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Abstract 

Although the cause of familial isolated pituitary adenoma (FIPA) remains unknown in many cases, 

germ-line mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene were identified in 

approximately 20% of families with FIPA.  We investigated the AIP gene mutation by a standard 

sequencing method in 12 members of a Japanese two-generation FIPA family, which includes 3 patients 

with early-onset acromegaly.  Multiplex ligation-dependent probe amplification analysis in a tumor 

sample was attempted to examine the loss of heterozygosity (LOH) in the locus.  The effect of the 

detected mutation on cell proliferation was investigated.  A germ-line mutation of c.943C>T (p.Q315X) 

generating an AIP protein with the C-terminal end deleted was found in the FIPA family.  Biallelic 

inactivation of AIP by a combination of the germ-line mutation and LOH at 11q13 was confirmed in the 

tumor.  The nonsense mutation disrupted the ability to inhibit cell proliferation.  We conclude that 

p.Q315X mutation in the AIP gene is a pathogenic variant and the C-terminal region of AIP plays an 

important role in the predisposition to pituitary adenomas.  

 

Key words: familial isolated pituitary adenoma, acromegaly, aryl hydrocarbon receptor-interacting 

protein, loss of heterozygosity 
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Introduction 

 

Pituitary adenomas that are relatively common in the general population are usually sporadic; 

however, familial adenomas have been identified in 3-5% of all cases [1, 2].  Multiple endocrine 

neoplasia type 1 (MEN1) and Carney complex are well-characterized familial syndromes forming 

multiple endocrine neoplasia including anterior pituitary tumors.  In MEN1, germ-line mutations in the 

MEN1 gene have been found in most patients [3, 4].  In 60% of patients with Carney complex, germ-line 

mutations of the PRKAR1A gene encoding the R1α regulatory subunit of cAMP-dependent protein kinase 

A on 17q22-24 were detected [5].  Familial isolated pituitary adenoma (FIPA) is defined as the 

occurrence of two or more related members of the pituitary adenomas outside of the setting of MEN1 or 

Carney complex in a kindred.  In FIPA, pituitary adenomas present homogeneously or heterogeneously 

within the same family [6].  Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene 

located on 11q13 are reported to be associated with pituitary adenoma predisposition [7].  The AIP 

mutations occur in 15-20% of FIPA and in 3-5% of sporadic pituitary adenomas, especially GH-secreting 

adenomas and prolactinomas, and are associated with the occurrence of large pituitary adenomas at a 

young age [8].  Gigantism is a particular feature of AIP mutations and occurs in more than 30% of 

affected GH-secreting adenoma patients. 

The human AIP gene encodes a 37-kDa protein composed of 330 amino acids that has an 

N-terminal immunophilin-like domain and a C-terminal tetratricopeptide repeat (TPR) domain [9, 10].  

The TPR domains consist of three sets of a consensus sequence of 34 amino acids forming two α-helices.  

AIP has been reported to interact with various proteins such as chaperone proteins (heat shock protein 90 

(HSP90), HSP70, and translocase of outer mitochondrial membrane 20), client proteins including nuclear 
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receptors (aryl hydrocarbon receptor (AhR), estrogen receptor-α, glucocorticoid receptor, peroxisome 

proliferator-activated receptor-α, and thyroid hormone receptor-β1), phosphodiesterase (PDE4A5 and 

PDE2A3), survivin, G proteins, RET, and Epstein-Barr virus-encoded nuclear antigen 3 [11].  Of note, a 

final C-terminal α-7 helix (Cα-7h) mediates molecular interactions with many proteins including a 

co-chaperone of HSP90 and AhR [12].  Approximately 75% of AIP mutations completely disrupt the 

C-terminal TPR domain and/or the Cα-7h [6, 11], suggesting that these domains have an important role in 

the function of AIP as a tumor suppressor.  However, the exact mechanisms of tumor suppression by 

AIP are poorly understood. 

We investigated the involvement of the AIP mutation in a Japanese FIPA family with pituitary 

adenomas and found a novel AIP nonsense mutation at the C-terminus.  An effect of the mutated AIP on 

cell growth was also examined.  In addition, a region of loss of heterozygosity (LOH) on 11q13 in AIP 

or MEN1-related pituitary adenomas is discussed. 
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Subject and methods 

 

Case report 

The index case was a 16-year-old female who was taken to hospital because of headache and visual 

disturbance in 2012.  She showed diminished visual acuity and bitemporal hemianopsia by visual field 

and displayed a slightly enlarged nose.  Her medical history included nothing notable.  Her height and 

weight were 170 cm and 64 kg, respectively. 

