprint feature based on the method of Philips’ method is ex-

ploited. So, in this chapter, we simply review their method and introduce some

relevant concepts.

Chapter 4: A Fast Music Retrieval

In this chapter, based on the sub-fingerprint feature, a fast retrieval algorithm

is proposed to search songs as an extension of Philips’ method. In our method,

Fibonacci Hashing function is exploited to provide a good distribution of hash values

and the size of hash table can be adjusted according to the practical memory space.

Chapter 5: Similarity Analysis

In this chapter, we analyze the distribution of similarities based on fingerprint

blocks with fixed length from three aspects: adjacent relationship, non-similar rela-

tionship, and similar relationship, by experiments.

Chapter 6: Detecting Repeating Patterns Based on Similarity Analy-

sis

In this chapter, according to similarity analysis of Chapter 5, we present a new

method to detect repeating patterns. Firstly, based on similarity analyses of Chapter

5, a relevant method is used to capture the similar blocks and these similar blocks

are stored into a hash table. Next we further refine these similar blocks to extract

repeating patterns. Finally, we evaluate the proposed method by experiments and

fully analyze the experimental results.

Chapter 7: Contribution and Future Work

In this chapter, we conclude the works of this thesis and make a prospect our

future work.

Chapter 2

Related Work

In this thesis, our researches include two parties. The first part introduces a fast

retrieval music based on Philips’ method [29] and reviews Philips’ method in Chapter

4. In the second part, we mainly study repeating patterns by analyzing similarity

and this is the main emphasis of our research. So in this chapter, we mainly describe

some works relevant to repeating patterns.

In detecting repeating patterns, the whole algorithm usually contains two phases:

the goal of the first phase is extracting features; in the second phase, according to

the used features, a relevant algorithm is exploited to find repeating patterns. In

this chapter, based on two phases, we introduce some relevant works.

2.1 Music Feature

In feature extraction, the selection of feature is a crucial step and directly relates to

the techniques of music searching. At present, there are a variety of classification

methods about music features [6] [7] [24] , such as acoustical features, the basic

features, derived features, thematic features, etc.

Acoustical features are mainly related to the human auditory perception, such

as loudness, pitch, bandwidth, harmonicity, brightness, etc., which can be easily

derived from the raw music recordings by techniques of signal processing. Loudness

8

2.2. ALGORITHMS OF DETECTING REPEATING PATTERN 9

feature can be approximately computed through the square root of the energy of

the signal. Pitch feature, which is measured based on short-time Fourier Spectra,

is obtained from frequency and amplitudes in the peaks. Brightness can represent

the higher frequency of the music signal and is calculated by the centroid of the

magnitude spectra of the short-time Fourier. Bandwidth is a measure of the width of

frequencies and mainly related to between the spectral components and the centroid

of the short-time Fourier transform. Harmonicity represents the degree of acoustic

periodicity, can be used to distinguish harmonic spectra, inharmonic spectra, and

noise, and is measured by the deviation of the sound spectrum.

For the basic features [29], they can easily be extracted from music objects,

such as Mel-Frequency Cepstral Coefficient, Frequency Cepstral Coefficients, Fourier

Coefficients, Spectral Flatness, Sharpness, etc. But, in practical application, these

basic features are usually further processed to derive some of new features.

The derivation features, which are derived from basic features, are widely used,

such as Derivatives, Means, Variances, CQT [45], Sub-fingerprint [29], etc.

Thematic features [17] include themes, melodies, motifs, and so on. For example,

Chih-Chin Liu et. al. [38] used the longest repeating as theme within a music

recording, which is based on a sequence of note features. These works [45] [46]

extracted perceptual attributes to represent melody features. The melody features,

and the chord features can be easily derived from the basic features.

2.2 Algorithms of Detecting Repeating Pattern

After selecting features, extraction of feature is performed by using techniques of

music signal processing and a corresponding feature sequence is generated. Ac-

cording to types of the features, some of relevant algorithms can be used to detect

repeating patterns. The music signal can be generally converted into two representa-

tions: symbolization representation and numeral representation. Besides, these two

2.2. ALGORITHMS OF DETECTING REPEATING PATTERN 10

representations can also convert each other by quantification. Therefore, techniques

of discovering repeating patterns can be classified into two categories: symbolization

techniques and numeral techniques.

2.2.1 Symbolization Technique

In symbol representations, audio signal is converted into symbols by a series of

techniques of signal processing. Of course, some numeral representations can be

also transformed into symbol representations by quantification. After generating

the symbol feature sequence, then these techniques for processing symbols can be

applied, such as string match, tree, suffix tree [31], K-means [32], clustering algo-

rithms [33], etc.

For example, in [34], Ning-Han Liu1 et al. chose the information of pitch and

duration as features based on the MIDI to form a sequence of triples in the on-

time note and a modified R*-tree was used to filter impossible candidate ARP. In

literature [35], Jia-Lien Hsu et al. used notes of a music object to form symbol

features, constructed a correlative matrix to store the intermediate results, and

finally extracted repeating patterns from the intermediate results by a string-join

operation. In work [36], Ioannis Karydis et al. used the note sequences as feature,

exploited an aggressive accession to find all intermediate patterns with maximum-

length, and finally refined these intermediate patterns to extract all true repeating

patterns. Chaokun Wang et al. [37] used character features based on a sequence of

notes and proposed an index structure called N-gram to mine theme in a piece of

music.

Chih-Chin Liu et al. [38] extracted three features: rhythm, melody, and chords

as audio feature, and constructed a data structure called 1D-List to perform the

similar string matching. Jean-Julien Aucouturier and Mark Sandle [39] extracted

features of timbres, segment the feature sequence into a meaningful succession of

blocks and used two techniques of Kernel Convolution and Hough Transform to

2.2. ALGORITHMS OF DETECTING REPEATING PATTERN 11

detect repeating patterns.

2.2.2 Numeral Technique

In numeral representations, music signal is transformed into numeral representa-

tion. Besides, some of numeral representations can be also converted into symbol

representations. Numeral representations include univariate time series, multivari-

ate time series and so on. For numeral techniques, it is based on the concept of

strict similarity and can be measured, computed and so on.

To find repeating patterns in numeral representations, a lot of algorithms are also

proposed. For example, in work [13], Guodong Guo and Stan Z. Li used perceptual

features, which were consisted of total power, brightness, MFCCs, etc., and the

SVMs was proposed to detect repeating recognition. Wei Chai and Barry Vercoe [40]

extracted time vector series, detected the fixed-length repetitions, and used heuristic

rules to infer the repetitive structure. Masataka Goto [41] extracted chroma features

to represent chorus of music and proposed a method called RefraiD to repeating

patterns.

Besides, in algorithms of discovering repeating patterns, the self-similarity matrix

or vector was widely used [42–48]. For instance, in work [42], a 2-D similarity

matrix was used to find given-length repetitions. In [43], Bartsch extracted chorus

to form a new feature set based on quantized chromagram and used a self-similarity

matrix to extract repeating patterns. Foote [44] was based on a note sequence, such

as verse and chorus and built a self-similarity matrix to locate points of obvious

change (namely looking for similar elements), and exploited the techniques of image

processing to extract the repeating musical patterns. Lie Lu et al. [45] used CQT

as features, constructed a self-similarity matrix to capture the similar elements and

extracted all significant repeating patterns based on the structure analysis of acoustic

music data and techniques of image processing.

However the self-similarity vector is applied widely, this method requires a com-

2.2. ALGORITHMS OF DETECTING REPEATING PATTERN 12

plexity of O(2n) for memory and computational requirement. To reduce computa-

tional cost, Lei Wang [46] proposed an algorithm called Adaptive Motif Generation

to capture the candidate motifs and constructed a sparse self-similarity matrix to

further refine these candidate motifs for extracting the final repeating patterns.

Chapter 3

Extraction of Feature

The aim of this chapter is to introduce extraction of music features. Before extract-

ing features, we first need to select appropriate features relevant to our research.

In fact, selection of features usually depends on actual and real applications, such

as focusing on timbral, tempo, beat, loudness, pitch, brightness, rhythm, theme,

motifs, melody, chord, etc.

In this thesis, we will mainly focus on melody information, so the used features

must be able to accurately express melody mainly relevant to perceptual features.

Firstly, the feature sequence can be considered as a perceptual digest of the music

recording, retaining the relevant information of a real music object as far as possible.

Secondly, it should be more invariant to kinds of distortions, such as background

noise, D/A-A/D conversion, audio coders (such as GSM and MP3), compression,

signal degradations, noise addition, and so on. Thirdly, given an enough long sub-

sequence, it should identify a corresponding song. Finally, the operations on feature

data are easily computable.

In these literatures [45, 46] , they also focused on melody, CQT and chroma

features were used, and experimental results have showed that the repeating patterns

can be discovered well. In literature [29], Jaap Haitsma and Ton Kalker proposed

a sub-fingerprint feature and now it is widely used. So this paper uses this feature.

13

3.1. EXTRACTING SUB-FINGERPRINT FEATURE 14

Framing

|FFT|

Energy

Computation

Band

Division

Bit Derivation

32 bits

Music clip

Sub-fingerprint

Figure 3.1: Overview of Haitsma and Kalker’s Audio Fingerprint.

