k36

i X B 2
wHERS L % g8 B K #& Andrew Colin Flavell
I
e > d i High-Speed Message Routing Mechanisms for
Massively Parallel Computers

&l 3L

BERX
WX

1.

RIXDHERK
#1#¥: Introduction
B2% :  Scalable Multicomputer Systems

83 :  Tokkyu:A High-Performance, Randomizing, Adaptive Message

Router with Packet Expressway

#4%F . Restricted Length Hardware Multicasting in Multicomputer Networks
#$5%¥ : Conclusions

Flavell, A. C. and Takahashi, Y., “Tokkyii: A High-Performance, Ran-
domizing, Adaptive Message Router with Packet Expressway”, IEICE
Trans. on Information and Systems, vol. E78-D, no. 10, pp. 1248-1260,
October 1995.

. Flavell, A. C. and Takahashi, Y., “Restricted Length Hardware Multicas-

ting in Multicomputer Networks”, Transactions of the IPSJ, vol. 36, no.
5, pp. 1228-1238, May 1995.

. Flavell, A. C. and Takahashi, Y., “The Tokkyu Router: A Randomiz-

ing Router for k-ary n-cubes”, Proc. of the International Symposium on
Parallel and Distributed Supercomputing, pp. 127-134, September 1995.

. Flavell, A. C. and Takahashi, Y., “Continuum: A Hybrid Time/Space

Communications Paradigm for k-ary n-cubes”, Proc. of the International
Conference on Parallel Processing 1994, vol. I, pp. 138-141 |, August 1994.

. Flavell, A. C. and Takahashi, Y.,“Mandala: An Interconnection Network

for a Scalable Massively Parallel Computer”, in Proceedings of the 33rd
IPSJ Programming Symposium, pp. 79-90, January 1992.

. Flavell, A. C. et. al., “Mandala: An Interconnection Network for a Scal-

able Massively Parallel Computer”, Technical Report of the IPSJ, vol. 91,
no. 100, pp. 91.101-91.109, November 1991.




BR=X 7
wm X N F B F

HH

pa 68 = K & Andrew Colin Flavell

3

D
HEFES '
&
) ) High-Speed Message Routing Mechanisms for
FALM X E B Massively Parallel Computers

NERE

MIEBYFOE S 2T LA(MPP) 12, BHHRRZ bATaty PR SIMD T /D
FRTCHHTEL OHFICEHLTWVWS, TROED VAT AR, AFNERREME
CPUNAMARESELZIELFAL, ThbEEE~ETHEERL THRRALFT
oy P DOVRATFLE LTMELELDOTHS, LLL, TNHEDIART LD,
REOMBELML LERLTLLRL 2L BCAHFORBHERICILID N RIZR
VORFRTHZ, TNHDOVAT ATt v HHOBERTATHEKERC
LoTHFbh3DT, ERTRZEFHEZRDIRENLZERIIBEFESWEL, £
nicEbh 2 BERETH S,

AR X THMPPOEASHBICE DN, HRALZBEMBREERT 2005
PRETS, F11 (AL —F) ORRTHY ., ThEHERKSRCAVEED
BEMERIET S, AL —FRSEOHSFAVIAIFAASRLFALT, KH
ZHRESRFHEX Y hV—2 2ERTHEHOLDOTHD, BL2HEHPCKRTEITS
WT., BBNL—F DA vy FEKE Ny 7 7 AROMERE TFRIT I DO ERRET
NERR LT, TOMR, B/ —F IIDRODBEZTILOOTRATORELH
BLTWAZ LMD bR, EHIKEERRE, BALV—FiERy PU—271TK
MDD ZBEL, BESHERETIRAIC L, EEBERMN, BANV—Ty F#R2Db2
WEREIERFTLALTHE, YIal—valilLloTHMLAEKEIN—FDOD
HEBIE, ChETRBREN-EEERBRFRONV—F L VERTEY ., £ t0
BISRBHBEHFXON—FICHATYH, REBEHSVIRENEZBATVD Z LA
HoHnl,

EONBRESBIXOTNFX ¥ X MREORRTHD, vAFF ¥ X MEEIX
£ OWFNBRIBEICBWTCEER LICHF ST BEFRNTHD, T TY—LF—
JREFRICBW TR E 254 FF ¥ X MBERBITZT v Fry 7 OREIC>
WTHRLE, TLToORRERMR T2 HEL LTRERFIBRARO-VF X ¥ 2
FMEEEREBL, CoFRICLZBEREEZ I 2 L—VaREoTIHEL, ==
¥ ¥ A PARRTAFARZFRICE BN F ¥ X MBEOKBL KB L, TORK
2. OIBRTIBEESRIRO=NLF % ¥ X FBBIX, ) ¥YEROTLDDI TRS
~ADTNF X ¥ A MBIER, BEHF/ — FAOTNTFXy A PRE/ — FADHED
BEI, BICENRRIEL DL EALNITLE,




%X 9

WXEBEOEROEE
T
HERFS |2 T B 68 5 |Kk % | Andrew Colin Flavell
I #
X & mih wE
EHEEZR | H & Bl BE
Rl & e RIB
Fim X E High-Speed Message Routing Mechanisms for

Massively Parallel Computers

HTERREOES

BFIE BRI, BE~KTROSoy Y ERPERLTEFICBIEEE, EHELEY
FTFThR#E5LTHLDOTHD. ZI TRty VHOBER TR THEFERIL>TTD
NBDT, TOVATFLOREUELRDIRENRERIIEEEESHOBERE L BERH
FRIAZRBMN, FEFHZEBRTELILORBLNATVRVONRRTSHS.

ARX TIIHEASEOBIE B L BEHNEHARNITOVWTHRL, HiHROLr—FHHL,
MIEDOHBEITINAFE X2 PRIESFREZRELTVS. HLWIA—FHIREY HEL—7F )
LIEATWEY, SEOMARLIAIZBEARRRAWT BoHE - ZHRSBIRESHRy bU—
VEERAL, Xy PI—7HBOHIBACELIBEENSVIREICYH, KEBERH, &
AN—Ty b RBRPLRVERBRHEIENITIAIIEEHFRELTVWS. EEVIab—Yalil
Lo THMLRMETIEL T BR, EROBERBRERFRONL—F L0 EL, thOBGE
BHIEEFRDON—FIZLERTYH, BEORVEREHOZ LRI EHENADLNTVD.

KIZHLWVBEEFRE LTy PREIBRARAFI ¥ 2 PEELZRBLTVWS. wAF
X ¥ X MBEERSOUFILBMBICB VW THLEL S WETHIN, ThiETEIETH
HICITOMERSHSB. LOLY —AF—NVBEOBRAIIIvAVNFX ¥ X MBERT v Fay 2
FROTIRMENHDILWVIBENHD. CORBEEHELLZHESR, 7y FEE EERNIH
RLTwAFF¥ A MEELITAE, MEEPIAZI LTy Fry 7 ¢ERTEI LY
SEBALT. £, YIalb—YarilkoTIoFROBEMHELZMLUIER, Y YEH
DIBdDYI FRAI~DTNF X v A MEER, BiifF /) — FADTNLFH¥ R bROZ/) —F~
DOHZEOBEIT, HIENHRERBETIL2EIDONEL.

Y EAFRIIEEROBATIHER L ERT I DOHEELRERTHIHAEMKSHITOVT,
ZOBEEHME L BEHBFRICOVTOHFLVRRETY, TOMRERIELEZDLOTHY,
AL (L%) OFURECETILDOLHETS.







High-Speed Message Routihg
Mechanisms for Massively
Parallel Computers

March 1996

Andrew Colin Flavell




High-Speed Message Routing
Mechanisms for Massively
Parallel Computers

A dissertation submitted to the Department of Information Science and
Intelligent Systems and the Graduate School of the University of
Tokushima in partial fulfillment of the requirements for the degree of
Doctor of Engineering
by
Andrew Colin Flavell
March 1996

Approved as to the style and content by

W T A

Professor Yoshizo Takahashi

Dept. of Information Science and Intelligent Systems

Dissertation Supervisor

5 m B I :

Professor Ryosaku Shimada

Dept. of Information Science and Intelligent Systems

- Chovie APamatu

Professor Norio Akamatsu

Dept. of Information Science and Intelligent Systems




Acknowledgments

I wish to express my sincere gratitude to Professor Yoshizo Takahashi, for
enabling me to study for a doctoral degree in Japan. His guidance has
served me well and has helped to keep me focused on the task at hand. I also
wish to thank Professors Ryosaku Shimada and Norio Akamatsu, for their
contributions as the members of my defense committee. Thanks must also
go to the Japanese Ministry of Education, Science and Culture, for granting
me the scholarship which has made studying in Japan a reality.