Magnetic resonance imaging (MRI) of the brain showed a pituitary adenoma with suprasellar 

extension (23 mm x 19 mm x 15 mm) (Figure 1). 

Endocrine studies showed elevated serum basal GH level (47.1 ng/mL, normal range 0.28-1.64 

ng/mL) and IGF-1 level (1,050 ng/mL, normal range for sex and age 262-510).  The nadir GH level 

following a 75 g oral glucose tolerance test (OGTT) was 18.2 ng/mL, which was not suppressed.  The 

plasma glucose was 152 mg/dL 120 min after the OGTT.  After subcutaneous administration of 100 mg 

of octreotide, the serum GH level was moderately suppressed from 21.4 ng/mL to 12.9 ng/mL.  The 

serum GH level upon oral administration of bromocriptine was suppressed from 23.9 ng/mL to 9.3 ng/mL.  

Serum PRL level was 58.5 ng/mL (normal range 4.9-29.3).  No other hormonal abnormalities were 

present. 

The patient underwent tumor resection through a transsphenoidal approach; the tumor was fully 

excised.  The defect in the visual field disappeared, accompanied by normalization of GH, IGF-1, and 

PRL levels.  A follow-up MRI showed no evidence of recurrence.  After the operation, the nadir GH 

level after OGTT decreased to 0.2 ng/mL. 
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Family history 

The father (subject II-2 in Figure 2C) of the index case underwent transsphenoidal surgery due to 

acromegaly at the age of 20, and re-surgery due to recurrence at the age of 35 at another institution.  

Postoperatively, he has received GH replacement therapy.  Her paternal uncle (subject II-5) had a past 

history of transsphenoidal resection for the treatment of acromegaly at the age of 20 at another institution.  

His recent serum GH and IGF-1 levels were 0.15 ng/mL and 165 ng/mL (normal range for sex and age 

67-318), respectively.  

In addition, other family members, namely, paternal grandfather (subject I-1), paternal grandmother 

(subject I-2), paternal aunt (subject II-3), sister (subject III-2), and paternal cousins (subjects III-3, III-4, 

and III-5), were also studied with their informed consent.  Blood samples were taken around 0900 h 

after an overnight fasting.  Serum levels of anterior pituitary hormones and IGF-1 did not indicate the 

presence of pituitary adenomas.  No family members showed acromegaly except for the father (subject 

II-2) and the paternal uncle (subject II-5) described above.  This study was approved by the ethics 

committees of Toranomon Hospital and the University of Tokushima. 

 

Immunohistochemical study 

Adenoma tissues were fixed in 10% formaldehyde, embedded in paraffin, and cut into 3-µm-thick 

sections for hematoxylin-eosin and immunohistochemical staining.  Immunohistochemistry for 

paraffin-embedded tumor samples was performed by the avidin-biotin-peroxidase method.  Sections 

were incubated with the following antibodies: anti-GH (Dako, Carpinteria, CA; A0570), anti-PRL (Dako; 

A0569), anti-adrenocorticotropic hormone (Dako; A0571), antibodies against each β-subunit of 

thyroid-stimulating hormone (Kyowa Medex Co., Ltd., Tokyo, Japan), follicle-stimulating hormone 
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(BioGenex, San Ramon, CA; MU026-UC), and luteinizing hormone (Nichirei Biosciences Inc., Tokyo, 

Japan), anti-cytokeratin CAM 5.2 (Becton Dickinson, San Jose, CA), and anti-Ki-67 clone MIB-1 (Dako; 

M7240). 

 

Gene mutation analysis 

Gene mutation analysis using PCR and sequencing was performed as described previously [13].  

Briefly, genomic DNA isolated from leukocytes and a pituitary adenoma was subjected to 35 cycles of 

PCR using TaKaRa Ex TaqTM Polymerase (TaKaRa, Shiga, Japan) with each AIP exon primer set.  PCR 

products were treated with ExoSAP-IT (USB Corporation, Cleveland, OH) and then subjected to direct 

sequencing in sense and antisense directions using an ABI PRISM BigDyeTM terminator v3.0 cycle 

sequencing kit (Applied Biosystems, Foster City, CA) and analyzed on an ABI 3500xL sequencing 

analyzer (Applied Biosystems). 

