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Abstract 

 Parafibromin is a 531-amino acid protein encoded by HRPT2, a putative 

tumor suppressor gene recently implicated in the autosomal dominant 

hyperparathyroidism-jaw tumor familial cancer syndrome and sporadic parathyroid 

carcinoma.  To investigate effects of parafibromin's overexpression on cell 

proliferation, we performed assays in four different cell lines.  The transient 

overexpression of parafibromin inhibited cell growth in HEK293 and NIH3T3 cells, but 

enhanced cell growth in the SV40 large T antigen expressing-cell lines such as 293FT 

and COS7 cells.  In 293FT cells, parafibromin was found to interact with SV40 large T 

antigen and its overexpression promoted entry into the S phase, implying that the 

interaction enhanced progression through the cell cycle.  The tumor suppressor protein 

parafibromin acts as a positive regulator of cell growth like an oncoprotein in the 

presence of SV40 large T antigen.  
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Introduction 

Primary hyperparathyroidism is characterized by the calcium-insensitive 

hypersecretion of parathyroid hormone and formation of parathyroid tumors (Grimelius 

and Johansson, 1997).  The disease usually results from a single parathyroid adenoma, 

but in a minority of cases is part of hereditary syndromes, namely multiple endocrine 

neoplasia types 1 and 2A, familial isolated hyperparathyroidism, and 

hyperparathyroidism-jaw tumor (HPT-JT) syndrome (Kassem et al., 1994; Marx et al., 

1998; Schuffenecker et al., 1998; Wassif et al., 1999).  HPT-JT syndrome is 

characterized by parathyroid tumors, fibro-osseous lesions of the mandible and maxilla, 

and renal cysts and tumors (Carpten et al., 2002; Jackson, et al., 1990; Szabo et al., 

1995).  Interestingly, it is associated with a high incidence of parathyroid carcinoma in 

contrast to sporadic and other familial forms of primary hyperparathyroidism.  The 

gene whose inactivation is directly associated with the pathogenesis of HPT-JT 

syndrome has been identified as the tumor suppressor gene HRPT2 (Carpten et al., 

2002).  In addition, somatic mutations of HRPT2 have been frequently found in 

patients with sporadic parathyroid carcinoma (Howell et al., 2003; Shattuck et al., 

2003).   

The HRPT2 gene is ubiquitously expressed and encodes a protein consisting 

of 531 amino acids, termed parafibromin.  Parafibromin is thought to be a tumor 

suppressor protein since disease-associated HRPT2 mutations uniformly result in a loss 

of function of parafibromin (Carpten et al., 2002; Howell et al., 2003; Shattuck et al., 
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2003; Simonds et al., 2004; Villablanca et al., 2004; Mizusawa et al., 2006).  

Parafibromin has two putative nuclear localization sequences (NLSs) and partial 

homology with the yeast Cdc73p, a component of the RNA polymerase II-associated 

Paf1 complex in budding yeast.  In fact, parafibromin physically interacts with human 

orthologs of components of the yeast Paf1 complex, including Paf1, Leo1, Ctr9, and 

Rtf1, that are involved in transcription, elongation, and 3' end processing 

(Rozenblatt-Rosen et al., 2005; Yart et al., 2005; Zhu et al., 2005).  However, it 

remains unknown whether the human Paf1 complex is directly involved in tumor 

suppression. 

SV40, a small DNA virus belonging to the polyomavirus family, has served 

as a powerful model system for dissecting fundamental biological processes including 

DNA replication, transcription, and neoplastic transformation (Simmons, 2000).  After 

infection, SV40 large T antigen (LT) alters the gene expression and growth of host cells 

by binding to cellular transcription factors, components of the replication machinery 

and of the cell cycle regulatory apparatus including p53, and retinoblastoma family 

proteins such as pRb, p107, and p130 (Ali and DeCaprio, 2001).  Most of the 

interactions of LT with these cellular proteins are crucial for tumorigenesis (Fanning 

and Knippers, 1992).  Thus, LT is useful for studying oncogenic transformation, 

however, LT has not been regarded as a common cause of human tumors because no 

clear evidence that infection with SV40 contributes to tumorigenesis in humans has 

been obtained. 
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In this study, we analyzed effects of the overexpression of parafibromin on 

cell growth in four cell lines.  We found that parafibromin increased the growth of 

cells expressing LT, although it suppressed that of cells not expressing LT.  