To Masahiko Sano and Tomio Inoue, many thanks for helping to make my
university life, and adjustment to life in Japan, simpler and more enjoyable.
Thanks to Dr. Tim Gleeson for his useful and constructive criticism of my
written work, especially the comments relating to this dissertation.

Finally, special thanks must go to my wife, Figen Ulgen. Her belief in
my ability has been, and continues to be, an inspiration. I couldn’t wish for

anything more. ..




Figen, bu senin i¢cin. . .




Abstract

Massively parallel processing systems (MPPs) are currently making inroads
into many areas that are traditionally a stronghold for vector or SIMD pro-
cessors. These systems leverage the rapid advances being made in readily
available high performance CPUs by connecting hundreds or thousands of
them together to form homogeneous multiprocessor systems. Unfortunately,
the performance of these systems when solving real-world problems has been
somewhat disappointing and always falls far short of the theoretical peak
performance quoted by system vendors. As all of the communications be-
tween processors in these systems rely on the interconnection network, a
critical component in determining the maximum achievable performance is
the interconnection network and the communications structures supported
by it.

This dissertation introduces two solutions to providing effective communi-
cations structures for MPP systems. The Tokkyi router is presented and its
suitability for use in MPP interconnection networks is demonstrated. The
Tokkyu router utilizes multiple, unidirectional, register-insertion buses to
provide a hybrid time/space division network. Accurate models are devel-
oped to predict the switch and buffer performance of Tokkyu routers for
varying radix and dimension. The Tokkyl router meets all of the require-
ments necessary to be considered effective. Importantly, the support for
routing in the presence of faults or network congestion does not compromise

the low latency and high throughput of the router. The simulated perfor-

mance of the Tokkyi router exceeds that of published results for oblivious




routers and is equal to or exceeds those reported for other adaptive routers.

The multicast deadlock problem is investigated, as multicast has been
identified as an area which can provide significant speedup to a number of
p&allel applications. Restricted-length multicast is introduced as a solution
to multicast deadlock in wormhole routed networks and the implementation
of this multicast scheme is examined. Restricted-length multicast is then
compared to unicast and multi-path based multicasts by simulation. The
results of the simulations indicate that restricted-length multicast provides
a good solution to multicast problems such as multicasting to clusters of
nodes found in barrier synchronization, multicasting to nearest neighbors

and broadcasting to all of the nodes in the network.




List of Publications

Papers Accepted for Journal Publication

o Flavell, A. C. and Takahashi, Y., “Tokkyt: A High-Performance, Ran-
domizing, Adaptive Message Router with Packet Expressway”, IEICE
Trans. on Information and Systems, vol. E78-D, no. 10, pp. 1248-
1260, October 1995.

e Flavell, A. C. and Takahashi, Y., “Restricted Length Hardware Mul-
ticasting in Multicomputer Networks”, Transactions of the IPSJ, vol.

36, no. 5, pp. 1228-1238, May 1995.

Papers Accepted to International Conferences

e Flavell, A. C. and Takahashi, Y., “The Tokkyu Router: A Randomizing
Router for k-ary n-cubes”, Proc. of the International Symposium on

Parallel and Distributed Supercomputing, pp. 127-134, September 1995.

o Flavell, A. C. and Takahashi, Y., “Continuum: A Hybrid Time/Space
Communications Paradigm for k-ary n-cubes”, Proc. of the Interna-
tional Conference on Parallel Processing 1994, vol. 1, pp. 138-141 ,
August 1994.

Other Related Papers

e Flavell, A. C. and Takahashi, Y.,“Mandala: An Interconnection Net-
work for a Scalable Massively Parallel Computer”, in Proceedings of

the 83rd IPSJ Programming Symposium, pp. 79-90, January 1992.

e Flavell, A. C. et. al., “Mandala: An Interconnection Network for a
Scalable Massively Parallel Computer”, Technical Report of the IPSJ,
vol. 91, no. 100, pp. 91.101-91.109, November 1991.




Contents

Abstract ili
List of Publications v
1 Introduction 1
2 Scalable Multicomputer Systems 5
21 NodaBUnMehigd . - oo s e st g T T e st S ay K p e aag 5
2.2 Interconnection Network Topologies . . . . . . ... ... ... 6
2.3 Message Switching . . ... ... ... ... .. o000, 14
24 MessageRouting . ... ... ... ... ... ... 17
24.1 DetermmisticRoufing . « . . < . « + « « v s w o5 « = 18

ZLE AdaptiverRoating .« . v b n'i vu s idm ee v aws 22

20 — DRI Sy b i PR R s v d BN p B ATy Waen s RN g e 26
2.8 Dultiasli DESBEERE b 4. 8 5 5 i 5 b E AR b s F a4 A 28
2.6.1 Multicast Deadlock . . .. ... ............. 31

3 Tokkyii: A High-Performance, Randomizing, Adaptive Mes-

sage Router with Packet Expressway 35
3.1 The Register-insertion Buk . . . o 4 o 5+ siva vo v 5 2w 0 40 36
3.1.1 Register-insertion Bus Operation . ... ... .. ... 36
3.2 Architecture of the Tokkyd Router . . .. ... ... ..... 40
521 Bowiss Opetalion o . ot og o oh b s ke sl ¢ 50 & WA 41
8.5 Switch and Bulier Desiga s 5 v s 6 ¢ s @ po s v o n s a0 q 4 ais 4 49
e8] ESwileh BvalunMlgs: . . . -l h v e s nd b peddns 49

B e T VGl AT v e s Bl el e o 4 o B e B 56




CONTENTS vii
I L R S R ¥ R 59
3.4.1 Simulation of Uniform Random Traffic . ... .. ... 65

3.4.2 Simulation of Hot-spot Traffic . . . ... ... .. ... 70

3.4.3 Simulation of Traffic in the Presence of Faults . . . . . 71

44 | Diptnssiog of Bmmplts . « .« s Jams s v " bieme 74

4 Restricted-length Hardware Multicasting in Multicomputer

Networks 76
&1  FllannseiotesT ok nt. o o8 L %S e sob ok de x oxse 76
4.1.1 Definition of Multicast Deadlock Problem .. ... .. 76
4.2 Restricted-Length Multicasting . . . . ... ... ....... 81
4.2.1 Gate-array Implementation . ... ........... 83
L T T e e A P T i 86
LSRR T R N TR 86
3.2 - Stmtilefion Resulls .. o v 0 0w mane e v ip st . 87

43 I T SRS O R OF S VeSS LS, & o e B B S v B 5 o Chs ok re 90

5 Conclusions 91




List of Figures

1.1 Generic multiprocessor architecture . . . . .. ... ...... 2

2.1 Generic node architecture . . . . . .. .. .. . ... ... .. 6

2.2 (a) Simple ring network and (b) corresponding spanning sub-

2.3 (a) Strongly connected digraph and (b) corresponding directed
tree, which is also arooted tree. . . . . . . ... ... ..... 8
2.4 Contemporary static network topologies:(a) 2D torus (b) 2D
mesh (c) 3D mesh (d) 4D Hypercube (e) Fat-Tree (f) Mandala

interconnectionnetwork. . . ... ... ... ... 10
2.5 Communications channels for a 2-dimensional router . . . . . 11
2.6 Latency of various switching techniques . . . . . . .. .. ... 14
2.7 Division of informationunits . . . . . . . ... .. .00 0. 16

2.8 Three virtual channels sharing a unidirectional physical channel 17

2.9 e-cube routing on a hypercube . . . . . .. .. ... ... .. 20 I|
2.10 Dimension order routingon a2D mesh . . . ... .. .. ... 21 ,
2.11 (a) Dimension order routing (b) Adaptive routing . . . . . .. 22