 

Multiplex ligation-dependent probe amplification (MLPA) analysis 

MLPA analysis was performed using the SALSA MLPA probemix kit P244-B1 (MRC-Holland, 

Amsterdam, The Netherlands), according to the manufacturer’s instructions.  Briefly, 50 ng of genomic 

DNA obtained from tumor tissues was denatured and hybridized with the SALSA probe-mix, containing 

probes for each AIP and MEN1 exon and 6 other genes in the 11q13 region.  After treatment with 

Ligase-65 at 54˚C for 15 min, PCR amplification was performed using each primer set attached to the kit.  

The PCR products were run on an ABI 3500 DNA sequencing analyzer (Applied Biosystems) together 

with Genescan-500LIZ size standard.  The data were analyzed with the GeneMapper software (Applied 

Biosystems).  For data normalization, relative peak areas for each probe were calculated as fractions of 
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the total sum of peak areas in each sample and then the fraction of each peak was divided by the average 

peak fractions of the corresponding probe in control normal male or female DNA (Promega, Madison, 

WI). 

 

Construction of expression vectors 

cDNA encoding full-length human AIP was generated by reverse-transcription PCR from total 

RNA extracted from 293FT cells.  The PCR products were cloned into the expression vector 

pcDNATM3.1(+) containing a FLAG epitope at the N- or C-terminus.  Construction of mutated AIP 

(Q315X)-expressing vector was carried out by standard PCR-based site-directed mutagenesis. 

 

Cell proliferation assay 

293FT cells were cultured in Dulbecco's modified Eagle's medium (WAKO, Tokyo, Japan) 

supplemented with 10% fetal calf serum and antibiotic reagent (Sigma, St. Louis, MO) in an atmosphere 

of 5% CO2 at 37˚C.  Transfections were carried out using EffecteneTM Reagent (Qiagen, Chatsworth, 

CA) as recommended by the manufacturer.  Expression of transfected AIP was confirmed by Western 

blot analysis with antibodies against FLAG (Sigma) and β-actin (Sigma).  Cell proliferation assays were 

carried out using a Cell Counting Kit-8 (Dojindo Labs, Kumamoto, Japan) according to the 

manufacturer's protocol.  The absorbance at 450 nm of aliquots of cell supernatants was measured using 

an automatic plate analyzer (Bio-Rad Laboratories, Hercules, CA).  Each experiment was performed 

three times in triplicate.  Results are expressed as the mean ± SE.  Two-sided Student's t-test was used 

for statistical comparisons.  A P-value <0.05 was considered statistically significant.  
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Results 

 

Immunohistochemical study 

The resected tumor specimen showed a chromophobe-type adenoma.  Immunohistochemical 

analysis revealed that the tumor consisted of possible double adenomas, which were not supported by 

findings in MRI and surgery.  One was GH-PRL-secreting adenoma with a perinuclear pattern of 

cytokeratin.  The other constituting a small fraction of the tumor was GH-secreting adenoma with a 

dot-like pattern of cytokeratin.  The two adenomas were clearly separated in sections.  Ki-67 labeling 

indexes were 1.5% and 3.5% in each GH-PRL-secreting and GH-secreting adenoma, respectively. 

 

Nonsense mutation of the AIP gene in an FIPA family 

Mutations of the AIP gene were screened for 5 overlapping PCR products with the corresponding 

primer sets covering the entire coding region and splice junctions.  Direct sequencing of leukocyte 

genomic DNA from the index case (subject III-1 in Figure 2C) revealed a heterozygous nonsense 

mutation caused by a C to T nucleotide substitution in exon 6 (c.945C>T) of the AIP gene (Figure 2A).  