The scheme of feature extraction is reviewed in the following subsection.

3.1 Extracting Sub-fingerprint Feature

An overview of Haitsma and Kalker’s audio fingerprint extraction algorithm is as

shown in Figure 3.1.

Figure 3.1 shows the whole process of sub-fingerprint extraction. Here we only

take into the main phases of the whole process.

(1) Preprocessing

The first phase is preprocessing. The audio signal is converted to a general

format: mono PCM (16 bits), a fixed sampling rate of 44.1 KHz, and MP3 formats.

(2) Framing

The second phase is framing. The goal of this phase is to divide the whole audio

signal in overlapping frames. In framing, a 31/32 overlap factor is used to allow 5.8

milliseconds off with respect to the real frame boundaries and assure that even in

the worst cases, both the query sub-fingerprints and the sub-fingerprints of the same

clip in database are still very similar. Due to using the large overlap, subsequent

sub-fingerprints are very similar and slowly reducing in time. Besides, each frame

is weighted by a Hanning window.

3.1. EXTRACTING SUB-FINGERPRINT FEATURE 15

(3) Extracting frequency sub-bands

The third phase is performing the Fourier Transform on every frame. Because

the frequency domain contains usually the most important perceptual features of

music objects, a time-domain representation of raw audio data is converted into a

spectral representation by carrying out a Fourier transform. In fact, the frequency

domain from 300Hz to 2000Hz is the most related frequency range of human hearing.

Therefore, the frequency domain for each frame is divided into 33 non-overlapping

sub-bands from 300Hz to 2000Hz by using a logarithmic spacing.

(4) Deriving bit

The fourth phase is deriving bit. The derivation is based on the sign of energy

differences between subsequent frequency sub-bands. Let E(n,m) denote the energy

of frequency band m of frame n and fn(m) denote the m-th bit of the sub-fingerprint

of frame n, then fn(m) is formally defined as Eq.3.1:

fn(m) =

1, ifE > 0

2, ifE 6 0
. (3.1)

Where

E(n,m) = E(n,m)− E(n,m+ 1)− E(n− 1,m) + E(n− 1,m+ 1). (3.2)

(5) Generating the sub-fingerprint

The fifth phase is generating the sub-fingerprint feature. In the fourth phase, 32

bits are obtained by calculating 33 subsequent sub-bands for each frame and then

form a sub-fingerprint. Finally all sub-fingerprints of a music signal form a feature

sequence.

Because each bit can reflect the energy differences of two subsequent frequency

sub-bands, the sub-fingerprint feature can reflect change of melody. Secondly, this

method has been demonstrated more robust against various ”corrupted” inputs

3.2. RELATED CONCEPTS 16

such as compressed, delayed music, etc. Besides, the sub-fingerprint representation

with 32-bit is more compact compared to raw multidimensional features, while the

calculation is much simpler. Therefore, the sub-fingerprint feature based on Haitsma

and Kalker’s is more suitable in our application.

Let a sub-fingerprint sequence FP = f1f2...fN and it is consisted of N sub-

fingerprints. The duration of each sub-fingerprint is equal (about 0.01s), so the

product both sub-fingerprint index and rate of sampling can approximately represent

timestamp.

3.2 Related Concepts

In practical applications, however, a single sub-fingerprint is usually too short to

contain sufficient information. To obtain sufficient information, a fingerprint block as

a basic unit, which is also a subsequence of the entire feature sequence, is commonly

used to identify one song.

Let FP = f1f2...fN represent a sub-fingerprint sequence, then the i-th fingerprint

block FPL
i is described as Eq.3.4:

FPL
i = fi...fi+1−L, i ∈ [1, N − L]. (3.3)

Where L denotes the number of sub-fingerprints in FPL
i (also called block

length); N denotes the number of sub-fingerprints in FP ; fi denotes the i-th sub-

fingerprint of FP . Moreover, bit error rate is used to express the robustness, and

Hamming distance is used to calculate the distance or similarity between finger-

print blocks. Let FPL
i and FPL

j represent two fingerprint blocks, their distance is

described as Eq.3.4:

BER(FPL
i , FP

L
j) =

∑L−1
l=0

∑31
m=0 fi+l(m) ∧ fj+l(m)

32× L
. (3.4)

3.2. RELATED CONCEPTS 17

Where m denotes the m-th bit of the sub-fingerprint; and ∧ is bit operator XOR

(exclusive OR). It is noted that the smaller the BER of two fingerprint blocks, the

higher the similarity of the corresponding fingerprint blocks is. The domain of BER

is from 0 to 1.

In our thesis, the interval distance between fingerprint blocks short for ID is

often used. Here we describe this concept. For two fingerprint blocks FPL
i and

FPL
j (i < j), then ID(i, j) is defined as Eq.3.5:

ID(i, j) = j − i. (3.5)

Besides, there are also other definitions relevant to our research as the following

descriptions. Here let FPL
i and FPL

j (i < j) represent two fingerprint blocks.

Definition 1

Similar threshold: If meeting the condition BER(FPL
i , FP

L
j) ≤ ρ, this equation

can present similar relationship between fingerprint blocks, and then the value is

called the similar threshold.

Definition 2

Similar block: If meeting BER(FPL
i , FP

L
j) ≤ ρ, then FPL

i and FPL
j represent

a pair of similar blocks, then FPL
i and FPL

j are called similar blocks each other.

As a matter of fact, a pair of similar blocks is also regarded as a shorter repeating

pattern.

Definition 3

The longest repeating pattern: The longest repeating pattern is considered as

being composed of many of subsequent fingerprint blocks.

Definition 4

Trivial repeating pattern: In the longest repeating patterns, if a pattern is a sub-

pattern of another pattern, then the sub-pattern is called trivial repeating pattern.

Definition 5

Non-trivial repeating pattern: In the longest repeating patterns of a music object,

3.2. RELATED CONCEPTS 18

except for trivial repeating patterns, the left are called the non-trivial repeating

patterns. In this thesis, if not giving special statements, repeating patterns refer to

non-trivial repeating patterns.

Chapter 4

A Fast Music Retrieval

In this chapter, based on the sub-fingerprint feature, we first introduce a fast music

retrieval algorithm to search songs as an extension of Philips’ method [29]. On the

one hand, Fibonacci Hashing function is employed to further process sub-fingerprints

for providing a good distribution of hash values, which can effectively utilize memory.

On the other hand, the right shift operation is performed to adjust size of the

lookup table. In conclusion, the performance of presented algorithm is evaluated by

experiments. The process is described in detail in the following subsections.

4.1 Related Works

As above-introduced, Jaap Haitsma and Ton Kalker proposed the sub-fingerprint

feature and built a lookup table containing all possible sub-fingerprints as entries to

search songs. In fact, if not considering the limited memory, for the sub-fingerprint

feature, such a lookup table is the best ideal approach. But, in practical application,

it is unachievable in limited memory space. In this chapter, we propose a method

based on Jaap Haitsma and Ton Kalker’s method to solve this defect. Therefore we

firstly review the method of Jaap Haitsma and Ton Kalker in this section.

19

4.1. RELATED WORKS 20

4.1.1 Philips’ Fingerprint Retrieval

In work [29], based on the sub-fingerprint feature, a lookup table as index is exploited

to retrieval songs. In order to contain all sub-fingerprints, it needs to allocate a

memory containing 232 sub-fingerprints. The layout of fingerprint database is shown

in Fig.4.1 and the layout of search model is shown in Fig.4.2.

The whole process of Philips’ fingerprint retrieval is illustrated in Figure 4.1 and

Figure 4.2. In the lookup table, all possible sub-fingerprints with 32-bits are seen

as entries, of which each entry is pointing to a list. In the list, each node contains

information of pointers, in which the real sub-fingerprints are located. But, in

practical application, the memory allocation of 232 sub-fingerprints is unachievable.

However hash table is used to take place of a lookup table by sparsely filling, in

searching, these hash tables needs respectively to load into high-speed memory.

In fact, it is proved that hash table is a very effective and efficient method in a lot

of application scenarios and widely used. In case we do not consider the restrictions

of memory, for the sub-fingerprint feature, hash table should be an ideal method.

4.1.2 Fibonacci Hashing Function

This subsection will introduce an important technique called Fibonacci Hashing

function, which belongs to Hash Table. Before describing, we first look back at the

knowledge of Hash Table.

Hash table as an effective data structure [51] is widely employed to implement

many of relevant applications. Practically, hash table is usually considered as a

special array, which can map keys to values. If giving a key or input, by using hash

function, it can generate a hash value and this hash value is usually as entry to

achieve some relevant applications.

Figure 4.3 shows a structure of Hash Table. Ideally, in Hash Table, it should

meet the two basic conditions as following:

(A) Each key is assigned to a unique hash value or bucket.

4.1. RELATED WORKS 21

L
o

o
k

u
p

 t
a

b
le

S
o

n
g

 N
S

o
n

g
 1

S
o

n
g

 2

0
x
0
0
0
0
0
0
0
0

0
x
F
F
F
F
F
F
F
F

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
0

0
x
C
D
3
2
D
5
6
4

0
x
A
B
1
B
3
4
C
D

0
x
0
0
0
0
0
0
0
1

0
x
F
1
B
A
C
2
A
C

0
x
A
B
5
6
9
8
3
4

0
x
F
F
F
F
F
F
F
F

0
x
1
5
B
A
D
5
A
D

0
x
A
B
5
6
9
8
3
4

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
1

… …

… …

… …
… …

… …

…

…
…

Figure 4.1: Philips’ Database Model.