Consequently, we hypothesized that the different effects of parafibromin on cell growth 

between the cell lines with or without LT-expression arises from interaction between 

parafibromin and LT.  To test this hypothesis, we investigated the interaction between 

parafibromin as a component of the human Paf1 complex and LT.  

 



 6 

Results 

Parafibromin enhances growth in cell lines expressing LT 

 Parafibromin is thought to be a tumor suppressor protein since 

disease-associated HRPT2 mutations uniformly predict loss of parafibromin function.  

To investigate whether parafibromin has a direct effect on cell proliferation, we 

performed assays in different cell lines overexpressing parafibromin.  The efficiency 

with which the enhanced green fluorescent protein-expression vector was introduced 

into HEK293, NIH3T3, 293FT, and COS7 cells was approximately 80%, 20%, 80%, 

and 80%, respectively (data not shown).  In HEK293 cells, the transient 

overexpression of parafibromin strongly inhibited proliferation (Figure 1a).  Although 

the inhibitory effect of parafibromin in NIH3T3 cells was weaker than that in HEK293 

cells because of the low transfection efficiency, a significant inhibitory effect on cell 

growth was observed (Figure 1b).  The results regarding the tumor suppressor activity 

of parafibromin were consistent with the findings made by Woodard et al (2004).  

Moreover, parafibromin unexpectedly enhanced cell growth in 293FT and COS7 cells 

(Figure 1c, d).  Because 293FT and COS7 cells are derived from SV40-transformed 

embryonic kidney fibroblasts, we speculated that interaction between parafibromin and 

LT caused an acceleration of cell growth.  

 

Parafibromin enhances progression to the S phase in cells expressing LT 

To identify the nature of the cell cycle arrest, cells transiently transfected with 
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parafibromin were examined for DNA content by flow cytometry.  

Parafibromin-transfected cells were compared with vector-transfected cells.  Analysis 

of propidium iodide (PI) incorporation showed that parafibromin caused an increase in 

the fraction of cells in phase S or M2 with a concomitant reduction in number of cells in 

G1 in the 293FT cell line (Figure 2), suggesting that parafibromin promoted entering 

into S in LT-expressing cells. 

 

Parafibromin interacts with LT 

To demonstrate interaction between parafibromin and LT, we performed 

reciprocal immunoprecipitation experiments. Immunoprecipitation assays were 

performed using extracts from HEK293 and 293FT cells that had been transfected with 

FLAG-tagged parafibromin.  FLAG-tagged parafibromin and LT were 

co-immunoprecipitated in 293FT cells, but not in HEK293 cells lacking expression of 

LT (Figure 3a).  In addition, to verify that endogenous parafibromin interacts with LT, 

immunoprecipitation of 293FT cell lysates using anti-LT antibody was performed.  

Western blotting using anti-parafibromin antibody revealed that endogenous 

parafibromin also interacted with LT in 293FT cells (Figure 3b).  

 

Parafibromin directly binds with LT in human Paf1 complex-LT interaction 

Parafibromin composes the human Paf1 complex together with hPaf1, hCtr9, 

hLeo1, and hRtf1.  To confirm if parafibromin interacts with LT by itself or through 
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other components of this complex, immunoprecipitation and Western blot analyses 

using lysates of 293FT cells transfected with HA-tagged forms of each component were 

performed.  They revealed that all the components interacted with LT in 293FT cells 

(Figure 4a), indicating that LT interacts with the human Paf1 complex in vivo.  To 

determine which protein directly interacts with LT, the HA-tagged components 

including parafibromin and LT were synthesized in vitro and subjected to 

immunoprecipitation with anti-HA antibody.  Subsequent Western blotting of the 

immunoprecipitates with anti-LT antibody revealed that LT was efficiently 

co-precipitated with parafibromin or hRtf1, whereas no direct interaction with hPaf1, 

hCtr9, or hLeo1 was observed (Figure 4b).  This suggested that LT directly interacted 

with parafibromin.  Interestingly, hRtf1 also directly interacted with LT, while the 

interaction of hRtf1 with other human Paf1 components was especially weak (Zhu et al., 