This mutation resulted in the replacement of a glutamine codon (CAG) with a stop codon (TAG) at amino 

acid position 315 (p.Q315X) in the Cα-7h region (Figure 2B).  As shown in Figure 2C, the mutation was 

found in not only affected members (subjects II-2, II-5, and III-1), but also unaffected ones (subjects I-2, 

III-2, III-4, and III-5).  Although her 72-year-old grandmother (I-2) has a mutated AIP, she was 

asymptomatic with normal serum GH and IGF-1 levels and declined MRI.  Subjects II-2, III-4, and III-5, 

ranging from 14 to 2 years of age, were clinically and biochemically normal.  The mutation was 

negative in subjects I-1, II-1, II-3, II-6, and III-3. 
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Sequencing of genomic DNA from a GH-secreting adenoma resected from the index case revealed 

that a peak of the wild-type allele C was lower than the peak in her leukocytes (Figure 3A).  To quantify 

the relative copy number of the AIP gene in the 11q13 region in the pituitary adenoma, we performed 

MLPA analysis.  It showed an approximately 40% decrease of copy numbers of genes located in the 

11q13 region.  A somatic monoallelic deletion of one copy of these loci, such as MEN1, SNX15, 

FAM89B, RELA, SART1, BRMS1, AIP, and CCND1, was observed in the pituitary adenoma (Figure 3B). 

 

The mutation nullified the inhibitory effect of AIP on cell proliferation 

The p.Q315X AIP protein shows a shortage of 16 amino acid residues at the C-terminus compared 

with wild-type AIP.  To investigate whether the mutation contributes to the development of pituitary 

adenoma, the effect of the mutation on cell proliferation was examined.  293FT cells were transiently 

transfected with the expression vector inserted with cDNA encoding mutated AIP (p.Q315X) and 

wild-type AIP proteins tagged with FLAG peptide at the N- or C-terminus.  Each expression was 

confirmed by Western blot analysis (Figure 4A), indicating that the mutant was not subjected to 

accelerated degradation of mRNA or protein.  As shown in Figure 4B, 293FT cells overexpressing 

wild-type AIP with FLAG at the C-terminus showed significant inhibition of cell growth compared with 

cells transduced with the control vector.  Overexpression of AIP with FLAG at the N-terminus showed 

the same result (data not shown).  On the other hand, overexpression of p.Q315X AIP with FLAG 

peptide at the N- or C-terminus did not inhibit cell proliferation, suggesting loss of the property to inhibit 

cell proliferation. 
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Discussion 

 

We found an AIP p.Q315X mutation within the Cα-7h at the C-terminus of AIP in a Japanese FIPA 

family.  This nonsense mutation has not been described before in FIPA families or cases with sporadic 

pituitary adenomas and is the nearest to the C-terminus of the AIP protein among the reported AIP 

nonsense mutations. 

Besides the p.Q315X mutation, a nonsense mutation of p.R304X [7, 14-21] and missense mutations 

of p.R304Q [15, 17, 20, 22, 23], p.E319K [24], p.R323W [24], p.R325Q [25, 26], and p.G326R [24] at 

the Cα-7h of AIP have been reported (Table 1).  The p.R304 residue of AIP is a hotspot for truncating 

mutation (c.910C>T) and missense mutation (c.911G>A), owing to it being a CpG site; several families 

with these mutations have been described.  p.R304Q, which was shown to destabilize slightly the 

PDE4A5 interaction, has been considered to be pathogenic [17].  The missense variants may affect the 

three-dimensional structure of Cα-7h, which is involved in protein interactions.  p.E319K, p.R323W, 

and p.G326R found in Chinese patients with sporadic pituitary adenomas were considered to be 

pathogenic by Cai et al. [24].  However, the effect of missense mutations on tumorigenesis is difficult to 

predict.  In vitro studies such as on the effect of an AIP mutant on cell growth will reveal the functional 

role of the missense variants of AIP.  Furthermore, deletion of the last 5 amino acids from the 

C-terminus of AIP (AIP-325) abolishes AhR-AIP binding, whereas AIP-325 binds HSP90 in vitro, while 

its effect on cell growth was not shown [27].  Accordingly, p.Q315X mutation should affect the 

interaction with AhR and may lead to the loss of inhibition of cell growth. 