2.12 Physical communication channels divided into routing planes . 23 r'

2.13 Two-dimensional chaos router . . . ... ... ......... 25

2.14 (a) Network and (b) its channel dependency graph without .
virtual channels. (c) Network and (b) its’ channel dependency

graph with extra virtual channels. . . . . . ... ... .. ... 27
2.15 (a) Multicast by unicast (b) Tree based multicast (c) Path

based mrilBiehBl | . . . S Ll L Y r e s e s e s 30
2.16 Multicast deadlock in binary tree . . . ... ... ....... 31

27 Dultipash smolSiealils « o « o v b 2 8w a r e e e daT e x el s 33




LIST OF FIGURES ix
3.1 Register-insertion bus interface . .. ... ........... 38
3.2 N-dimensional register-insertion bus port. . . .. .. .. ... 40
3.3 Architecture of a two-dimensional Tokkyu router. . . . . . .. 42
3.4 Global arbiter inputs and outputs . . . .. ... ........ 47
3.5 State diagram for determining the distance distribution in an

R Tl E 53
3.6 Probability of misrouting versus applied load for 16-ary 2-

cube. Solid lines are predicted values, points are measure- °

ments taken by simulation . . ... .. .. ... ... ..., 55
3.7 The discrete-time Markov chain state transition diagram for

RIS OUEENE QRS BN . . o v v o+« % ol - e e g m 37
3.8 Performance of output queues. Solid lines are predicted values,

points are measurements take by simulation . .. .. .. ... 58
3.9 Dialog for setting simulation variables . ... ......... 60
3.10 (a) Simulation display showing test mode (b) Simulation dis-

R BB e = v heatn's v v e H e v T U e w Ko 61
3.11 (a) Simulation display showing random simulation (b) Simu-

RGO I « « g2 50 s v s bwe s AT B AL b S 62
3.12 (a) Simulation display showing hot-spot simulation (b) Simu-

[ R S A I SR 63
3.13 (a) Simulation display showing fault simulation (b) Simulation

digplay Be¥' . o (5 .r vemodmd wrndne s oAb nrded 64
3.14 Performance of queue switches for 256 node 16-ary 2-cube.

Solid lines are predicted values, points are measurements taken

ord R R N R i RSy O R 66
3.15 Performance of output queues for 256 node 16-ary 2-cube.

Solid lines are predicted values, points are measurements taken

T e A Sy O S 67
3.16 Latency versus offered traffic for a 256 node 16-ary 2-cube

waasr padettg taddons teafle. .. < 0 vy b i s B et 68
3.17 Throughput versus offered traffic for a 256 node 16-ary 2-cube

under uniform random traffic . . ... .. ... ... ..... 69




LIST OF FIGURES x

3.18 Latency and reduction in latency versus applied load under
uniform random traffic with packet erpressway enabled and
DI = v ¢ 4 b8 s s PN L Pl . Y 69

3.19 Latency versus offered traffic for a 256 node 16-ary 2-cube

under bit reversal traffic . . ... ... .. ... ..., .. 70
3.20 Throughput versus offered traffic for a 256 node 16-ary 2-cube

e 1k ieversal IERE | .. 0 cn own w0 e sl bas d s ba 71
3.21 Faulty node is bypassed . .. ... ............... 72

3.22 Average latency versus percent faulty channels at 50% applied

load (m=2, L=2). Mean latency averaged over ten random

BB GBS . . v e v o e e nme s e we e f s s e 73
3.23 Throughput versus percent faulty channels at 50% applied

load (m=2, L=2). Mean throughput averaged over ten ran-

g SR R ol Bl b e e NSRRI T8

4.1 (a) Multicast by node (2,1) and (b) the resulting concurrent

PREEDOB SN - S5 -~ ol n w w5 s e T n b A o= ol e S 81
4.2 Organization of a single MEGA router input . . . . . ... .. 83
43 Bend Iatency for L, =18 bytes . . .« iy ¢ . con wla o o= 89

¢4 Send latepcy for Prid) =0 & i ¢ sov s s o255 o oalys 89 -




List of Tables

2.1

3.1

3.2

4.1

Routing steps from s = 0000 tod =1101 . . ... ... .. .. 20

2-tuples defining total distance to travel and ¥4, for packets
inan 8-ary 2-cube. . . . . ... ... oo oo 52

Probability of j dimensions remaining to be traversed . . . . . 54

Resource usage for various buffer structures . . ... .. ... 85




Chapter 1

Introduction

The peak performance levels of Massively Parallel Processing (MPP) systems
have recently begun to rival those which are obtained using traditional vec-
tor and SIMD supercomputers. Many therefore believe that MPP systems,
constructed by the interconnection of thousands of homogeneous computa-
tional nodes, are a promising technology for the construction of computers
with teraflops performance. However, the efficiency of multicomputer based
MPP systems when solving real world problems tends to be disappointing,
especially when compared to vector supercomputers [11, 20].

Although there are many ways in which the nodes of an MPP system can
be connected, by far the most popular is the static or direct network. Each
node in a direct network has a point-to-point, or direct, connection to its’
‘neighboring’ nodes and these connections form the interconnection network
as is illustrated in Fig. 1.1. Direct networks are popular as they are said to
scale well, i.e. as the number of nodes in the system is increased, the total
processing power, communication bandwidth and memory bandwidth of the

system also increases.

Inter-process communication, data-sharing and synchronization in an MPP




Node Node Node
Node Node
~ 1 1§ V.

Interconnection network

Node ¢ t t Node
Node Node

Node

Figure 1.1: Generic multiprocessor architecture

system are all achieved by the passing of messages via the interconnection net-
work (IN), and therefore a critical component in determining the maximum
achievable performance of MPP systems is the IN and the communications
structures supported by it. A considerable amount of research has therefore
been conducted in both the design and evaluation of interconnection net-
works (1, 2, 46, 5, 42, 47, 22, 23, 24, 25, 26, 27, 28, 29], and this continues to
be an active avenue of research.

The interconnection networks of massively parallel systems must provide
effective, dynamic and arbitrary connectivity between all of the processors
in the system. In order to be considered effective it is desirable that the

interconnection network satisfies the following requirements:
o the packet routing algorithm must be free from deadlock

o the network must be free from livelock, i.e. packets must not be in-

finitely delayed in the network




e network latency should be as low as possible
e network throughput should be as high as possible

e the path taken by a packet should adapt dynamically to traffic condi-

tions
e network performance should degrade gracefully in the presence of faults

Freedom from deadlock and livelock are both essential for the correct op-
eration of the network. Guaranteed freedom from deadlock is essential to
ensure that there is no potential for the network being brought to a com-
plete halt because of dependencies in the allocation of network resources,
and freedom from livelock is essential to ensure that packets do not end-
lessly cycle in the network, never reaching their destinations. Low latency
and high throughput are necessary to allow a good balance of the compu-
tation/communication ratio of the system. Adaptive packet routing and
graceful degradation of network performance in the presence of faults are
both desirable features, provided they do not compromise the latency and
throughput of the network[44]. Adaptive routing allows better utilization of
communication resources, especially at high network loads or in the presence
of hot-spot traffic [31, 9, 32, 35, 41, 15], and networks which are fault tolerant
are becoming increasingly important as the size and complexity of massively
parallel systems grows. In addition to these requirements, multicast com-
munication, in which a source node transmits a single message to a number

of destination nodes in the system, has been identified as being crucial to

achieving acceptable performance in a number of application areas[37, 51].




Organization of this Dissertation

This dissertation focuses on simple and effective solutions to meeting the
requirements for an IN to be considered effective and is divided inte two
distinct areas. An introduction to scalable multicomputer systems is given in
Chapter 2 and this is followed in Chapter 3 with an examination of adaptive
routing in multicomputer networks and the introduction and investigation
of the Tokkyi interconnection network. In Chapter 4 an examination of
multicast deadlock in wormhole routed networks is given and the concept

of restricted-length multicasting is introduced and investigated. Finally, a

summary and conclusions are given in Chapter 5.