4.1. RELATED WORKS 22

Q
u

er
y
 b

lo
ck

L
o

o
k

u
p

 t
a

b
le

S
o

n
g

 N
S

o
n

g
 1

S
o

n
g

 2

0
x
0
0
0
0
0
0
0
0

0
x
F
F
F
F
F
F
F
F

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
0

0
x
C
D
3
2
D
5
6
4

0
x
A
B
1
B
3
4
C
D

0
x
0
0
0
0
0
0
0
1

0
x
F
1
B
A
C
2
A
C

0
x
A
B
5
6
9
8
3
4

0
x
F
F
F
F
F
F
F
F

0
x
A
B
5
6
9
8
3
4

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
1

0
x
F
F
F
F
F
F
F
F

0
x
0
0
0
0
0
0
0
1

0
x
A
B
5
6
9
8
3
4

0
x
1
5
B
A
D
5
A
D

… …
… …

… …

… …
… …

…
…

… …

…

Figure 4.2: Philips’ Retrieval Model.

4.1. RELATED WORKS 23

1

2

3

…
…

…
…

N

Figure 4.3: Structure of Hash Table.

(B) Hash values can evenly distribute across hash table.

But, in practical application, for these ideal cases, it is hardly achievable, in

other words, hash collisions [52] would be inevitable. Hash collisions are generally

described such that two different keys are assigned to the same entry. In order

to solve hash collisions, some of related strategies have been proposed. In Hash

Table, how to design a good hash function is a very crucial problem. On the one

hand, it helps to address hash collisions. On the other hand, it can provide a

uniform distribution of hash values [53] , which can further reduce the probability of

collisions. Fibonacci Hashing function [54,55] has been proved that it can generate

a uniform distribution of hash values. In Fibonacci Hashing function, one important

task is to find a very special value C [53] and multiply by key to generate the hash

values. According to these descriptions, then Fibonacci Hashing function is defined

as Eq.4.1:

f(key) = key ∗ C. (4.1)

A good distribution of hash values can be obtained by Eq.4.1. Where the value

4.1. RELATED WORKS 24

W C
216 40503
232 2654435769
264 11400714819323198485

Table 4.1: Values of C for Various Word Sizes.

of C is mainly related to the golden ratio [56, 57] . Given two positive numbers x

and y, the golden ratio is described: the ratio of x to y is equal to that of x + y to

x. This ratio is called the golden rate. Let λ = x
y

represent the golden rate, then

λ = x
y

is calculated as Eq.4.2:

x
y

= x+y
x

λ = x
y

⇒ λ =
1 +
√

5

2
. (4.2)

Where the value λ = 1+
√
5

2
is just equal to the coefficient of Fibonacci number

[58–60] . Thus the n-th Fibonacci number is given as Eq.4.3:

Fn =
1√
5

(λn − (λ−1)n). (4.3)

Where λ−1 is the reciprocal of λ. It has been proofed that the value of C is just

closest to the part integer of Wλ−1 [53] and an idea special value. Where W denotes

word sizes. Table 4.1 gives the values of C for various word sizes, with reference to

literature [60]. Because the value of C relates to Fibonacci numbers, this hash table

based on Wλ−1 is called Fibonacci Hashing Function.

Why do we choose Wλ−1 as the value of C. We here show the function of the

value Wλ−1. As a matter of fact, the value Wλ−1 can divide the whole hash table

into two parties by the golden ratio, for subsequent keys, they follow such a rule that

each hash value falls into one of the largest remaining intervals. Furthermore, for

each newly added hash value, it divides the interval to which it belongs according

to the golden ratio. Additionally, because of using C in hash function, it can ensure

that a good distribution of hash values is generated.

4.2. PROPOSED METHOD 25

4.2 Proposed Method

In Philips’ method, a lookup table containing all possible sub-fingerprints with 32-

bits is exploited as the index. On the one hand, due to the limited memory, hash

table instead of a lookup table will be usually sparsely filled. On the other hand,

the distribution of hash values is non-uniform in hash table and a lot of memory

space is out of use, which would cause a lot of waste. For example, for a hash table

containing approximately 250 million sub-fingerprints, then the average usage rate is

only 0.058 based on statistics of Philips’ research. In fact, even uniform distribution,

the rate is far less the size of 232. Therefore, in this chapter, we propose a method

to solve the above-mentioned problems. Firstly, Fibonacci Hashing function is used

to generate a good distribution of hash values in hash table. Secondly, the right

shift operation is carried out to adjust the size of the lookup table according to the

memory space.

4.2.1 Database Model

In subsection, we present a method based on Fibonacci Hashing function to build a

model of music database. In this method, we use Eq.4.4 to process keys to generate

hash values as the following:

f(key) = (key × C)� N. (4.4)

Where key refers to the sub-fingerprint and is the right shift operator. In our

approach, the feature sequence is consisted of subsequent sub-fingerprints with 32

bits, of which each sub-fingerprint contains 4 bytes. According to Table 4.1, C is

rightly equal to 2654435769. Besides, in Eq.4.4, N is the number of right shift bit

and its domain is from 1 to 31. In application, the value of N mainly depends

on the available memory space and the amount of songs, which can be flexibly

adjusted. Through Eq.4.4, the value FP ∗ C is first moved N -bit to right. As a

4.2. PROPOSED METHOD 26

result, sub-fingerprints of the same top (32 − N)-bit will be assigned to the same

bucket. Thus size of hash table becomes 232−N . Besides, because the value C is used

in hash function, it can ensure that a uniform distribution of hash values would be

generated.

Through Eq.4.4, we can obtain a good distribution of hash values and flexibly

modify size of hash table according to requirements. Next we introduce how to build

this database model.

In practical application, the amount of songs usually achieves tens of thousands.

If all sub-fingerprints are put into memory, it would be infeasible. To address this

problem, our method is to design two hash tables, respectively called auxiliary hash

table (AHT) and offset hash table (OHT). In AHT, it stores the hash values, which

are generated by Eq.4.4. OHT stores offset information based on AHT, which can

be obtained by computing the number of nodes in each entry. In each node, it

is composed of the data domain and pointer. For the data domain, it contains

three components: a real sub-fingerprint (FP), location of this sub-fingerprint in its

fingerprint file and name of this fingerprint file (FN) of this song; in the pointer

domain, it points to the next sibling node. While the data domain of OHT just

contains offset. The database model is as shown in Figure 4.4 and the steps are as

follows.

Step 1

By using Eq.4.4, AHT is first created.

Step 2

OHT is created based on OHT. Firstly, scanning AHT from top to bottom and

from left to right, all list nodes are numbered. The label of the first node in each

entry will be stored to the same entry in OHT.

Step 3

After establishing the database model, in auxiliary hash table, information of

only data domain is written into a file called AHTF by the location number order.

4.2. PROPOSED METHOD 27

After finishing, the auxiliary hash table is destroyed; in OHT, information of hash

table is also written into a file called OHTF and OHT is destroyed.

4.2.2 Search Model

In the above subsection, we introduce the database model based on Fibonacci Hash-

ing function. In this subsection, we introduce how to search songs exploiting this

database model. In our method, the layout of search model is designed as shown in

Figure 4.5. The operations of searching songs are illustrated as follows.

Step 1

Extracting the sub-fingerprint sequence from the query music clip as the query

sub-fingerprints.

Step 2

Loading the file OHTF to create OHT.

Step 3

Selecting a sub-fingerprint from the query sub-fingerprints and exploiting Eq.4.4

to process generate a hash value.

Step 4

According to this hash value, it is locating corresponding entry and reading offset

information in OHT.

Step 5

Based on offset information, the data of a specified rang in AHTF is loaded as

the candidate sub-fingerprints, which are used to compare with this hash value.

Step 6

If having candidate sub-fingerprints is equal to the given sub-fingerprint, then

it will continue comparing their corresponding sub-fingerprint blocks by calculating

Hanning distance. If the distance is less than the threshold, they successfully match.

Otherwise, it goes on comparing the next candidate sub-fingerprint until the end.

After finishing, the next sub-fingerprint in the query sub-fingerprints is operated

4.3. EXPERIMENTS AND ANALYSES 28

using the same steps.

Step 7

After finishing the query sub-fingerprints, the top n songs with the minimum

distance as query results is outputted.

4.3 Experiments and Analyses

In this chapter, we present a method to retrieve songs based on Philips’ method. For

one thing, we employ the Fibonacci Hashing function to generate a good distribution

of hash values. For another, by the right shift, the memory space can be flexibly

adjusted according to the available memory. In order to know about performance

of the proposed algorithm, we evaluate from three aspects: search accuracy, search

time and memory usage by experiments.

The experimental configuration is as described as follows.

Database

In experiments, we select a test corpus, which is containing 7605 music clips in

mp3 format from the Internet. Besides, in our preliminary test, to reduce the other

interference factors, we here choose some songs with low distortion. Genres of songs

contain pop, classical, folk music, etc.