2005).  In fact, the immunoprecipitation and Western blotting could not identify 

interaction between parafibromin and hRtf1 in 293FT cells as in the studies of 

Rozenblatt-Rosen et al. (2005) and Yart et al. (2005) (Figure 4c).  Therefore, the 

interaction of hRtf1 with LT may be independent of the human Paf1 complex.   

 

Identification of binding regions of parafibromin and LT 

To establish the structural requirements for interaction between parafibromin 

and LT, a series of deletion mutants (Figure 5a) were subjected to immunoprecipitation 

and Western blotting.  The 1-315 FLAG-tagged parafibromin mutant readily interacted 
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with LT, whereas the 1-232 mutant was not co-immunoprecipitated with LT (Figure 5b).  

Moreover, the synthesized 218-263 and 218-531 FLAG-tagged parafibromin mutants 

were found to interact with LT synthesized in vitro (Figure 5c).  Thus, residues located 

between amino acids 218 and 263 appear to contribute to the parafibromin / LT 

complex's formation.  

The detection of the parafibromin-binding site on LT was also attempted.  

Immunoprecipitation and Western blot analyses of lysates from HEK293 cells 

co-transfected with a series of FLAG-tagged mutant LT with wild type HA-tagged 

parafibromin revealed that the 1-360 LT mutants could not interact with parafibromin 

(Figure 5d).  The in vitro translated 361-481 and 361-708 FLAG-tagged LT mutants 

efficiently interacted with in vitro translated HA-tagged parafibromin (Figure 5e).  

These results suggested that a domain conferring the ability to interact with 

parafibromin was located between amino acids 361 and 481 of LT. 
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Discussion 

 Parafibromin is thought to be a tumor suppressor protein.  The action of 

many tumor suppressors and oncogenes in neoplasia involves the disruption of one or 

more cell cycle checkpoint proteins.  Recently, it was documented that wild-type 

parafibromin has antiproliferative activity and inhibits cyclin D1 expression (Woodard 

et al., 2004).  The inhibitory effect of parafibromin on cyclin D1 expression would be 

lost upon biallelic HRPT2 inactivation, and disinhibition of cyclin D1 expression could 

initiate neoplastic transformation in certain susceptible tissues such as parathyroid 

glands (Arnold et al., 2002).  This suggests an obvious model for neoplasia resulting 

from a loss of parafibromin's function.  In this report, we reconfirmed that the transient 

overexpression of parafibromin inhibited the growth of HEK293 or NIH3T3 cells.  

However, it actually enhanced the proliferation of LT-expressing cells such as 293FT 

and COS7.   

Interestingly, parafibromin-overexpression in LT-expressing cells enhanced 

rather than inhibited cell proliferation.  This result was ascertained by a flow 

cytometric analysis showing that parafibromin enhanced the entering into phase S of the 

cell cycle.  Parafibromin may therefore lead to tumorigenesis in LT-expressing cells.  

The complexity of alterations in cancer is further increased by recently emerging 

evidence that some genes seem to have dual functions: the same gene can have tumor 

suppressor-like activity and functions as an oncogene.  For example, a member of the 

Krüppel-like factor (KLF) family, the gene that encodes the transcription factor KLF4, 
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can function as a tumor suppressor gene and context-dependent oncogene (Rowland et 

al., 2006).  Moreover, the menin tumor suppressor protein was reported to be an 

essential oncogenic cofactor for proto-oncoprotein of Mixed-Lineage Leukemia that is 

targeted by chromosomal translocations in a diverse subset of leukemia (Yokoyama et 

al., 2005).  Thus, parafibromin may also act as an oncogenic cofactor.   