Chapter 2

Scalable Multicomputer
Systems

2.1 Node Structure

Each node in most current MPP systems contains an off-the-shelf RISC pro-
cessor, local memory, a number of support units, an interface to a commu-
nications network and a message router, as illustrated in Fig. 2.1. Off-the-
shelf processors are often chosen for MPP system construction as they are
inexpensive and can help to reduce the design time of the system. For ex-
ample, the Connection Machine CM-5 uses 32-MHz SPARC processors, the
NEC Cenju-3 uses 75-MHz NEC VR4400SC processors and the Intel Paragon
XP/S uses 50-MHz 1860 processors. Support units may include vector pro-
cessing units, a graphics controller and HIPPI, SCSI, ethernet or some other
I/O interface. The role of the network interface unit is to perform message
assembly/disassembly and provide flow control for messages entering and
leaving the network, while the router provides routing and flow control for

messages within the communication network. By removing the functions of

message assembly /disassembly, routing and flow control from the CPU, com-




2.2 Interconnection Network Topologies 6

Inputs from
adjacent
routers

Router

Suppont RISC Locd Network £
units CPU memory interface |«¢

Outputs to
Localbus ] adjacent
routers

Figure 2.1: Generic node architecture

munication and computation can occur concurrently, significantly increasing

the performance of the system.

2.2 Interconnection Network Topologies

The topology of a network defines how the nodes are connected and can
usually be represented using graph notation. Therefore, a brief introduction
to the relevant graph theory notation is presented before the discussion of

static interconnection networks.

Definition 1 A static interconnection network may be represented by the
strongly connected directed graph, digraph, I = G(N,C), where the vertex
set N(I) and the arc set C(I) represent the nodes and channels of the network
respectively. The degree of a vertex n, in I, denoted d(n), is the number

of edges incident with n. The graph H = G(N,C) is a subgraph of I if

N(H) € N(I) and C(H) C C(I), and H is a spanning subgraph of I if
N(H) = N(I).




2.2 Interconnection Network Topologies 7

G20

(b)

Figure 2.2: (a) Simplering network and (b) corresponding spanning subgraph

Figures 2.2(a) and (b) illustrate Definition 1. Figure 2.2(a) presents a
simple ring network, which is a strongly connected digraph and Figure 2.2(b)

represents a spanning subgraph of (a), as it contains the same set of nodes.

Definition 2 A tree is a connected graph which contains no cycles, and it
follows that a subgraph which is a tree is called a subtree, and a spanning
subgraph which is a tree is called a spanning tree. A directed tree is a digraph
which becomes a tree when the directions of the edges are ignored and a rooted
tree is a directed tree with one vertex of in degree 0, and all other vertices of

in degree 1.

Figures 2.3(a) and (b) illustrate Definition 2. Figure 2.3(a) presents a
strongly connected digraph and Figure 2.2(b) represents the corresponding
directed tree. This tree is a binary tree and therefore it is also a rooted tree.

Some of the more important static evaluative measures of an interconnec-

tion network are its degree, diameter, average distance [2], channel bisection




2.2 Interconnection Network Topologies 8

L)

1)

ng ns ng

(b)

Figure 2.3: (a) Strongly connected digraph and (b) corresponding directed
tree, which is also a rooted tree.

width [12], maximum message density, and its ability to be scaled. The degree
is defined as the number of channels incident on a node, the diameter as the
maximum of the shortest distances between any two nodes in a system, and
the average distance as the average number of channels that a message must
traverse when traveling from a source node to a destination node. As the
degree of a node and the average distance for a given network are often inter-
related, the normalized average distance, given by average distance x degree,
may provide a more useful measure for static evaluation. The channel bisec-
tion width, B, is defined as the minimum number of channels that, when cut,
separate the network into two equal parts, and the maximum message den-
sity is the maximum of the total number of communications paths passing
through each node in the system. Scalability is defined as the relative ease
with which the number of processing elements in a system can be increased.
A system which requires major hardware changes and/or rewiring to increase

the number of processors is therefore not considered scalable when compared

to a system in which an additional processor can be plugged in. Feng [21]




2.2 Interconnection Network Topologies 9

classified the topologies of static networks according to the dimensions re-
quired for layout, i.e. one-dimensional, two-dimensional, three-dimensional,
and hypercube. Multicomputer networks are typically constructed from ar-
rays of nodes in at least two-dimensions. Two-dimensional toi)ologies include
the ring, 2D mesh, torus and tree, while three-dimensional topologies include
the 3D mesh and 3D torus. Presented in Figure 2.4 are a number of contem-
porary static network topologies.

The networks under consideration here are bi-directional, as these net-
works allow locality of communication to be employed in the programming
model of the parallel machine. Therefore, each arc in Fig 2.4 is divided
into two communications channels, one in each direction. A router in a 2-
dimensional network will have communications channels in the +x, -x, +y

and -y directions, along with a connection to the local processor, as shown

in Fig. 2.5.
Torus

The torus of Fig. 2.4(a) is a member of the general k-ary n-cube family. For

the example torus of Fig. reffig:static, k = 4 and n = 2.

Definition 3 A k-ary n-cube is an n-dimensional cube of radix k, and a
node within a k-ary n-cube can be identified by the n-digit radix k address,
(ao,ay,...,an-1). Each node in a k-ary n-cube is connected to every other

node whose address differs in exactly one digit by =1 modulo &.

The number of nodes in the network, NV, is related to n and & by:

N=k" (k= /N, n=log, N)




2.2 Interconnection Network Topologies 10
[l 0
o —oo o
oo o0
—eo—o—0—0
RIRR
(a) (b)

(d

®

Figure 2.4: Contemporary static network topologies:(a) 2D torus (b) 2D mesh
(c) 3D mesh (d) 4D Hypercube (e) Fat-Tree (f) Mandala interconnection
network.




2.2 Interconnection Network Topologies 11

+Yconnection

-Xconnection +Xconnection

-Y connection

Node Connection

Figure 2.5: Communications channels for a 2-dimensional router

Although there are many possible topologies for the direct networks em-
ployed in MPP systems, by far the most popular in the current generation
of MPP systems are k-ary n-cubes and those networks which are isomor-
phic to them!. Parallel systems based on 2 and 3-dimensional k-ary n-cubes
have been intensely investigated in the past, due to their ease of construc-
tion within the confines of 3-dimensional space and the natural mapping of
a number of algorithms to them. Usually, low dimensional k-ary n-cubes are
referred to as tori, while higher dimensional binary n-cubes are called hyper-
cubes. The diameter of a torus is 2|n/2|. Although the wrap-around links
of the torus reduce the diameter of the system, they can complicate message
routing in the system and may make it difficult to connect peripherals to the
network. However, several parallel machines have been constructed using
tori. The 2D torus is used in the iWarp[6] and the K2 parallel processor{3],
and more recently, the 3D torus has been used in the construction of the

Cray Research T3D[43].

1One notable exception to this is the CM-5, which is based on a fat-tree IN[36]




2.2 Interconnection Network Topologies 12

2D and 3D Mesh

2D and 3D meshes are presented in Figs. 2.4(b) and (c) respectively. The
mesh topology is an aperiodic variant of the k-ary n-cube family, and looks
like a torus with the end around connections removed. The 2D mesh of Fig.
2.4(b) has (n = 2,k = 4) and the 3D mesh of Fig. 2.4(b) has (n = 3,k = 3).
In general a k-dimensional mesh with N = n* nodes has a node degree of
2k and a network diameter of k(n — 1). Several simple routing algorithms
have been presented for the mesh, including fault tolerant algorithms, and
the unused connections around the edge of the mesh provide an abundance
of connections for peripheral devices. A number of commercial parallel com-
puters have been constructed based on the 2D mesh, including the CM-2 and
the Intel Paragon [53], and a 3D mesh has been utilized in the J-machine[16]

and the Wavetracer Inc. Data Transport Computer[53].
Binary Hypercube

The 4-dimensional binary hypercube of Fig. 2.4(d) is a member of the k-ary
n-cube family, with k fixed at two. The hypercube, as it is often referred
to, has a network diameter of n, which is one of the lowest known average
communications distances of any IN. Many numerical algorithms are suited
to this topology, and it is simple to embed other topologies in the hypercube.
The main disadvantage of the hypercube is that the number of nodes in the
system is increased by increasing the dimension of the network. Thus a large
number of connections are required for each node if a large system is to be

built. In spite of this, the hypercube topology has been used for a number

of commercial and research machines including the Cosmic Cube, CM-2 and




2.2 Interconnection Network Topologies 13

nCube corporations nCube?2.
Fat-Tree

The fat-tree takes a somewhat different approach to implementing a static
IN. A typical binary tree has a bisection width of only 1, which results in
severe message-traffic congestion at the root node of the tree. The number
of communications channels, and therefore the communications bandwidth
in a fat-tree, increases as you move up the tree hierarchy, thus alleviating
the communications bottleneck experienced by a standard binary tree in-
terconnection network. One disadvantage of this scheme is that it requires
several different types of routing nodes and the number of communications
channels in the hierarchy can become very large. However, the network is
quite practical as the Connection Machine Corporation CM-5 is constructed
using a 4-ary fat-tree [36]. The 4-ary fat-tree of Fig. 2.4(e) has clusters of
four processors located at the leaves of a tree, each of which is connected to

two router chips.
Mandala

The Mandala network, presented in Fig. 2.4(f), is a hierarchical network
proposed by Takahashi and Flavell [22, 23, 24]. It can be described by the
size of its clusters, C and number of levels, L. For example the network in
Fig. 2.4(f) is a (4,2) Mandala network. The number of nodes in this system
is given by N = CL. Each of the nodes in a network of cluster size C, has