Hardware configuration

In the experiment, the total memory is 4G, with about a free memory of 1.6G.

System configuration

Ubuntu 11.04 version.

4.3.1 Evaluation on Algorithmn

In this subsection, we evaluate the performance of our approach by analyzing accu-

racy.

In our research, the sub-fingerprint feature with 32-bits based on Philips’ method

4.3. EXPERIMENTS AND ANALYSES 29

is used. First, the raw audio signal is divided into overlapping frames with an overlap

factor of 31/32. Every frame is weighted by a Hanning window. Next, it selects 33

non-overlapping frequency sub-bands from 300Hz to 2000Hz and generates 32 bits

as a sub-fingerprint from every frame by comparing the energy difference between

subsequent frequency sub-bands. Thus 32-bits form a sub-fingerprint, corresponding

to about the interval of 11.6 milliseconds. Finally, a fingerprint sequence is generated

based on these sub-fingerprints. Besides, to identify a song, a granularity of 256

subsequent sub-fingerprints as a basic unit is used in our method, corresponding to

duration of only 3 seconds.

Next, by our improvement, the database model is created. Finally, we exploit

the search model based on the experimental settings to analyze our method.

We extract about 61 million sub-fingerprints from pieces of 7605 music clips.

In the experiments, we randomly select 100 short audio clips, perform the same

operations 10 times, and finally compute the average accuracy. The final results

show that the search accuracy can approximately achieve 100%. That means that

our method is feasible.

In our method, because the right shift is used, for heavily degraded signals, it

needs to consider more candidate sub-fingerprints. So we here only use the low

degraded signals. For heavily degraded, it is our further focus.

4.3.2 Analysis on Complexity

In the above subsection, it has verified that our method can search songs well. Next

we further analyze its efficiency of time and space.

Search Speed

In our method, by using the right shift operation, the size of hash table can be

flexibly adjusted. Next we will observe the efficiency of time as the change of the

value N is. Besides, in experiments, we only consider average search time. The

experimental results are shown in Figure 4.6.

4.3. EXPERIMENTS AND ANALYSES 30

The change of average search time is as shown in Figure 4.6. The average search

time is relatively stable about 0.97s. In reality, there are three reasons to explain.

Firstly, the offset hash table is very small, can completely reside in memory and

achieve high-speed retrieval. Secondly, in comparing, only specified data is loaded

from AHTF. Finally, through Fibonacci Hashing function, the hash values can uni-

form distribute across the whole hash table. Therefore, there improvements can

achieve fast searching.

Memory Usage

In this subsection, we analyze the memory usage. In order to observe the ef-

ficiency of memory usage, we here employ two standards to evaluate: usage rate

(UR) and average usage rate (AUR).

Let UR represent the ratio of used entries in the total entries; UN denotes the

number of used entries in hash table; L stands for the size of hash table. The

calculation of UR is as follows:

UR =
UN

L
. (4.5)

Let URN denote the proposed method, and URP for Philips’ method. The

experimental results are as shown in Figure 4.7.

URN is remarkably higher than URP as illustrated in Figure 4.7 and that can

explain well that the distribution of hash values is relatively uniform in the whole

hash table, namely Fibonacci Hashing function is a good hash function.

AUR denotes the rate of the number of sub-fingerprints and size of hash table.

As mentioned-above, the amount of songs can also affect the choice of N . If songs

are quite many and size of hash table is small, every entry will contain more nodes.

As a result, times of comparison will increase. If songs are very few and size of

hash table is large, memory space will be wasted a lot. Therefore, we here use the

standard AUR to evaluate. Let AUR represent average usage rate; T stands for the

total number of sub-fingerprints from database; L is size of hash table. Calculation

4.4. SUMMARY 31

of AUR is as follows:

AUR =
L

T
. (4.6)

The experimental results are shown in Figure 4.8 .

In Figure 4.8 , the AUR is slowly increasing from 5 to 9 and fast rising at N = 9.

Obviously, the larger AUR is, the more the time of comparison is.

By comparing both Figure 4.7 and Figure 4.8 , in our experiments, the most

appropriate value of N is 8.

4.4 Summary

In this chapter, we proposed a fast retrieval algorithm based on Fibonacci Hashing

function as an extension of Philips’ method. Firstly, we use Fibonacci Hashing func-

tion to generate a good distribution of hash values. Secondly, we exploit the right

shift operations to flexibly adjust the size of hash table according to the practical

memory space. The final experiments show that our method can search songs well.

Besides, we also further analyze the efficiency of time and space and the results show

that our improvements are also obvious.

But, because the right shift operation is used, for the high distortion, it leads to

more candidate sub-fingerprints compared with Philips’ method. So this is drawback

of our approach. In the future, we focus on how to solve this drawback.

4.4. SUMMARY 32

F
in

g
er

p
ri

n
t

F
il

e

A
u

x
il

ia
ry

 H
a

sh
 T

a
b

le

0
x
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
3

…

0
x
0
0
1
0
0
0
0
0

S
o

n
g

 N

0
x
C
D
A
B
3
4
6
3

0
x
2
8
A
B
F
3
8
D

S
o

n
g

 1

0
x
0
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
2
0
1

0
x
0
0
0
0
0
1
0
2

0
x
1
2
B
F
6
5
5
F

0
x
8
0
3
5
3
C
B
F

S
o

n
g

 2

0
x
0
0
0
0
0
0
0
0

0
x
3
2
9
D
A
F
3
8

0
x
6
5
F
F
8
D
4
F

0
x
0
0
1
0
0
0
0
6

0
x
0
0
1
0
0
0
0
A

0 2 3 3 …

O
ff

se
t

H
a

sh
 T

a
b

le

0
x
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
3

…

N

N
+
2

0
x
0
0
1
0
0
0
0
0

0
x
0
0
1
0
0
0
0
1

… … … …

… … … …

… … … …

…
…

Figure 4.4: Database Model.

4.4. SUMMARY 33

Q
u

er
y
 C

li
p

F
in

g
er

p
ri

n
t

F
il

e

A
H

T
F

0
x
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
1
0
2

0
x
0
0
0
0
0
2
0
1

…

0
x
0
0
1
0
0
0
0
0

S
o

n
g

 N

0
x
C
D
A
B
3
4
6
3

0
x
2
8
A
B
F
3
8
D

S
o

n
g

 1

0
x
0
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
2
0
1

0
x
0
0
0
0
0
1
0
2

0
x
1
2
B
F
6
5
5
F

0
x
8
0
3
5
3
C
B
F

S
o

n
g

 2

0
x
0
0
0
0
0
0
0
0

0
x
3
2
9
D
A
F
3
8

0
x
6
5
F
F
8
D
4
F

0
x
0
0
1
0
0
0
0
6

0
x
0
0
1
0
0
0
0
A

0 2 3 3 …

O
H

T

0
x
0
0
0
0
0
0
0
0

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
3

…

N

N
+
2

0
x
0
0
1
0
0
0
0
0

0
x
0
0
1
0
0
0
0
1

0
x
7
3
9
0
8
3
2
A

0
x
0
0
0
0
0
0
0
2

…

0
x
0
0
0
0
1
0
0
2

0
x
0
0
0
0
0
A
B
1

…… ……

…… ……

…… ……

…
…

Figure 4.5: Retrieval Model.

4.4. SUMMARY 34

5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

N(right shit bit number)

a
v
e
ra

g
e
 s

e
a
rc

h
 t
im

e
 f
o
r

e
v
e
ry

 s
o
n
g

Figure 4.6: Average Search Time.

4.4. SUMMARY 35

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N(right shit bit number)

u
s
a
g
e
 r

a
te

y1= UR(N)

y2=UR(P)

Figure 4.7: Usage Rate.

4.4. SUMMARY 36

5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

N(right shit bit number)

a
v
e
ra

g
e
 s

e
a
rc

h
 t
im

e
 f
o
r

e
v
e
ry

 s
o
n
g

Figure 4.8: Average Usage Rate.

Chapter 5

Similarity Analysis

In this chapter, the goal is to carry out the similarity analysis based on the sub-

fingerprint feature. We hope by analyzing similarity to obtain some important

information for further understanding and studying repeating patterns.

Repeating patterns have great difference in lengths, so it is very difficult to di-

rectly study repeating patterns as a whole. Actually, in literature [29], a granularity

of 256 subsequent sub-fingerprints as the basic unit is used to identify a song. That

gives us some enlighten effect on solving the problem of the variable lengths in re-

peating patterns. Therefore, the main idea of our method is to first cut the whole

fingerprint sequence into blocks with fixed length and then analyze the similarity

distribution of blocks.

We will make study of similarities of fingerprint blocks from three aspects.

Firstly, because Jaap Haitsma and Ton Kalker used a large overlap factor to segment

audio signal, the similarities for adjacent fingerprint blocks should be very high in

theory. Therefore, we first investigate the similarity distribution for adjacent fin-

gerprint blocks. Secondly, we analyze the similarity distribution of the non-similar

fingerprint blocks. Finally, we study the similarity distribution of the similar fin-

gerprint blocks. Here the similarity is perceptually similar, namely having similar

melody.