 Human parafibromin has 32% sequence identity with yeast Cdc73 in the 

C-terminal region.  Cdc73 is a component of the yeast Paf1 protein complex that 

interacts with RNA polymerase II.  This complex is composed of five subunits: Paf1, 

Cdc73, Leo1, Ctr9, and Rtf1, indicating that parafibromin is part of the human Paf1 

complex.  In fact, parafibromin interacts with human counterparts to the yeast Paf1 

complex including homologs of Leo1, Paf1, Ctr9, and Rtf1.  The human Paf1 complex 

is involved in histone H3 methylation and transcription with events downstream of 

RNA synthesis (Rozenblatt-Rosen et al., 2005, Yart et al., 2005).  The yeast Paf1 

complex is also known to participate in cell cycle control (Porter et al., 2002).  

Interestingly, it was reported that hPaf1-overexpression resulted in an enhancement of 

cell proliferation in opposition to the tumor suppressor activity of parafibromin 

(Moniaux et al., 2006).  Thus, overexpression of parafibromin or hPaf1 affects the 

regulation of cell growth.  One possibility is that parafibromin or hPaf1 as a 

component of the human Paf1 complex participates in cell growth regulation.  The 

human Paf1 complex may be crucial in maintaining cellular homeostasis and its 

function may be altered by a change in stoichiometry.  The tumor suppressor activity 
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of parafibromin disappeared in LT-expressing cells, therefore, the tumorigenic activity 

of hPaf1 may overcome the tumor suppressor activity of parafibromin in the human 

Paf1 complex.  Another possibility is that parafibromin or Paf1 itself has an effect on 

cell growth.  However, in the present study, it could not be uncovered whether 

parafibromin or hPaf1 is involved in regulating cell growth either as a component of the 

human Paf1 complex or on its own.   

Recently, a positive role for parafibromin in the Wnt pathway was reported 

(Mosimann et al., 2006).  The constitutive Wnt pathway is causally involved in many 

different tumor types.  Therefore, parafibromin-overexpression may have the potential 

to enhance Wnt signaling in LT-expressing cells.  Cyclin D1 is the downstream target 

in the Wnt signaling pathway and its expression is known to be inhibited by 

parafibromin-overexpression in normal cell lines. We investigated whether mRNA 

levels of cyclin D1 were increased by parafibromin-overexpression in 293FT cells.  

We did not detect an increase of cyclin D1 mRNA levels in 293FT cells overexpressing 

parafibromin by real-time quantitative PCR (data not shown), suggesting that the cell 

cycle progression caused by parafibromin-overexpression in LT-expressing cells was 

regulated by mechanisms other than cyclin D1's induction.  Further experiments are 

needed to clarify whether downstream targets other than cyclin D1 in the Wnt signaling 

pathway are involved in the difference of cell cycle progression between the cells with 

and without LT-expression.  

We showed that parafibromin interacted with LT in the LT-expressing cells.  
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LT interacts with a number of host cell proteins and disrupts their functions.  LT has 

thus proven to be a useful tool for the identification of important cancer-associated 

proteins including pRb family members and p53.  Here, we show the functional 

domain of parafibromin as a component of the human Paf1 complex and LT in Figure 6.  

The LXCXE motif of LT, residues 103 to 107, mediates binding of LT to the pRb 

family proteins (Chen et al., 1990).  We showed that LT interacted with parafibromin 

at residues 361-481, suggesting that interaction with the pRb family is not required for 

LT-parafibromin interaction.  On the other hand, two regions in the C-terminus of LT 

have been shown to mediate binding to p53: amino acids 351 to 450 and 533 to 626 

(Kierstead and Tevethia, 1993).  The parafibromin-binding region in LT included one 

of the p53-binding regions.  However, experiments in vitro revealed that parafibromin 

directly interacted with LT, suggesting that parafibromin-LT interaction was also 

independent of p53-LT interaction.   