C — 1 communications channels forming a complete connection at level 1,

with 1 channel per node reserved for connection to higher levels. The degree




2.3 Message Switching 14

node

S

no

n1i

n2

i
(a) Store-and-forward switching o

node node

S e S
nol|m no| EITTITIT]
ni ——] nl} HEITITITT
n2 - n2 BT

ot Sl
(b) Circuit switching VTS (¢) Cut-through switching Hos

Figure 2.6: Latency of various switching techniques

of each node is given by C and the average distance is given by ¥/N.

2.3 Message Switching

The message switching technique, i.e. the method by which data is passed
from the input of a router to the output, can have a significant effect on the
latency of the network. There are a number of possible switching techniques
and these include circuit switching, packet switching, virtual cut-through
- routing and wormhole routing. Circuit switching was originally used in tele-
phone networks and involves the formation of a physical channel between
the source and destination nodes. In packet switching, or store-and-forward
networks, complete packets are buffered at each node between the source and
destination and the header of a packet may not leave a node until the tail

has been received.

Both virtual cut-through [34] and wormhole routing [12] use cut-through




2.3 Message Switching 15

to reduce the network latency by allowing a packet to be forwarded as soon
as the routing decision has been made.

Figures 2.6 (a) - (c) present a comparison of the latency of packet switch-
ing, circuit switching and cut-through routing techniques respectively. In
each case a single packet is sent from the source node S via the intermediate
nodes n0, nl and n2. Given a packet length of L bits, a channel bandwidth
of W bits per second and a distance of D hops between the source and
destination nodes the latency for circuit switching is given by

L
Tca = Lsetup ar W +D (21)

the latency for cut-through routing is given by

L
To= g + D (2.2)

and the latency for store-and-forward switching is given by
Lir= £(D +1) (2.3)
g == W .

If L >> D then Ti; becomes L/W and thus the distance has negligible effect
on latency. Clearly the latency of store-and-forward routing is considerably
higher than that of both circuit and cut-through routing. Also, in the absence
of contention, the network latency of cut-through based switching is similar
to that of circuit switching. However, if there is a large amount of contention
in the network, the time taken to establish a complete circuit between the
source and destination nodes can add a considerable amount to the delay of
a circuit switched message.

When channels become blocked, networks using wormhole routing buffer

only small units of data called flow control digits or flits which are illus-




2.3 Message Switching 16

time >

message

packet sequence
number

R[S packet

packet routing 7
information

data | flit

Figure 2.7: Division of information units

trated in Fig. 2.7, whereas networks employing virtual cut-through routing
buffer entire packets and therefore requires considerably more buffer resource
than wormhole routing. Wormhole routing and virtual cut-through routing
provide low latency message delivery and often make use of virtual chan-
nels, which can significantly improve the throughput of an interconnection
network [13]. Moreover, deadlock free routing algorithms for many mul-
ticomputer topologies which utilize these switching mechanisms have been
proposed [17, 30]. Virtual channels provide excellent channel utilization and
allow multiple disjoint logical networks to coexist on a single physical net-
work, which is very useful for adaptive routing. Figure 2.8 presents a physical
channel which is being shared by three virtual channels. Even though two
of the destination buffers are full, the physical channel can still be utilized

as the third destination buffer is free. Thus, the data in the free channel can

pass the data in the blocked channels.




2.4 Message Routing 17
Message router Plow ohmta) Message router
Buffer signalling Buffer
Status - = Status

Unblocked flit
passing
bet des
m] ‘ etween no i
([

>Blocked flits + >
Physical :
Source Buffers channel Destination Buffers

Figure 2.8: Three virtual channels sharing a unidirectional physical channel

2.4 Message Routing

The routing of a message in a direct IN involves the selection of an appro-
priate path from the source node to the destination node. Routing can be
classified in several ways. In source routing, as the name implies, the source
nodes determines the entire path of a packet prior to injecting it into the net-
work. While this method may reduce the complexity of the message router
hardware, it requires that each packet carry the information in its’ header,
increasing the packet size. Also, the path of the packet is fixed and cannot be
changed once it has left the source node. Most current state-of-the-art direct
INs employ distributed routing. In this case a routing decision is made at each
intermediate router which lies on the path between the source and the desti-
nation nodes. The decision process determines whether the packet should be

delivered to the local processor or forwarded to a neighboring router. If the

message is to be forwarded, the routing algorithm decides which of the adja-




2.4 Message Routing 18

cent routers the message should be passed to. This routing decision should
be as simple as possible to allow it to be easily implemented in hardware and
provide minimal routing latency.

Routing can also be classified as oblivious or adaptive. In oblivious or de-
terministic routing, the path of a packet is completely defined by its’ source
and destination addresses. The path taken by a packet in a network em-
ploying dynamic routing depends not only upon the source and destination
address, but also on dynamic network conditions such as network load, or

the presence of faulty channels.

2.4.1 Deterministic Routing

Most current state-of-the-art interconnection networks employ deterministic
routing. Although deterministic routers are not fault tolerant and have poor
performance in networks experiencing high traffic loads or hot-spots, they are
extremely simple and therefore fast. This makes them suitable in the prac-
tical implementation of interconnection network hardware[44]. Many multi-
computer systems, such as the Cosmic Cube, NCUBE, J-machine, iWarp and
Intel Paragon, therefore utilize deterministic routers. The most widely used
routing algorithms for these machines are the e-cube routing algorithm [49],
which is used for routing on hypercubes, and dimension order routing, which

is used on n-dimensional meshes.
e-cube Routing

In an n-cube with N = 2" nodes, each node’s address is binary coded as

a = (ag,a1,...,an—1). Given a source address s = (Sg, S1,..., Sn—1) and a des-




2.4 Message Routing 19

tination address d = (dy, d},...,ds—;) the routing function should determine
a route from s to d with a minimum number of steps. Denoting the n dimen-
sions as 1 = 1,2,...,n, where the ith dimension corresponds to the (i — 1)st
bit in the node address and letting VU = Up—1 ...V10g be any node along the

packet route, the route is determined as follows:

1. Compute the direction bit r; = s;_; @ d;-, for all n dimensions (i =

L Resigh
2. Start with dimensionz =1 and v = s

3. If r; = 1, route from the current node v to the next node v @ 2°~1, else

skip this step.

4. Move to dimension i + 1(i.e., 1 ¢ 1+ 1). If i < n, go to step 3, else

quit.

An example of e-cube routing on a 16 node hypercube is presented in
Fig. 2.9. In the example n = 4, s = 0000 and d = 1101. Thus r = ryrarer; =
1101. The routing steps are summarized in Table 2.1. As can be seen in the
example, the packet is routed from dimension 1 to dimension 4. If the :th
bit of s and d are the same, no routing is needed along dimension ¢. Thus in
the example, no routing is required for dimension 2. If the :th bit of s and
d differ then the packet is routed from the current node along dimension :.

this process is repeated until the destination is reached.