37

5.1. SUBSEQUENT SIMILARITIES 38

Obviously, as mentioned-above, there are three typical relationships between

fingerprint blocks: subsequent, non-similar and similar. We design three separate

experiments, with respect to three aspects. The training corpus consists of 100

songs performed by both male and female singers and Eq.3.4 is used to calculate

the similarity.

5.1 Subsequent Similarities

Because the large overlap is used in extracting features, subsequent fingerprint blocks

have a large similarity and are varying as the increasing ID. These adjacent blocks

are considered as trivial similar blocks. In order to reduce this redundant, it needs

to learn the distribution of similarities in subsequent 31 blocks, namely ID from 1

to 31. Therefore, the objective of the first experiment is to observe the distribution

of similarities for subsequent fingerprint blocks. We select all fingerprint blocks of

the training corpus, which contain about 2.5 million blocks corresponding to 77.5

million samples. L sets to be 1, 32, 64, 128 and 256, respectively. Finally, we

calculate average BER for each ID.

The similarity distribution of subsequent fingerprint blocks is illustrated in 5.1.

Some important information can be obtained from Figure 5.1 by analyzing as the

following.

Firstly, for four different lengths, the distributions of similarities coincide with

each other, so evidently it can illustrate that the similarity distribution of subsequent

fingerprint blocks mainly relates to ID and is not associated with block length.

Secondly, an important rule is also shown in Figure 5.1: as the ID increases, the

similarity first decreases to the global minimum (BER gets to the global maximum),

then increases and finally fluctuates around 0.5. The large similarity in adjacent

blocks can also explain the function of the large overlap well.

Moreover, to observe the distribution of similarities when ID > 31, we also

5.1. SUBSEQUENT SIMILARITIES 39

0 3 7 11 15 19 23 27 31
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ID

B
E

R
 (

%
)

Block Lengh=1

Block Lengh=32

Block Lengh=64

Block Lengh=128

Block Lengh=256

Figure 5.1: Distribution of Subsequent Similarities.

another experiment as the following.

Randomly choosing 20K thousand pairs of fingerprint blocks from each song,

and building 20M pairs of fingerprint blocks from the training corpus. Moreover,

to reduce the impact of subsequent blocks, we also filter meeting the condition

ID 6 31. In order to fully observer the distribution of similarities, we select five

representative lengths: 1, 32, 64, 128 and 256 for experiments. Finally, we calculate

the BER scores for these block pairs and observe the score distributions.

When ID > 31, the distribution of similarities is shown in Figure 5.2 and this

distribution approximately follows the normal distribution. Obviously, as the block

length is increasing, the similarities are characterized by intensive distribution.

In this subsection, the experimental results indicate that subsequent blocks have

a large similarity.

5.2. NON-SIMILAR SIMILARITIES 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER

T
h
e
 B

E
R

 s
c
o
re

s
 (

%
)

L=1

L=32

L=64

L=128

L=256

Figure 5.2: Distribution of Random Similarities.

5.2 Non-Similar Similarities

The goal of this subsection is to study the similarity distribution of non-similar

fingerprint blocks. Here the non-similar is relative to the similar. How to get non-

similar block pairs is the key to success in this experiment. Normally, fingerprint

blocks from different songs are less likely to be similar, if two fingerprint blocks of

each pair are randomly selected from two different songs, in this case, the probability

of the similar can be almost ignored.

Based on these analyses, the second experiment is designed: randomly choosing

2K thousand pairs of fingerprint blocks for every two songs, and building 20M pairs

of fingerprint blocks from the training corpus. Moreover, to further observe the dis-

tribution of similarities for different block lengths, we also choose five representative

lengths: 1, 32, 64, 128 and 256 for experiments. Finally, we calculate the BER

5.2. NON-SIMILAR SIMILARITIES 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER

T
h
e
 B

E
R

 s
c
o
re

s
 (

%
)

L=1

L=32

L=64

L=128

L=256

Figure 5.3: Distribution of Non-Similar Similarities.

scores for these block pairs and observe the score distributions.

The distribution of similarities in non-similar blocks also approximately follows

the normal distribution as illustrated in Figure 5.3. As a matter of fact, Figure 5.3 is

very similar to Figure 5.2. Besides, as the block length is increasing, the distribution

is more concentrated, which means that the longer block is more expressive and

representative together with Figure 5.2.

In this paper, we mainly focus on L = 256. When L = 256, the similarity almost

lies in the domain from 0.41 to 0.57, with the error of less than 10−5. There are

usually about 25 thousands of sub-fingerprints in one song, so BER = 0.41 and

BER = 0.57 can be completely considered as the start and the end of the non-

similar fingerprint blocks respectively. In fact, according to definition of bit error

bit, the condition BER > 0.57 is also non-similar relationship, namely meeting

the condition BER ≥ 0.41 represents the non-similar relationship. Based on these

5.3. SIMILAR SIMILARITIES 42

W C
1 [0.09,0.9]
32 [0.29,0.69]
64 [0.33,0.63]
128 [0.38,0.60]
256 [0.41,0.56]

Table 5.1: Domain of Non-Similar Similarities.

analyses, the domain of similarities in different lengths is as shown in Table 5.1,

with the error of less than 10−5.

This experiment shows that similarities for non-similar fingerprint blocks assume

highly localized distributions, especially, as the block length is increasing and the

distribution is more centralized.

5.3 Similar Similarities

The third experiment investigates the similarities of similar fingerprint blocks with

256 subsequent sub-fingerprints. Here similar is relative to non-similar, namely

BER < 0.41. We first design a simple method to find similar blocks and then

observe their similarity distribution. The steps are described as follows.

Step 1

A fingerprint sequence FP = f1f2...fN is equally segmented into blocks with 256

subsequent sub-fingerprints and the i-th block is

Bi = FP 256
(i−1)×256+1, i ∈ [1, I], (5.1)

Where I = [N
256

] is integer part of N
256

.

Step 2

Each block Bi is detecting its similar blocks in f(i−1)∗256+2...fN .

In testing, we find two types of redundant blocks caused by using the larger

overlapping factor in feature extraction:

The first type is that each block Bi is similar to its neighboring blocks. That is

5.3. SIMILAR SIMILARITIES 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER

T
h
e
 B

E
R

 s
c
o
re

s
 (

%
)

L=256

Figure 5.4: Distribution of Similar Similarities.

because the adjacent fingerprint blocks have the larger similarity caused by using the

larger overlap factor in extracting. In order to address this redundant, we restrict

that each block Bi is related to its similar blocks in f(i−1)∗256+...fN . The threshold

is defined as the adjacent redundant distance.

The second type is that if both Bi and B
′
i are similar, then Bi is also similar to

adjacent blocks of B
′
i. Therefore, after finding B

′
i, we further check the neighborhood

of B
′
i to look for a best similar block B

′′
i in place of B

′
i. After finishing, let S represent

subscript of B
′′
i , then Bi will continue to find its similar blocks in fS+...fN , until the

end.

We first employ this algorithm to observe the distribution of similarities in the

similar blocks and the threshold sets to be 32. Dataset still comes from the test cor-

pus. By this experiment, these similarities for similar block pairs would be recorded.

Experimental results based on the test corpus are illustrated in Figure 5.4.

5.3. SIMILAR SIMILARITIES 44

Figure 5.4 shows that as the BER increases, the BER score first reaches the

first peak at BER = 0.33 , then fast decreases to a minimum at BER = 0.35, finally

rapidly increases from BER = 0.37.

This experiment indicates that the similarities for similar blocks are smaller

compared with the non-similar.

Chapter 6

Detecting Repeating Patterns

Based on Similarity Analysis

In this chapter, according to similarity analyses of Chapter 5, a relevant algorithm

is proposed to discover repeating patterns. Experiments based on a test corpus of

30 familiar songs are used to evaluate the whole algorithm. Finally, we fully analyze

performance of our methods.

6.1 Detection Algorithm

In this section, a new algorithm is designed to detect repeating patterns for verifying

the similarity analysis of Chapter 5. In literature [45], it calculated similarities of

all element-wise to capture similar elements; literature [46] tried to use the global

correlation to capture variable-length similar segments based on the element-wise

comparison through adaptive thresholds. In fact, Chapter 4 has been proven that the

longer block is more expressive and representative, so the block-to-block measure is

more suitable for our method. It is apparent that a true repeating pattern is usually

consisted of many subsequent blocks. Therefore, we first capture similar blocks,

join these similar blocks to form the longer blocks and finally extract repeating

patterns by refining the longer blocks. This approach is described as the following

45

6.1. DETECTION ALGORITHM 46

1

2

3

…
…

…
…

N

Figure 6.1: Hash Table of Storing Similar Blocks.

subsections.

6.1.1 Capturing Similar Blocks

The aim of this subsection is to capture similar blocks. Based on literature [29],

we also consider that a block with 256 subsequent sub-fingerprints can identify a

repeating pattern. So the block length sets to be 256 in our method. In addition,

the similar threshold is set: ρ = 0.41, namely if meeting the condition BER < 0.41

, it represents similar relationship. After capturing similar blocks, they will be

stored into a hash table HT as shown in Figure 6.1, of which each item represents a

segmented block Bi and points to a list that stores all the information of all similar

blocks. In the list, each node represents a similar block and is consisted of data

domain and pointer domain. The data domain contains the first sub-fingerprint

subscript and its length of a similar block. The default of block length is equal to

be 256.