Parafibromin interacted with LT in LT-expressing cells, suggesting that the 

oncogenic activity of parafibromin may be acquired by interaction with LT.  Indeed, 

overexpression of parafibromin with a deletion in the LT-binding region in 293FT cells 

did not have an effect on cell growth (data not shown).  However, the mutant without 

the LT-binding region might not have the inherent ability of parafibromin that is 

mediated by interaction with LT.  Therefore, we could not rule out the possibility that 

the cell cycle progression by parafibromin-overexpression in LT-expressing cells 

depends on a pathway other than interaction between parafibromin and LT.  
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We showed that amino acids 218-263 of parafibromin were the LT-binding 

domain.  Interestingly, the position is consistent with the binding site for β-catenin 

(Mosimann et al., 2006), suggesting that parafibromin uses a common recruitment site 

to bind transcriptional activators.  It is possible that parafibromin assists in the 

transcriptional induction of LT- or β-catenin-targeting genes by interacting with them.  

To test this possibility, the presumptive parafibromin targets in LT-expressing cells will 

have to be identified.  

Our finding indicates that parafibromin plays two different roles in 

tumorigenesis.  One is a loss of the growth-suppressor property of parafibromin 

through biallelic inactivation of the HRPT2 gene.  The other is an enhanced 

progression of the cell cycle in the cells expressing LT.  Further studies need to focus 

on the molecular mechanism by which parafibromin impacts cell cycle progression.  
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Materials and Methods 

Plasmids  

Full-length cDNAs encoding human parafibromin and LT were amplified by 

performing reverse transcription-PCR with total RNA extracted from a normal human 

fibroblastic cell line, TIG1, and LT-expressing 293FT cells, respectively.  Primers for 

parafibromin (sense, 5'-CCGAATTCGGGGAAGATGGCGGACGTGC-3', antisense, 

5'-GGCGGCCGCTCAGAATCTCAAGTGCGATTTAT-3') and LT (sense, 

5'-GAGAATTCATATGGATAAAGTTTTAAACAGAGAG-3', antisense, 

5'-GTGCGGCCGCTCATGTTTCAGGTTCAGGGGGAGGTGT-3') were used.  Each 

sense and antisense primer was designed to contain EcoRI and NotI sites, respectively.  

The PCR products were cloned into the expression vector pcDNA3.1+ containing a 

FLAG epitope at the N-terminus or HA epitope at the C-terminus.  Each deletion 

mutant clone of parafibromin and LT was made by subcloning PCR products into 

pcDNA3.1+ containing a FLAG epitope at the N- or C-terminus.  Each full-length 

hPaf1, hCtr9, hLeo1, and hRtf1 cDNA was purchased from Invitrogen (Carlsbad, CA) 

and subcloned into pcDNA3.1+ containing an HA epitope at the C-terminus. 

 

Cell culture and Transfection 

 HEK293, 293FT, NIH3T3, and COS7 cells were cultured in Dulbecco's 

modified Eagle's medium (Sigma, St. Louis, MO) supplemented with 10% fetal calf 
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serum and antibiotic reagent (Sigma) in an atmosphere of 5% CO2 at 37˚C.  All 

transfections were carried out with Effectene (Qiagen, Chatsworth, CA) as 

recommended by the manufacturer.  

 

Antibodies 

Mouse monoclonal anti-parafibromin antibody targeting the peptide 

RRPDRKDLLGYLNC, corresponding to amino acid positions 87 to 100 (Tan et al., 

2004), was kindly provided by Dr. BT Teh (Van Andel Research Institute Michigan, 

USA).  Monoclonal anti-FLAG M2, anti-HA, and anti-β-actin antibodies were 

purchased from Sigma. Monoclonoal anti-LT (Pab 101) antibody and normal mouse 

IgG were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 

 

Proliferation assay 

Cell proliferation assays were carried out using a Cell Counting Kit (Dojindo 

Labs, Kumamoto, Japan) according to the manufacturer's protocol.  The absorbance at 

450 nm of aliquots of cell supernatants was measured using an automatic plate analyzer 

(Bio-Rad Laboratories, Hercules, CA).  Each experiment was performed three times in 

triplicate.  Results are expressed as the mean ± SD.  The two-sided Student's t-test 

was used for statistical comparisons.  A P-value <0.05 was considered statistically 

significant. 
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Flow Cytometry 

The DNA content of cells was determined following the fixation of cells in 

70% ethanol at 4°C after trypsin-mediated detachment from the culture substrate.  