Dimension order Routing

Dimension order routing is somewhat similar to e-cube routing. As was

discussed previously, a k-ary n-cube is an n-dimensional cube of radix k,




2.4 Message Routing 20
dim2
I dim3
: s =0000
d=1101
dim 1 r=1101
dim4

Figure 2.9: e-cube routing on a hypercube

Table 2.1: Routing steps from s = 0000 to d = 1101

Step | r; | Operation | Next node
:=1]11]0000¢ 2° 0001
2=2110 skip n/a
i=3|1 | 0001 e 2? 0101
i=4(1]0101p2° 1101




2.4 Message Routing 21

Figure 2.10: Dimension order routing on a 2D mesh

and a node within a k-ary n-cube can be identified by the n-digit radix k
address, (ao,a1,..,@n-1). Given a source address s = (So,$1, ..y Sn-1) and
a destination address d = (do,d;,...,dn,—1), a packet is routed along each
dimension ¢ = 1,2,...,n, where the :th dimension corresponds to the (i —1)st
digit in the node address, until s;_; is equal to d;_;.

This is illustrated in Fig. 2.10, which shows routing between four (source,
destination) pairs on a two-dimensional mesh. A packet from any source
node s = (z;y1) to any destination node d = (zsy,;) will first route along
the X-axis until it reaches column y,, where d is located. It will then route
along the Y-axis until d is reached. A west-north route is taken from node
(1,0) to (0,4). An east-north route is traversed from node (1,1) to (3,3). A
west-south route is needed from node (4,4) to node (1,3) and an east-south
route is required from node (5,2) to node (6,1).

Dimension order routing alone is sufficient to ensure that deadlock does

not occur in mesh connected networks, as it prevents a circular wait for




2.4 Message Routing 22

p'S

-

n
IS

— >

w
IS

() @3
(19 @3
(D))

® 6 60 6
® 0 ® ®
® 60 6 ®
® 6 6 6
® 60 ® ©
® 6 6 6

(b)

P o
="l
-

Figure 2.11: (a) Dimension order routing (b) Adaptive routing

channel resources. However, the same dimension ordering scheme will not
prevent a deadlock from occurring in a torus network. This is discussed in

further detail in Section 2.5

2.4.2 Adaptive Routing

Although deterministic routers are simple to implement and therefore fast,
they suffer from poor performance in the presence of hot-spot traffic and
are not fault tolerant. Figure 2.11(a) presents a simple example in which
dimension order routing may result in poor use of channel resources. Node
(0,4) is sending a packet to (4,4), while at the same time node (1,4) has a
packet to send to (4,1), node (2,4) as a packet to send to node (4,2) and
node (3,4) has a packet to send to node (4,3). As dimension order routing in

a two-dimensional mesh requires that the message be sent along the X-axis

first, nodes (1,4), (2,4) and (3,4) are unable to sent their packets, even though




2.4 Message Routing 23

s
7

Virtual communications
;’ planes
+X+YPlane

J -X+YPlane &j' -
/ +X-YPlane Destination Node
/|/ -X-YPlane &—2

Source node

Figure 2.12: Physical communication channels divided into routing planes

a plethora of available channels exist. In Fig. 2.11(b) the routing rules have
been relaxed to allow adaptive routing so that the packets from nodes (1,4),
(2,4) and (3,4) can be transmitted concurrently with the packet from node
(0,4). This allows better channel utilization and lower packet latency.

A number of different approaches have been proposed for the construc-
tion of adaptive and fault tolerant routers. Many of these proposals have
advocated the use of virtual channels to supply multiple virtual paths be-
tween a given (source, destination) pair and thus provide varying degrees of
adaptivity and fault tolerance. These include Planar-Adaptive Routing [9],
Virtual Networks [32], Adaptive Routing with Virtual Channels [15] and The
Turn Model for Adaptive Routing [30].

A general technique for providing adaptive routing is to partition the
physical network into a number of disjoint subsets, where each subset consti-
tutes a corresponding subnetwork. Packets are routed through different sub-

networks depending upon the location of the source and destination nodes.

Figure 2.12 illustrates an application of this method to a 2D mesh. The




2.4 Message Routing 24

network is partitioned into four subnetworks or planes, the +X+Y plane,
the -X+Y plane the +X-Y plane and the -X-Y plane. If, for example, the
destination node is to the left and above the source node, that is, if d, < s,
and dy, > s,, then the packet will be routed along the -X+Y plane. If in
this example d, was equal to s, then the packet can be routed in either of
the +X+Y or the -X+Y planes. This adaptive routing algorithm is said to
be minimal and fully adaptive, that is, a packet can be delivered through
any of the shortest paths between the source and destination. In addition to
this, for the 2D mesh it can be proven to be deadlock free. However, provid-
ing minimal fully adaptive and deadlock free routing algorithms using this
method for the general class of k-ary n-cubes may require additional chan-
nels. Linden and Harden [38] have demonstrated that a k-ary n-cube will
require 2*~! subnetworks or routing planes and thus the number of chan-
nels required increases rapidly with n. The use of virtual channels is also
expensive in terms of latency and cycle time[8] and requires that flow con-
trol information be sent in the reverse direction to signal the availability of
buffering on the receiving node. This flow control information either requires
extra wires, or will consume communications bandwidth from the reverse
communications channel.

Ngai and Seitz also proposed a non-minimal adaptive mesh router which
allows complete freedom of path selection between any (source, destination)
pair, by using misrouting to prevent deadlock[41]. However, this approach
requires the use of time stamps and prioritization to prevent livelock, requir-

ing that extra state information be stored for each packet and results in a

complex router design.




2.4 Message Routing 25

+Xinput frame +X output frame
— {0 . T

Xinput frame -X output frame

—~{IT T o| Yo
> [}
+Yinput frame +Youtfutframe

-Yinjut frame -Youtiut frame
In?ection frame Ejection frame

Figure 2.13: Two-dimensional chaos router

Another non-minimal adaptive router which utilizes misrouting to avoid
deadlock is the Chaos router proposed by Konstantinidou and Snyder [35]. A
block diagram of a two-dimensional router is presented in Figure 2.13. The
Chaos router utilizes randomization to provide probablistic freedom from
livelock and therefore does not require any extra state information to make
routing decisions. The central queue of Fig. 2.13 is used to store packets
which arrive at an input frame and are unable to be routed to an output
frame before the entire packet is received. Once the central queue becomes
full and a message is specified to be sent to the queue, one of the packets
in the queue will be randomly selected and sent to the first available output
frame.

Konstantinidou and Snyder have shown that no packet in a router is ever

mis-routed with certainty or in other words, every message has a non-zero




2.5 Deadlock 26

chance to avoid misrouting [35]. Using this as a starting point they also
demonstrated that the probability that a packet will not have been routed

after ¢ routing steps, where 1 — oo is:
lim Q(i) = (1 — €8V) =0 (2.4)
1— 00

Therefore, the longer that a message remains in the network, the more prob-
able that it will be delivered to its’ destination. The major disadvantages of
this router are that it requires a central misrouting queue, queues at both
inputs and outputs, and extra state information to make the misrouting de-

cision. These factors may result in a large and slow implementation.

2.5 Deadlock

Deadlock occurs in an IN of a parallel computer when no packet can advance
towards its destination because the queues or channels of the message system
are full and no packet can release the queue space that it currently holds. This
phenomenum has been studied extensively for wormhole routed networks and
a general solution for deadlock avoidance in any wormhole routed network,
based on the concept of virtual channels, has been proposed [18]. Deadlock
in wormhole routed networks is normally described in terms of a network’s

routing function and channel dependency graph.

Definition 4 A routing function, ® : C x N — C, maps the current channel,

C., and the destination node, Ny, to the next channel, C,, on the route from

the source node to the destination node. A channel is not allowed to route

to itself, C, # C,.




2.5 Deadlock 27

(b)

(d)

Figure 2.14: (a) Network and (b) its channel dependency graph without
virtual channels. (c) Network and (b) its’ channel dependency graph with
extra virtual channels.




2.6 Multicast Messages 28

Definition 5 A channel dependency graph, D, for an interconnection net-
work, I, and routing function, R, is the directed graph, D = G(C, M). The
vertices, D(C), are the channels of I and the edges, D(M), are the pairs of

channels mapped by the routing function, .