6.1.2 Mergence

A lot of similar blocks are generated in the above subsection. In this subsection,

these similar blocks will be combined to form the longer blocks. Because of using

6.1. DETECTION ALGORITHM 47

the high overlapping factor in the feature extraction, it also causes misalignments

in subsequent blocks. So the error of 32 sub-fingerprints is allowed in combining.

Mergence Rule

Similar blocks which belong to the same repeating pattern are combined together

to form the longer block by modifying length of the first sub-fingerprint and deleting

the nodes at which the combined blocks are located.

Mergence Description

If subsequent similar blocks θ1...θi−1 are coming from HT [j],...HT [i− j− 2] and

HT [i− j − 1] has a similar block θi meeting Eq.6.1:

|θi.index− θ1.index− θ1.length| < 32. (6.1)

Then, these blocks θ1...θi belong to the same pattern. Where θ1 represents the

first sub-fingerprint. Equation 6.2 is used to update length of θ1 and θi is removed

from HT [i− j − 1].

θ1.length = θi.index− θ1.index+ θi.length. (6.2)

After merging, we obtain a lot of the longer blocks. But, there are still some of

similar blocks which have not been combined. Such blocks mainly come from the

noise or slightly similar and are very difficult to distinguish.

In order to reduce other influences, in this paper, we restrict length of repeating

patterns to be longer than 512 sub-fingerprints (approximates 6 sec duration). The

shorter will be removed.

6.1.3 Boundary Refinement

In our method, mainly using segmented blocks are to capture similar blocks, so there

are missing sub-fingerprints in two boundaries of each repeating in HT. It needs to

perform the boundary refinement. According to the whole fingerprint sequence and

6.2. EXPERIMENTS AND ANALYSES 48

ρ = 0.41, the missing parties are very easily found by traversing along two boundaries

of the longer blocks.

After the boundary refinement, in HT, each node in left nodes represents a

detected repeating pattern. According to sampling rate, the start and end time are

easily computed.

6.2 Experiments and Analyses

In Chapter 5, the similarity analysis is carried out by three experiments. According

to similarity analysis, a related method is presented to discover repeating patterns

for verifying the analysis results of Chapter 5. This subsection will evaluate the

whole algorithm.

Actually, no matter what types of music, the comprehension for repeating pat-

terns is the same. So these songs with clear structure and relatively strict repetition

should be used to test for improving the quality of experiments. These works [45,46]

have shown that pop music usually has obvious repeating structures and is very eas-

ily to test. In our tests, a test corpus of 30 familiar pop songs is used. We also

annotate the ground truth of the repeating patterns on these 30 songs by training a

lot and these annotated patterns are exploited as our ground truth patterns. In the

annotation, we only consider such repeating patterns, with a length longer than 6 s.

6.2.1 Evaluation on Algorithm

In this chapter, the proposed method is based on similarity analysis. In this subsec-

tion, we will test whether it is correct and use three criteria: recall, precision and

F1 to evaluate.

According to sample rate, time representation of the annotated patterns is first

converted into the sub-fingerprint representation. The recall and precision of each

repeating pattern are calculated based on the number of sub-fingerprints, with refer-

6.2. EXPERIMENTS AND ANALYSES 49

Recall Precision F1
Our Method 81.7% 81.7% 79.9%

Table 6.1: Evaluation on Algorithm.

ence to subscripts. To achieve a robust evaluation, the error with 8 sub-fingerprints

is allowed in between the annotated patterns and the detected patterns.

If S denotes the set of detected repeating patterns generated from Section 6.1 and

Q for the ground truth patterns of each song, then the correctly detected repeating

patterns are represented by S
′
:

S
′
= S ∩Q. (6.3)

Where ∩ denotes the intersection operator, namely including the same sub-

fingerprints, with reference to subscripts. In this paper, the recall R is expressed

as:

R =
S

′

Q
. (6.4)

The precision P is described as:

P =
S

′

S
. (6.5)

The F1 measure represents the overall performance, which is usually defined as

the harmonic mean of the average recall and precision:

F1 =
2×R× P
R + P

. (6.6)

The average recall, precision and F1-measure based on these 30 songs are illus-

trated in Table 6.1.

Table 6.1 shows how our approach can discover the true repeating patterns well.

It shows that exploiting segmented blocks instead of the whole repeating patterns

6.2. EXPERIMENTS AND ANALYSES 50

is feasible. Besides, the setting of similar threshold BER = 0.41 is reasonable,

namely if meeting the given conditions, the similarity distributions of both repeating

patterns and non-repeating pattern are approximately distinguishable in fingerprint

features.

6.2.2 Analysis on Performance

In Section 6.2.1, it has shown that our method based similarity analysis is feasible.

In this subsection, we will evaluate its performance again. Because the longer block

is more expressive and representative, the block-to-block similarity measure should

be more efficient. We here also employ the fourth and fifth experiments to compare

its performance with two relevant approaches: self-similarity [45] and AMG [46].

In these three methods, they all focused on melody, namely repeating patterns

represent having similar melodies. Besides, their features are also similar based on

perceptual feature.

The fourth experiment: computing the element-wise similarities (L = 1) in de-

tected repeating patterns and observing the distribution of similarities. The results

are shown in Figure 6.2.

The fifth experiment: randomly selecting a pair of the similar blocks (the BER =

0.29) from detected repeating patterns to compute the element-wise similarities and

observing similarities of subsequent element-wises. The results are shown in Figure

6.3.

The element-wise similarity mainly lies in the domain from 0.05 to 0.8 based on

the test corpus as shown in Figure 6.2. In each repeating pattern, the element-wise

similarity greatly varies and the change of subsequent element-wise similarities is

disorder as illustrated in Figure 6.3. Therefore, literature [45] used a single threshold

to capture similar data and literature [46] tried to use adaptive thresholds and

suffix tree to capture variable similar blocks based on the global correlation, and

clearly the ability of repeating pattern recognition is low. That leads to heavily

6.2. EXPERIMENTS AND ANALYSES 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER

T
h
e
 B

E
R

 s
c
o
re

s
 (

%
)

L=1

Figure 6.2: Element-wise Similarities in Repeating Patterns.

relying on refinements to extract repeating patterns in these two approaches. In

our method, the block-to-block similarity measure is applied and the longer block is

more expressive and representative as shown in Figure 5.3, obviously the ability for

recognizing repeating patterns is remarkable. Therefore, similar blocks are easily

identified and works of extracting repeating patterns are more efficient compared

with [45] and [46].

6.2.3 Analysis on Ability of Recognition

In this subsection, we further analyze the ability of recognition of repeating patterns.

To evaluate, we also propose three standards: duration, the average similarity and

the discovery rate of repeating patterns to measure the ability of recognition, re-

spectively representing in T , AS and DR. T represents duration of each repeating

pattern. The AS represents the overall similarity of each repeating pattern and

6.2. EXPERIMENTS AND ANALYSES 52

0 20 40 60 80 100 120 140 160 180 200 220 240 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The sub−fingerprint index in a fingerprint block

B
E

R

Figure 6.3: Element-wise Similarities in A Similar Block Pair.

we here compute the average similarity of all similar blocks to represent AS. The

DR shows the ratio of all real similar blocks to the detected similar blocks in each

repeating pattern.

For a given repeating pattern, if it is composed of n similar blocks, let BERi

represent similarity of i-th similar blocks; g represents the amount of missing blocks

compared to real repeating patterns. Then AS and DR are defined as follows.

AS =

∑n
i=1BERi −G

n− g
. (6.7)

DR =
n− g
n

. (6.8)

For the missing blocks, the similarity sets to be 0. The longer the T , the better

the robustness of our approach is; the smaller the value AS, the higher similarities

6.2. EXPERIMENTS AND ANALYSES 53

1 10 20 30 40 50 60 70 80 90 100 110 120 130
0

10

20

30

40

50

60

70

80

90

100

Repeating pattern ID

D
u
ra

ti
o
n
 (

s
)

Figure 6.4: Duration of Repeating Pattern.

are; while the bigger the values DR, the higher similarities are. Therefore, T , AS

and DR can reflect the ability of pattern recognition.

Here we employ the test corpus to measure and finally get 121 repeating patterns

and the results are as shown in Figure 6.4, Figure 6.5 and Figure 6.6.

The ability of repeating recognition is as illustrated in Figure 6.4, Figure 6.5 and

Figure 6.6. Through our method, based on the test corpus, the average duration

33.4s is identified as shown in Figure 6.4. Besides, we can see that lengths of

repeating patterns greatly vary. Figure 6.5 shows the overall similarity of each

repeating pattern and the similarity is obviously less than the non-repeating. From

Figure 6.6, we can observe the ratio of missing sub-fingerprints in each real repeating

pattern. In some of repeating patterns, the DR approximately achieves 100% and

we believe that these patterns should have clear repetitive structure. From three

standards, we can clearly observe the recognition capability of our method.

6.2. EXPERIMENTS AND ANALYSES 54

1 10 20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

Repeating Pattern ID

S
im

ila
ri
ty

Figure 6.5: Overall Similarity of Repeating Pattern.