After the addition of 2 µg/mL of DNase-free RNase, cells were stained with 50 µg/mL 

of PI.  DNA fluorescence was measured with an EPICS-XL flow cytometer (Beckman 

Coulter, Fullerton, CA), and the percentages of cells within phases G0/G1, S, and G2/M 

of the cell cycle were determined with FlowJo software (Tree Star, Ashland, OR). 

 

Immunoprecipitation and Western blotting 

For immunoprecipitation experiments in vitro, cells in a 100-mm dish 

(endogenous or transfected) were lysed with lysis buffer (50 mM Tris-Cl, 150 mM 

NaCl, and 0.5% NP-40, pH 8.0, supplemented with complete protease inhibitor cocktail 

(Roche; Basel, Switzerland)).  After incubation for 30 min on ice, lysates were 

centrifuged at 4˚C for 30 min at 15,000 x g.  For immunoprecipitation with anti-FLAG 

M2 antibody, supernatants were incubated with agarose beads coupled with FLAG M2 

(Sigma) at 4˚C for 16 hrs.  The beads were then washed five times with TBS (50 mM 

Tris-Cl and 150 mM NaCl, pH8.0), and immunoprecipitated proteins were eluted by 

incubation with 400 µg/mL of FLAG peptide (Sigma) at 4˚C for 30 min.  For 

immunoprecipitation with the anti-LT antibody or normal mouse IgG, lysates were 

preincubated at 4˚C for 30 min with 25 µl of protein G sepharose (Amersham 
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Biosciences, Uppsala, Sweden).  The supernatants were incubated with protein G 

sepharose coupled with anti-LT antibody or normal mouse IgG at 4˚C for 16 hrs.  The 

sepharose beads were washed five times with TBS.  The immunoprecipitated proteins 

were eluted by boiling with SDS sample buffer. 

For immunoprecipitation experiments in vitro, each sample was individually 

synthesized in vitro from a pcDNA 3.1+ plasmid inserted with the indicated cDNA, 

using the TNT Quick Coupled Transcription/Translation system (Promega, Madison, 

WI).  For detecting interaction, the sample was mixed with TBS and then 

immunoprecipitation using anti-FLAG or anti-HA was performed.  

Protein samples were subjected to SDS-polyacrylamide gel elecrophoresis 

and transferred onto Immobilon Transfer Membranes (Millipore, Bedford, MA).  

Membranes were blocked with blocking reagent (Blocking One: Nacalai Tesque, Kyoto, 

JAPAN) and probed with each primary antibody in 1 x ExactaCruz E dilution buffer 

(Santa Cruz) followed by horseradish peroxidase-conjugated secondary antibody 

(ExactaCruz Western Blot Reagent: Santa Cruz).  Antigens were then visualized by 

enhanced chemiluminescence (ECL plus Western Blotting Detection; Amersham 

Biosciences) using Hyperfilm MP (Amersham Biosciences). 
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Legends to figures  

 

Figure 1  Upper panels: Effects of the overexpression of parafibromin on proliferation 

in fibroblastic cell lines: HEK293 (a), NIH3T3 (b), 293FT (c), and COS7 (d).  The 

proliferation of cultured cells transiently transfected with a vector (filled circle) or 

cDNA (open circle) encoding parafibromin as indicated was assayed.  Each value 

represents the mean (bars, SD) of three individual experiments. *P<0.05, determined 

with Student’s t test.  Lower panels: Western blot analysis of each cell line transfected 

with the vector and parafibromin cDNA.  

 

Figure 2  Effects of parafibromin's overexpression on the cell cycle in 293FT cells.  

293FT cells were transfected with a vector or cDNA encoding parafibromin.  

Twenty-four hours posttransfection, cells were trypsinized, fixed, and stained with 

propidium iodide for flow cytometric analysis.  The flow cytometric profiles are 

representative of at least three independent experiments.  