The routing function, R, for a network is deadlock free iff there are no
cycles in its channel dependency graph. Deadlock can occur in the network
of Fig. 2.14(a), due to a circular wait for channels, as there is a cycle in
its’ channel dependency graph, shown in Fig. 2.14(b). A circular wait for
channels can occur if, for example, a flit from ny that is destined for n, is
holding Cy, a flit from nj that is destined for n; is holding Cj, a flit from n,
that is destined for ng is holding C; and a flit from n; that is destined for nj
is holding C;. By adding a set of virtual channels to the network, as shown in
Fig. 2.14(c), and modifying the routing function appropriately, the cycles in
the channel dependency graph are removed, as shown in Fig. 2.14(d). In the
figure, packets at nodes numbered less than their destination are routed on
high channels and packets at nodes numbered greater than their destination
are routed on low channels. Channel ¢y is not used. There is now an
ordering of virtual channels according to their subscripts: ¢i13 > ¢12 > ¢11 >

€10 > Co3 > Co2 > ¢o1 and the routing function is now deadlock free.

2.6 Multicast Messages

Point to point, or unicast communication, in which a source node sends a

message to a single destination node, is the basic structure supported by

present multicomputers. Broadcast and multicast communications are the




2.6 Multicast Messages 29

transmission of a message from a source node to all other nodes in the system,
and from a source node to a subset of the nodes in a system respectively.
Broadcast communication can be viewed as a special case of a multicast
communication, in which the same message is delivered to all of tﬁe nodes
in the system [40].

Two parameters commonly used to measure the efficiency of multicast
schemes are channel traffic and communication latency. Channel traffic is
defined as the number of channels used to deliver the message under consider-
ation and latency is defined as the longest packet transmission time involved.
These two parameters are somewhat interrelated as is illustrated in Fig. 2.15.
The unicast based multicast generates traffic = 14 and has has distance = 3,
the tree based multicast has traffic = 9 and distance = 3 and the path based
multicast has traffic = 7 and distance = 4.

Multicast communications can be implemented using multiple unicasts,
software multicast trees, or by hardware multicast facilities. Multiple uni-
casts, while simple to implement, generate large amounts of unnecessary traf-
fic which can cause blocking and contention in the network [37]. Software
multicast trees, in which a worker node will forward the multicast message
to its neighbors upon reception of the message, exhibit considerable speedup
when compared to multiple unicasts [51], but are still inferior to hardware
based multicast schemes. Although hardware based multicast schemes of-
fer the best potential performance for the implementation of multicasting, it

has been shown that these schemes may result in deadlock in those networks

which employ wormhole routing [37].




b
|
2.6 Multicast Messages 30
- ~<—] S —» D5
( D2 [ <] —
D1 D3 D6 )
Y y
| D4 D7
|
(a)
< | D2 s [ D5
' Y Y
D1 D3 D6
y
D4 D7
(b)
02 | [ g |»l. D5
Y Y
D1 |« D3 D6
Y
D4 |t D7
©

Figure 2.15: (a) Multicast by unicast (b) Tree based multicast (c) Path based
multicast




2.6 Multicast Messages 31

——» Channels held by message

message router ——
----- -~ Channels required by message

I Outputbuffer
] wputbutfer

7 Y
we | wm (1] N2 RO =] na

"ol "Hel [ "Hell e

w [ wm [ N4 m[Im[] N5 m [ wm[]| no | |mm [ ]wm[]] N7

Figure 2.16: Multicast deadlock in binary tree

2.6.1 Multicast Deadlock

One of the properties of wormhole routed, tree based multicast schemes is
that, due to the small amount of buffer space at each node, a potentially
large number of network resources must be concurrently held by a single
multicast message. The resources that the messages are competing for in the
network are the communication channels and message buffers of each node.
Each physical communication channel has a dedicated message buffer and
typically the message buffers are partitioned into separate virtual channel
buffers [13].

While a number of routing algorithms, such as e-cube routing in hy-
percubes and dimension order routing in meshes, guarantee deadlock free

routing of unicast messages, multicast trees based on these algorithms are

prone to deadlock. In fact, networks which are inherently free of deadlock,




2.6 Multicast Messages 32

such as the n-ary tree and fat tree [36], may also deadlock if more than one
tree based multicast occurs concurrently. In the simple example presented
in Fig. 2.16 a deadlock has occurred as the channels (N3,N6),(N3,N7) that
are held by N3 are required by N2, and the channels (N2,N4),(N2,N5) that
are held by N2 are required by N3.

Although the unicast routing algorithm of this network is deadlock free,
a deadlock has occurred because of cyclic dependency in the concurrent al-
location of multiple resources between the two multicasts. Thus, multicast
deadlock differs significantly from traditional unicast deadlock, as in multi-
cast deadlock, the resources contributing to the deadlock situation are dis-
tributed over a number of nodes. Traditional methods of deadlock avoidance,
such as releasing all of the deadlocked resources once deadlock is detected or
requesting all of the required resources prior to initiating an operation which
might result in deadlock, are not suitable for prevention of multicast dead-
lock. Releasing the distributed deadlocked resources results in considerable
waste of communications bandwidth and may be difficult to implement due
to the large number of distributed resources which may need to be released,
while requesting all of the necessary channels prior to initiating a multicast
would significantly increase the multicast latency. New methods of deadlock
avoidance for multicast must therefore be found.

Multicast deadlock avoidance has typically been achieved by limiting the
growth of the multicast tree and Lin, McKinley, and Ni have extensively
studied the use of multi-path multicasting algorithms utilizing Hamiltonian

paths to ensure that deadlock does not occur [40, 37, 51]. In addition to dead-

lock avoidance, multi-path multicast allows arbitrary multicast destinations




2.6 Multicast Messages 33

®
© O+

8.2

-0 ® O 6® ©
D O ® O ©
0 O O+

® O

S OB OB
® ® ©®

©

Figure 2.17: Multipath multicast

and they have demonstrated that this technique has the added advantage
of reducing the amount of traffic in the network. Figure 2.17 illustrates a
multi-path broadcast in an 6 x 6 mesh network. As can be seen in Fig. 2.17,
a multi-path message is broadcast by sending four copies of the message
on individual multicast paths. Similarly, Byrd et al. have investigated the
restricted branch multicast approach to multicasting [7]. This approach re-
quires that a multicast message can only be split into two paths at any given
node, and that one of these paths must be connected to the local processing
element.

Multi-path and restricted branch multicasting have a number of disad-

vantages. For example both restricted branch and multi-path multicasting

require that the packet header store multiple destination addresses, as all of




2.6 Multicast Messages 34

the destinations for a broadcast or multicast must be stored in the header,
which increases the length of a packet and complicates router design. In
addition to this, restricted branch multicasting requires an extra port re-

source to guarantee deadlock freedom, and the algorithm used in multi-path

multicasting to determine the multicast paths is complex.




Chapter 3

Tokkytu: A High-Performance,
Randomizing, Adaptive
Message Router with Packet
Expressway

The Tokkyi router is a new high-performance message router for k-ary n-cube
multicomputer systems([26, 29, 28]. The k-ary rings that make up the inter-
connection network are constructed using uni-directional register-insertion
buses. Tokkyu utilizes misrouting to prevent deadlock and randomization to
prevent livelock in a fully adaptive routing environment. Any packet arriving
at an input to a Tokkyu router that can not be profitably routed is imme-
diately misrouted. This is significantly different than both the Ngai/Seitz
router and the Chaos router which defer the misrouting of a packet that is
waiting for an output until it is to be overwritten by a newly arriving packet.
The misrouting rate is minimized by utilizing a small number of queues,
placed at the outputs of the communication ports. As blocking or buffering

flow control is not used, all of the available communications bandwidth can

be utilized for sending messages between processors in the system. Finally,




3.1 The Register-insertion Bus 36

uncongested network performance is improved by the inclusion of the packet
erpressway, which provides a low latency bypass path for packets which need

not pass through the core of the router.

3.1 The Register-insertion Bus

High performance ring buses have become a favorable alternative in the im-
plementation of local area networks [45]. However, LAN/WAN structures
are not directly applicable to INs due to differences in the node structure
and communications patterns [15]. The use of the unidirectional register-
insertion bus in the construction of INs does, however, have a number of

advantages. These advantages include:

o A packet may propagate through a large number of bus interfaces with-

out being buffered.

e Processors are free to inject packets at any time, subject to available
space in the transmit queue. Thus there is no global arbitration, as
each processor can decide whether to inject a packet according to in-

formation local to its bus interface.

o Active repeaters can be used at the output of each message router,
instead of the pulldown structure required for a bi-directional bus, thus

making the network more scalable.