Loss of the wild-type allele on chromosome 11 spanning at least from MEN1 to CCND1 in the 

GH-secreting adenoma of the present case was observed, which has been reported in other AIP- or 
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MEN1-related pituitary adenomas (Table 2).  According to our previous LOH analysis using 

microsatellite markers, loss of the wild-type allele spanning at least from PYGM to D11S527 in pituitary 

adenomas with p.V96PfsX32 of AIP [4, 28], from D11S1883 to D11S1889 in the pituitary adenoma with 

p.P71PfsX46 of MEN1 [4], and from D11S480 to D11S527 in the pituitary adenoma with somatic 

p.P71PfsX46 mutation of MEN1 [29] was observed.  At least a 2 Mb deletion on 11q13 in pituitary 

adenomas with AIP mutations has also been reported [18, 30-32].  Furthermore, MLPA analysis on 

pituitary adenomas with AIP mutations showed at least a 2.5 Mb deletion on 11q13 in a Japanese 

pituitary adenoma (unpublished result) and in 3 out of 4 Chinese pituitary adenomas [24].  Table 2 

shows that concomitant deletions of normal AIP and MEN1 alleles were observed in most AIP- or 

MEN1-related pituitary adenomas.  Furthermore, all parathyroid adenomas with deletion at the MEN1 

gene showed deletion of the gene AIP [33].  In these adenomas, the possibility of loss of the whole of 

chromosome 11 as a result of mitotic nondisjunction remains to be elucidated. 

A number of single-exon and partial/whole-gene deletions have been detected in the MEN1 and AIP 

genes at the germ-line level.  Large germ-line deletions of 1.5 kb, 5.8 kb, and the whole locus in the AIP 

gene [17, 34] and 312 bp [35], 1,453 bp [33], approximately 5 kb [36], 29 kb, and 68 kb spanning the 

whole locus in the MEN1 gene [37] have been reported.  Thus, deletion of the normal alleles of MEN1 

and AIP at the somatic level in tumors seems to span a larger region than deletion at the germ-line level.  

However, the underlying molecular mechanism of such large somatic deletions is unknown. 

Results of immunohistochemistry showed the possibility of double adenomas consisting of 

GH-PRL and GH adenomas, however, two tumors in the pituitary were not demonstrated by the brain 

MRI and operative findings.  Although heterozygous Aip mice develop multiple pituitary adenomas [38], 

double pituitary adenomas have not been reported in human pituitary adenomas with AIP mutation.  
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MLPA analysis showed the approximately 40% decrease, rather than 50%, of signals at the AIP loci 

(Figure 3B), suggesting existence of cells without LOH in the tumor.  However, we could not 

demonstrate whether the cells without LOH were derived from another adenoma with biallelic retention 

of AIP or from normal tissue contaminated in the tumor sample.  

In conclusion, p.Q315X nonsense mutation in the AIP gene is a pathogenic variant and the present 

study reinforces the importance of the C-terminal region of AIP for pituitary tumorigenesis. 
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Figure legends 

 

Figure 1.  Preoperative coronal T1-weighted enhanced MRI of the index case showed a macroadenoma 

with a suprasellar extension. 

 

Figure 2.  An AIP germ-line mutation found in a family.  A. A nonsense mutation, c.945C>T 

(p.Q315X), in exon 6 of the AIP gene was found in genomic DNA extracted from a blood sample.  B. 

Schematic description of the position of the nonsense mutation in AIP.  C. A pedigree of the family with 

pituitary adenomas.  The index case is indicated by an arrow.  Family members are indicated by 

generation (Roman numerals) and individuals (Arabic numerals).  Individuals are represented as male 

(squares) and female (circles).  Filled symbols denote patients with pituitary adenoma.  Sequencing of 

the AIP gene showed the presence of a mutation (mut).  wt, wild type; nd, not determined. 

 

Figure 3.  Loss of wild-type allele of the AIP in a pituitary adenoma.  A. The wild-type allele (C) at 

c.915 in a pituitary tumor showed reduced signal compared with a peak in her leukocytes.  B. MLPA 

analysis in genomic DNA extracted from a tumor sample.  Probe signals from exons 1 to 6 of the AIP 

gene were significantly decreased, indicating the presence of deletion across those exons.  Furthermore, 

deletion of other loci on 11q13 was also observed in the tumor. 

 

Figure 4.  Effect of overexpression of mutated AIP (p.Q315X) on cell proliferation.  A. A 

representative image of Western blotting of 293FT cell lysates overexpressing each indicated plasmid 

vector.  β-actin was used as an internal control.  B.  The proliferation of cultured cells transiently 
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transfected with each indicated vector was assayed.  The graph is representative of three independent 

experiments.  Each value represents the mean ± SE (n=3). The asterisk indicates significant difference 

(P<0.05) compared with data from cells overexpressing the control vector pcDNATM3.1(+). 