Next we use these 121 repeating patterns to observe the similarity distribution

of similar block pairs in repeating patterns. The experimental results are plotted in

Figure 6.7.

The distribution of similarities in repeating patterns is as indicated in Figure 6.7.

By comparing Figure 5.4 and Figure 6.7, the similarity in the repeating patterns is

better than the similar blocks. So that means that repeating patterns are mainly

coming from similar blocks. Besides, it can also explain that exploiting blocks as

repeating patterns is feasible.

6.2.4 Analysis on Structure

Due to use the high overlapping factor in the feature extraction, it leads to occurring

misalignments in subsequent blocks. To handle this problem, in our method, the

error of 32 sub-fingerprints is allowed in merging. Here we further analyze this

6.2. EXPERIMENTS AND ANALYSES 55

1 10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Repeating Pattern ID

D
is

c
o
v
e
ry

 R
a

te

Figure 6.6: Discovery Rate of Repeating Pattern.

settlement whether it is reasonable. We exploit the test corpus to perform the test.

The final experiments are as revealed in Figure 6.8.

The error is mainly centering at (-9, 6) about 98.7% as illustrated in Figure

6.8. In our method, after capturing similar blocks, we further select a best similar

block from its subsequent blocks to merger. So it can ensure that the optimum of

similar blocks is identified. From experimental results, that method is feasible and

the condition of the error of 32 sub-fingerprints is correct. Besides, this experiment

can also explain as one reason of the missing sub-fingerprints.

6.2.5 Analysis on Complexity

In this chapter, based on similarity analysis, we present a new method to detect

repeating patterns. Here we want to show that efficiency of this method. We

mainly analyze the time and space complexity and compare with self-similarity [45]

6.2. EXPERIMENTS AND ANALYSES 56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER

T
h
e
 B

E
R

 s
c
o
re

s
 (

%
)

L=256

Figure 6.7: Similarity of Repeating Pattern.

and AMG [46].

The space complexity

In detecting repeating patterns, the whole process contains two phases: capturing

similar elements or blocks and further refining them to extract repeating patterns.

In the first phase, the difference of these three methods is not obvious and we mainly

focus on the second phase.

Firstly, we evaluate the space complexity by memory usage. In our algorithm,

after capturing similar blocks, they are stored to a hash table with a size of N
256

, where

N represents the total amount of sub-fingerprints. Let P represent the number of

similar blocks obtained from Section 6.1, thus the complexity of space is described:

O(2×Q+ 2× P) ≈ O(2× P) < O(N). (6.9)

In self-similarity [45] and AMG [46], they need to construct a o(N × N) self-

6.2. EXPERIMENTS AND ANALYSES 57

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error

T
h
e
 P

e
rc

e
n

t
o

f
E

a
c
h
 E

rr
o
r

Figure 6.8: Distribution of Misalignment Error.

similarity matrix to store similar elements or the candidate motifs for further ex-

tracting repeating patterns.

The time complexity

Next we analyze time complexity. In our method, we use a hash table with a

size of N
256

to record all similar blocks. And the average number of nodes in the lists

is equal to 6 based on the test corpus. Therefore, we fairly extract the repeating

patterns in a o(N × 6) matrix; while for the self-similarity and AMG, it needs to

extract repeating patterns in a sparse o(N ×N) matrix. Obviously, our approach is

better than self-similarity and AMG.

Through analysis of complexity, our improvement is obvious in space and time

complexity, compared to the self-similarity and AMG.

6.2. EXPERIMENTS AND ANALYSES 58

1 6 11 16 21 26 31
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ID

T
h
e
 p

e
rc

e
n
t
o
f
e
a
c
h
 I
D

 (
%

)

AR

SR

Figure 6.9: Distribution of Redundancy Data.

6.2.6 Analysis on Redundancy Data

In our method, the sub-fingerprint extraction uses a large overlap factor to offset

the error of frame boundaries, which causes the high similarities between adjacent

fingerprint blocks. So there are two types of redundant blocks are found. The first

type is that the current block Bi is similar to its neighboring blocks and called

the adjacent redundancy (AR). The second type is that if B
′
i is a similar block

of the current block Bi, then Bi is also similar to adjacent blocks of B
′
i. And this

redundancy is called similar redundancy (SR).

We here use the test corpus to observe the distributions of two redundancies and

the results are as shown in Figure 6.9.

The distributions of two redundancies are as illustrated Figure 6.9. It is noted

that the AR is more than the SR. These two redundancies would generate a lot

of trivial similar blocks, so they must be filtered. For AR, after capturing similar

6.3. SUMMARY 59

blocks, it will jump 32 subs-fingerprints to continue with comparing. For SR, we

will select a best similar block near a similar block to combine.

6.3 Summary

This chapter presents a new approach to detect repeating patterns based on the

similarity analysis in the sub-fingerprint feature sequence. We firstly segment a

sub-fingerprint sequence into blocks and analyze similarities of block pairs. And

according to similarity analysis, a relevant method is proposed to detect repeating

patterns. The experimental results show that our approach can capture the true

repeating patterns well. Moreover, the performance analyses show that our method

is prospective.

In future works, we would further study the rules of distribution in similarities

of repeating patterns and improve the detection accuracy.

Chapter 7

Contribution and Futher Works

7.1 Conclusion

This thesis studies content-based music retrieval and mainly focus on repeating

patterns. In our method, the sub-fingerprint feature is exploited. Our research

contains two parts.

In the first part, we present a fast music retrieval method as extension of Philips’

method to address problems of limited memory. In our method, Fibonacci Hashing

Function is used to provide a good distribution of hash values; the right shift opera-

tion is carried out to adjust size of lookup table according the practical memory. The

results show that our method is more robust and has a wide range of adaptability.

In the second part, we study similarities of repeating patterns and propose a

relevant approach to detect repeating patterns based the similarity analysis. In

analyzing, in order to solve the variable lengths of repeating patterns, blocks instead

of repeating patterns are studied. Final experiments show that repeating patterns

can be detected well in our method, so our method is feasible.

60

7.2. FUTHER RESEARCHES 61

7.2 Futher Researches

Firstly, in Chapter 4, because the right shift operation is carried out, for the high

distortion, we need to consider more candidate sub-fingerprints compared to Philips’

method. So it is drawback of our method. Next we consider by exploiting similarity

analysis to study this problems

Secondly, in Chapter 6, we only use sub-fingerprint feature to study repeating

patterns. We believe that this method should also be applied to other features.

Next we try to verify. Besides, we also further study rules of repeating patterns in

distribution of similarities to obtain more useful information.

Bibliography

[1] N. Orio. Music retrieval: A tutorial and review, volume 1. 2006.

[2] [2] S. L. Vellucci. Music metadata. 2004.

[3] Jonathan Foote. An overview of audio information retrieval. Multimedia sys-
tems, 7(1):2–10, 1999.

[4] George Tzanetakis and Perry Cook. Audio information retrieval (air) tools. In
Proc. International Symposium on Music Information Retrieval, 2000.

[5] Rainer Typke, Frans Wiering, Remco C Veltkamp, et al. A survey of music
information retrieval systems. In ISMIR, pages 153–160, 2005.

[6] Dalibor Mitrović, Matthias Zeppelzauer, and Christian Breiteneder. Features
for content-based audio retrieval. Advances in computers, 78:71–150, 2010.

[7] Martin F McKinney and Jeroen Breebaart. Features for audio and music clas-
sification. In ISMIR, volume 3, pages 151–158, 2003.

[8] Mingchun Liu and Chunru Wan. A study on content-based classification and
retrieval of audio database. In Database Engineering and Applications, 2001
International Symposium on., pages 339–345. IEEE, 2001.

[9] Michael Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe
Rhodes, Malcolm Slaney, et al. Content-based music information retrieval:
Current directions and future challenges. Proceedings of the IEEE, 96(4):668–
696, 2008.

[10] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-
based multimedia information retrieval: State of the art and challenges. ACM
Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 2(1):1–19, 2006.

[11] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-
based multimedia information retrieval: State of the art and challenges. ACM
Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 2(1):1–19, 2006.

[12] Cheng Yang. Music database retrieval based on spectral similarity. 2001.

62

BIBLIOGRAPHY 63

[13] Jyh-Shing Roger Jang and Hong-Ru Lee. Hierarchical filtering method for
content-based music retrieval via acoustic input. In Proceedings of the ninth
ACM international conference on Multimedia, pages 401–410. ACM, 2001.

[14] Yazhong Feng, Yueting Zhuang, and Yunhe Pan. Popular music retrieval by
detecting mood. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 375–
376. ACM, 2003.

[15] Jonathan Foote, Matthew L Cooper, and Unjung Nam. Audio retrieval by
rhythmic similarity. In ISMIR, 2002.

[16] Lie Lu, Hong You, HongJiang Zhang, et al. A newapproach to query by hum-
ming in music retrieval. In ICME, pages 22–25, 2001.

[17] Malcolm Slaney. Semantic-audio retrieval. In Acoustics, Speech, and Signal
Processing (ICASSP), 2002 IEEE International Conference on, volume 4, pages
IV–4108. IEEE, 2002.