 

Figure 3  Interaction between LT and parafibromin.  (a) Immunoprecipitation with 

anti-FLAG antibody or normal mouse IgG from lysates of HEK293 (lacking LT) and 

293FT (expressing LT) cells transfected with the vector or FLAG-tagged parafibromin.  

Western blot analyses (WB) of INPUT samples and immunoprecipitants (IP) with 

anti-LT and anti-FLAG antibodies were performed.  (b) Analyzing the interaction of 
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endogenous parafibromin and LT in 293FT cells.  Immunoprecipitation of 293FT cell 

lysates with anti-LT antibody or normal mouse IgG and Western blotting with 

anti-parafibromin antibody were performed.  

 

Figure 4  Interaction between LT and components of the human Paf1 complex. (A) 

Immunoprecipitation with anti-HA antibody from lysate of 293FT cells transfected with 

each HA-tagged component of the Paf1 complex.  The immunoprecipitated proteins 

were immunoblotted with anti-HA antibody (top) and with anti-LT antibody (bottom).  

(B) Interaction of each component of the human Paf1 complex with LT.  Each 

HA-tagged component of the complex and LT were independently translated in vitro.  

The mixtures of reticulocyte lysates were immunoprecipitated with anti-HA antibody 

and subsequently subjected to Western blotting with anti-HA (top) and anti-LT (bottom) 

antibodies.  (C) Interaction of each component of the human Paf1 complex with 

parafibromin.  Immunoprecipitation with anti-FLAG antibody from 293FT lysates 

co-transfected with each HA-tagged component of the Paf1 complex and with 

FLAG-tagged parafibromin.  The immunoprecipitated proteins were immunoblotted 

with anti-HA antibody (top) and with anti-FLAG antibody (bottom).  

 

Figure 5  Mutational analysis of parafibromin (PF) and LT.  (a) Schematic diagrams 

of FLAG-tagged parafibromin (left) and LT (right) deletion mutant constructs.  NLS, 

nuclear localization signal. (b) Detection of the LT-binding site on parafibromin (PF).  
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Immunoprecipitation with anti-FLAG antibody from lysates of 293FT cells transfected 

with FLAG-tagged PF or the indicated FLAG-tagged PF deletion mutant constructs.  

Immunoprecipitated proteins were immunoblotted with anti-LT antibody (top) or with 

anti-FLAG antibody (bottom).  (c) Each FLAG-tagged PF mutant and LT were 

independently translated in vitro (IVT).  The mixtures of reticulocyte lysates were 

immunoprecipitated with anti-FLAG antibody and subsequently subjected to Western 

blotting with anti-LT.  The lysate of 293FT cells was used as a positive control.  (d) 

Detection of the parafibromin-binding site on LT.  Immunoprecipitation with 

anti-FLAG antibody from lysates of HEK293 cells co-transfected with FLAG-tagged 

LT or the indicated FLAG-tagged LT deletion mutant constructs together with 

HA-tagged parafibromin.  Immunoprecipitated proteins were immunoblotted with 

anti-HA antibody (top) or with anti-FLAG antibody (bottom). (e) Each FLAG-tagged 

LT mutant and PF were independently translated in vitro (IVT).  The mixtures of 

reticulocyte lysates were immunoprecipitated with anti-FLAG antibody and 

subsequently subjected to Western blotting with anti-parafibromin (anti-PF) antibody.  

The lysate of 293FT cells transfected with parafibromin (293FT PF lysate) was used as 

a positive control.  

 

Figure 6  Functional domain of parafibromin as a component of the human Paf1 

complex and LT.  Parafibromin interacts with other components of the Paf1 complex, 

hPaf1, hCtr9, and, hLeo1 at residues 227-413 (Rozenblatt-Rosen et al., 2005).  
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Although hRtf1, another component of the complex, slightly interacts with parafibromin 

and directly interacts with LT, the interaction domains are unknown.  Parafibromin-LT 

interaction domains are located between amino acids 218-263 and 361-481 in 

parafibromin and LT, respectively.  The LxCxE motif and the bipartite region of LT 

are involved in binding with the pRb family and p53, respectively.  
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