 



Table 1  Germ-line mutations at the final C-terminal α-7 helix region of the AIP gene 

Mutations Identified in familial, sporadic or both Reduced ability of mutant AIP to inhibit cell growth  

p.R304X both observed 

p.R304Q both NA 

p.Q315X familial observed 

p.E319K sporadic, GH-secreting adenoma NA 

p.R323W sporadic, nonfunctioning adenoma NA 

p.R325Q both NA 

p.G326R sporadic, GH-secreting adenoma NA 

NA, not analyzed 

 



Table 2.  Region of allelic loss on 11q12.1-13.5 in AIP- or MEN1-related pituitary adenomas 

Regions of allelic loss are shown in gray.  NA, not analyzed; NI, not informative; NO: no LOH; VUS, variant of unknown significance. 
Family 1, J Clin Endocrinol Metab 82:239-242 (1997); Families 2 and 3, J Clin Endocrinol Metab 85:707-714 (2000); Family 4, J Clin Endocrinol Metab 
90:6580-6587 (2005); Family 5: J Endocrinol Invest 33:800-805 (2010); Family 6, Pituitary 15 Suppl 1:S61-67 (2012); Sporadic cases 7-10, Eur J Endocrinol 2013 
Sep 19. [Epub ahead of print]; Family 11, present index patient; Family 12, unpublished case; Sporadic case 13, unpublished case; Family 14, J Clin Endocrinol 
Metab 83: 960-965 (1998); Sporadic case 15, J Clin Endocrinol Metab 8:2631-2634 (1998). 

Markers Genomic 
position 

Pituitary adenoma 

1A 1B 2A 2B 3A 3B 3C 3D 3E 4A 4B 5 6 7 8 9 10 11 12 13 14 

D11S956 58.49 NA NA NA NA   NO NA   NA NI NA NA NA NA NA NA NA NA NA 

D11S4076 61.12 NA NA NA NA   NI NI  NI NI  NI NA NA NA NA NA NA NA NA 

D11S1765 62.47 NA NA NA NA   NI NA  NI   NA NA NA NA NA NA NA NA NA 

D11S1883 63.13 NO NO NI NI    NA  NI    NA NA NA NA NA NA  NI 

D11S480 63.06 NI NI      NI  NO    NA NA NA NA NA NA   

Chr11-64-A-C110 64.26 NA NA      NA  NA    NA NA NA NA NA NA   

PYGM 64.27          NA    NA NA NA NA NA NA   

MEN1 64.57          NA    NO        

SNX15 64.79          NA    NO        

Chr11-64-TG-110 64.97          NA    NA        

D11S4941 65.02              NA        

D11S4191 65.02              NA        

FAM89B 65.34              NO        

RELA 65.41              NO        

SART1 65.73              NO        

D11S913 65.9              NA        

BRMS1 66.11              NO        

D11S1249 67.12              NA        

AIP 67.25                      

D11S1889 67.31              NA NA NA      

D11S987 68.1           NI   NA NA NA    NA  

D11S1337 68.14           NA NI  NA NA NA    NA  

D11S4905 68.97           NO NI  NA NA NA    NA  

CCND1 69.46     NA   NA NA  NA NI  NO NO NO    NA  

D11S4136 71.81     NA   NA NA   NI  NA NA NA NA   NA  

D11S534 75.19     NA   NA NA NA NA NI NA NA NA NA NA   NA  

D11S527 76.42     NA   NA NA NA NA NI NA NA NA NA NA   NA  

Germ-line 
mutation 

 AIP: 
p.V96PfsX32 

AIP: 
p.C238Y 

AIP: 
p.E24X 

AIP:  
p.R81X 

AIP: 
p.R304X 

AIP: 
p.R81X 

AIP: 
p.D30E 

AIP: 
p.D262N 

AIP: 
p.R323W 

AIP: 
p.G326R 

AIP: 
p.Q315X 

AIP: 
p.L251P 

MEN1: 
p.P71PfsX46 

MEN1: 
p.P263PfsX14 

       VUS VUS VUS VUS     
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