[18] Michael I Mandel, Graham E Poliner, and Daniel PW Ellis. Support vector
machine active learning for music retrieval. Multimedia systems, 12(1):3–13,
2006.

[19] Jonathan T Foote. Content-based retrieval of music and audio. In Voice, Video,
and Data Communications, pages 138–147. International Society for Optics and
Photonics, 1997.

[20] Yuen-Hsien Tseng. Content-based retrieval for music collections. In Proceed-
ings of the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 176–182. ACM, 1999.

[21] Peter Grosche, Meinard Müller, and Joan Serrà. Audio content-based music
retrieval. Multimodal Music Processing, 3:157–174, 2012.

[22] Dongge Li, Ishwar K Sethi, Nevenka Dimitrova, and Tom McGee. Classification
of general audio data for content-based retrieval. Pattern recognition letters,
22(5):533–544, 2001.

[23] Tong Zhang and C-C Jay Kuo. Content-based classification and retrieval of
audio. In SPIE’s International Symposium on Optical Science, Engineering,
and Instrumentation, pages 432–443. International Society for Optics and Pho-
tonics, 1998.

[24] Erling Wold, Thom Blum, Douglas Keislar, and James Wheaten. Content-based
classification, search, and retrieval of audio. MultiMedia, IEEE, 3(3):27–36,
1996.

[25] Pedro Cano. Content-based audio search: from fingerprinting to semantic audio
retrieval. PhD thesis, Citeseer, 2006.

BIBLIOGRAPHY 64

[26] Pedro Cano, E Batle, Ton Kalker, and Jaap Haitsma. A review of algorithms
for audio fingerprinting. In Multimedia Signal Processing, 2002 IEEE Workshop
on, pages 169–173. IEEE, 2002.

[27] Pedro Cano, Eloi Batlle, Emilia Gómez, Leandro de CT Gomes, and Madeleine
Bonnet. Audio fingerprinting: concepts and applications. In Computational
intelligence for modelling and prediction, pages 233–245. Springer, 2005.

[28] Avery Wang et al. An industrial strength audio search algorithm. In ISMIR,
pages 7–13, 2003.

[29] Jaap Haitsma and Ton Kalker. A highly robust audio fingerprinting system. In
ISMIR, volume 2002, pages 107–115, 2002.

[30] http://www.music-ir.org/mirex/wiki/2015:Discovery_of_Repeated_

Themes_%26_Sections/.

[31] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[32] [32]https://en.wikipedia.org/wiki/K-means_clustering/.

[33] Rui Xu, Donald Wunsch, et al. Survey of clustering algorithms. Neural Net-
works, IEEE Transactions on, 16(3):645–678, 2005.

[34] Ning-Han Liu, Yi-Hung Wu, and Arbee LP Chen. An efficient approach to
extracting approximate repeating patterns in music databases. In Database
Systems for Advanced Applications, pages 240–252. Springer, 2005.

[35] Jia-Lien Hsu, Chih-Chin Liu, and Arbee LP Chen. Discovering nontrivial re-
peating patterns in music data. Multimedia, IEEE Transactions on, 3(3):311–
325, 2001.

[36] Ioannis Karydis, Alexandros Nanopoulos, and Yannis Manolopoulos. Finding
maximum-length repeating patterns in music databases. Multimedia Tools and
Applications, 32(1):49–71, 2007.

[37] Chaokun Wang, Jianzhong Li, and Shengfei Shi. N-gram inverted index struc-
tures on music data for theme mining and content-based information retrieval.
Pattern recognition letters, 27(5):492–503, 2006.

[38] Chih-Chin Liu, Jia-Lien Hsu, and Arbee LP Chen. Efficient theme and non-
trivial repeating pattern discovering in music databases. In Data Engineering,
1999. Proceedings., 15th International Conference on, pages 14–21. IEEE, 1999.

[39] Jean-Julien Aucouturier and Mark Sandler. Finding repeating patterns in
acoustic musical signals: Applications for audio thumbnailing. In Audio Engi-
neering Society Conference: 22nd International Conference: Virtual, Synthetic,
and Entertainment Audio. Audio Engineering Society, 2002.

http://www.music-ir.org/mirex/wiki/2015:Discovery_of_Repeated_Themes_%26_Sections/
http://www.music-ir.org/mirex/wiki/2015:Discovery_of_Repeated_Themes_%26_Sections/
[32] https://en.wikipedia.org/wiki/K-means_clustering/

BIBLIOGRAPHY 65

[40] Wei Chai and Barry Vercoe. Structural analysis of musical signals for indexing
and thumbnailing. In Digital Libraries, 2003. Proceedings. 2003 Joint Confer-
ence on, pages 27–34. IEEE, 2003.

[41] Musataku Goto. A chorus-section detecting method for musical audio signals.
In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).
2003 IEEE International Conference on, volume 5, pages V–437. IEEE, 2003.

[42] Matthew L Cooper and Jonathan Foote. Automatic music summarization via
similarity analysis. In ISMIR, 2002.

[43] Lie Lu and Hong-Jiang Zhang. Automated extraction of music snippets. In
Proceedings of the eleventh ACM international conference on Multimedia, pages
140–147. ACM, 2003.

[44] Jonathan Foote. Automatic audio segmentation using a measure of audio nov-
elty. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International
Conference on, volume 1, pages 452–455. IEEE, 2000.

[45] Lie Lu, Muyuan Wang, and Hong-Jiang Zhang. Repeating pattern discov-
ery and structure analysis from acoustic music data. In Proceedings of the
6th ACM SIGMM international workshop on Multimedia information retrieval,
pages 275–282. ACM, 2004.

[46] Lei Wang, Eng Siong Chng, and Haizhou Li. A tree-construction search ap-
proach for multivariate time series motifs discovery. Pattern Recognition Letters,
31(9):869–875, 2010.

[47] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discovery of
time series motifs. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 493–498. ACM,
2003.

[48] Jessica Lin Eamonn Keogh Stefano Lonardi and Pranav Patel. Finding motifs
in time series. In Proc. of the 2nd Workshop on Temporal Data Mining, pages
53–68, 2002.

[49] Jia-Lien Hsu, Arbee LP Chen, and C-C Liu. Efficient repeating pattern finding
in music databases. In Proceedings of the seventh international conference on
Information and knowledge management, pages 281–288. ACM, 1998.

[50] Jouni Paulus and Anssi Klapuri. Music structure analysis by finding repeated
parts. In Proceedings of the 1st ACM workshop on Audio and music computing
multimedia, pages 59–68. ACM, 2006.

[51] Ivan Bjerre Damg̊ard. A design principle for hash functions. In Advances in
CryptologyCRYPTO89 Proceedings, pages 416–427. Springer, 1990.

[52] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards mak-
ing uowhfs practical. In Advances in CryptologyCRYPTO’97, pages 470–484.
Springer, 1997.

BIBLIOGRAPHY 66

[53] F Aydin and G Dogan. Development of a new integer hash function with vari-
able length using prime number set. Balkan Journal of Electrical & Computer
Engineering, 1(1):10–14, 2013.

[54] RL Duncan. Application of uniform distribution to the fibonacci numbers. The
Fibonacci Quarterly, 5(2):137–140, 1967.

[55] L Kuipers. Remark on a paper by rl duncan concerning the uniform distribution
mod 1 of the sequence of the logarithms of the fibonacci numbers. Fibonacci
Quart, 7(465-466):473, 1969.

[56] George Markowsky. Misconceptions about the golden ratio. The College Math-
ematics Journal, 23(1):2–19, 1992.

[57] George Markowsky. Misconceptions about the golden ratio. The College Math-
ematics Journal, 23(1):2–19, 1992.

[58] John HE Cohn. Square fibonacci numbers, etc. Fibonacci Quart, 2:109–113,
1964.

[59] Godfrey H Hardy. The theory of numbers. Science, pages 401–405, 1922.

[60] D Knuth. The art of computer programming 1: Fundamental algorithms 2:
Seminumerical algorithms 3: Sorting and searching, 1968.

	Introduction
	Background
	Metadata-Based Music Retrieval
	Content-Based Music Retrieval
	Detection of Repeating Pattern

	Motivation and Content of Research
	Thesis Organization

	Related Work
	Music Feature
	Algorithms of Detecting Repeating Pattern
	Symbolization Technique
	Numeral Technique

	Extraction of Feature
	Extracting Sub-fingerprint Feature
	Related Concepts

	A Fast Music Retrieval
	Related Works
	Philips' Fingerprint Retrieval
	Fibonacci Hashing Function

	Proposed Method
	Database Model
	Search Model

	Experiments and Analyses
	Evaluation on Algorithmn
	Analysis on Complexity

	Summary

	Similarity Analysis
	Subsequent Similarities
	Non-Similar Similarities
	Similar Similarities

	Detecting Repeating Patterns Based on Similarity Analysis
	Detection Algorithm
	Capturing Similar Blocks
	Mergence
	Boundary Refinement

	Experiments and Analyses
	Evaluation on Algorithm
	Analysis on Performance
	Analysis on Ability of Recognition
	Analysis on Structure
	Analysis on Complexity
	Analysis on Redundancy Data

	Summary

	Contribution and Futher Works
	Conclusion
	Futher Researches