3.1.1 Register-insertion Bus Operation

With reference to Fig 3.1 the operation of a register-insertion bus is as fol-

lows; Assume that the input and output data is synchronized at the same




3.1 The Register-insertion Bus 37

transmission rate, so that for each word received, another can be transmit-
ted. The transmit (tx.) buffer is used to temporarily store a packet from the
local processor while it is waiting for injection onto the bus. These packets
are of variable length and so only a porfion of the tx. buffer may be used for
a particular packet, however, the packet length must not exceed the length
of the tx. buffer. The function of the delay buffer can explained by first
considering the area currently being used. The used, or active portion of the
delay buffer, operates as a FIFO queue that delays the incoming packets.
Assuming that the entire delay buffer has a capacity of n words and that 7
words are currently used, 1 < i < n, then n — 7 words remain for the unused
or inactive portion. Thus locations wp,wy,...,w;_, of the delay buffer are
active and locations w;, wi41,...,ws—; are inactive. If, in each time step ¢,
a new word can be received, and a new word is to arrive at time ¢t + 1, then
the active portion of the delay buffer represents a FIFO queue containing
the words which arrived at times ¢,t +1,...,¢ + (: — 1). At time ¢ + 1 the
word stored in wp is removed from the queue and sent to the output. Si-
multaneously, the incoming word is added to the queue such that locations
wp, Wy, . . . , Wi—; NOW contain data which arrived at times t+1,t4+2,...,t+1,
and the queue length remains unchanged.

It is desirable that in each time step, if # > 1, the queue size be reduced.
A reduction can take place iff the data received at the input is not part
of any packet destined for the output. In this case, the previous discussion
should be modified so that the incoming word is not stored in location w;_;

and also so that i is reduced to i’ = i — 1. Furthermore, if ¢+ = 0, then any

incoming word need not be stored at all and can pass directly to the output.




3.1 The Register-insertion Bus

38

datain
l select
Cfntfol e
s decoder .
. R T it i [l 1111
P il I dpfe G5 efingd
! ll B aln ===l =5
T 1 ; data
shift | | | S
~ g shiftl
- =
g ¢ ' ' lect
¢ output selec
X 3 R SO S P
1-to-k
select * decoder
&
l S buffer space used
connectionto 7
local processor\—z’(‘/ [ buffer space free

Figure 3.1: Registe

r-insertion bus interface




3.1 The Register-insertion Bus 39

In this case the incoming word is not stored in location w;_; and 7 is constant
at 1= 0.

The inactive portion of the buffer is essential for the injection of packets
into the network from the tx. buffer. Assuming that the tx. buffer contains
a packet of length [, 1 < | < (n — 1), and that at time ¢ + 7 the first
word of the of this packet is to be sent to the output, then the previous
FIFO discussion should be modified as follows; In this case, at time ¢ + 2
the incoming word is stored in location w; and i is increased to i’ = ¢ + 1.
At time ¢t + ((¢ + !) — 1), after the last word of the transmitted packet has
been sent, the locations wo,w, ..., w(it+1)-1 of the delay buffer now contain
words t,t +1,...,¢ 4 (( +!) — 1). In addition, the requirements for queue
reduction must be modified such that queue reduction can only occur iff the
data received at the input is not part of any packet destined for the output
and no packet is currently being sent from the local tx. buffer.

From the preceding discussion we can observe that if : = 0, the delay
experienced by a packet is only due to the propagation delay through the
output selector. Also if no packet is being sent from the transmit buffer
and i is less than the length of the incoming packet, then the packet will
cut-through the FIFO. Finally if 7 is greater than the length of the incoming
packet, or a packet is being transmitted and [ is greater than the length of
the incoming packet, then the incoming packet will be completely buffered
in the FIFO, in a store-and-forward manner.

The concept of the register-insertion bus can easily be extended to the

k-ary n-cube as is shown in Fig. 3.2, which illustrates the structure of a single

port of an n-dimensional register-insertion bus router. The delay buffer of




3.2 Architecture of the Tokkyi Router 40

InputControl \

> [auie0 }—»
d % | queue 1
i Loy 2> Dout

Concentrator i1 mux

> [aueue it |—
/ — SG'GCl selec[
Output Control

Port 1 Input
Port 2 Input

.
.

5 .

a

£ .

-

<

8

Figure 3.2: N-dimensional register-insertion bus port.

Fig 3.1 is replaced by a group of output buffers. These buffers store packets
that are changing dimensions, in addition to those which must be delayed
while the local processor injects new packets into the network. Also, the
control is now distributed between the input and output control sections to

improve performance.

3.2 Architecture of the Tokkyu Router

The architecture of a two-dimensional Tokkyii router is presented in Fig. 3.3.
The input queues of a typical oblivious router have been replaced by m queues
per output and n : m switches connect the inputs to the queues, where n = 4
for a two-dimensional router. A small input frame is also provided in each
input controller to temporarily store several words of an incoming packet
while a routing decision is made. Each of the output queues is capable of
holding multiple, variable length packets and all of the queues support cut-

through routing. As the router may buffer complete packets when output

contention occurs, it requires the use of comparatively short packets, i.e. less




3.2 Architecture of the Tokkyu Router 41

than 32 bytes. An output controller schedules the output of packets from the
output queues in a FIFO manner and also controls the injection of packets
into the network via the output switch. Under the assumption of uniform
traffic distribution, each packet in a k-ary -n-cube traverses ¢ = k/4 channels
in each dimension before a routing decision must be made. Therefore we
have provided the packet ezpressway which, in the absence of blocking, allows
packets to pass directly to an output. Thus, a single unidirectional channel
in any dimension can be viewed as a high speed register-insertion ring[26).
The header of each packet is updated prior to entering the output register,
when passing through the inc or dec modules, to reflect the progress of the
packet through the network.

As misrouting is used to prevent deadlock and randomization is used to
prevent livelock, correct operation of the router can be guaranteed provided
no packet, or part of a packet, is lost due to buffer overflow. The aggregate
data rate into any router must therefore never exceed the aggregate data
rate out of the router. A simple way for the data rates within the network
to remain tightly matched is through the use of a globally distributed clock.
Then, by restricting packet injection to only occur when sufficient space
exists to completely store any packet which may arrive while injection is

taking place, buffer overflow is guaranteed not to occur.

3.2.1 Router Operation

The operation of the router can be understood by examining the control
algorithms of its major components. These components are the input and

the output controllers of each port, the queue controller associated with each

|.
|
|



3.2 Architecture of the Tokkya Router

42

/\

-X lnput

/\

<Y lnput

(m+2):1

\

Output

(m+21 —»@—»[]—»‘X output

Output

(m+2):|—>| : l—bi I_>.xw

(me21 —E—DD—.»V output

-Y output

P-Packet gect

Figure 3.3: Architecture of a two-dimensional Tokkyu router




3.2 Architecture of the Tokkyid Router 43

output queue and the arbiter which controls access to the output queues
via the queue switches. Throughout this section the following notation is

adopted for convenience:

D,.. : Distance remaining in this dimension
P, : Length of current packet

I;en : Input count register

Jien : Injection count register

Lien : Queue load count register

Qien : No. of words stored in queue
@mazr : Max. contiguous queue space
Otlen : Output count register

Qutput : Queue output selected
Passive : Packet ezpressway selected
Bypass : Packet ezpressway in use
Inject : Packet injection selected

Input Controller Algorithm

Algorithm 3.1 Input Controller Algorithm

1. If no packet, wait;

2. Decode header;

3. If D,y =0 or Passive not asserted,
4. Request new output(s);
5. Else, assert Bypass ;

6. Dten = Plen—]- ’

7. While [, > 0 do

8. fien = Jten = 1

9. Enddo;

10.Reset Bypass ;

11.Goto '1;

With reference to Algorithm 3.1 the input controller operation is as follows;

The received data is sampled by the input controller on each clock cycle to




3.2 Architecture of the Tokkyd Router 44

test for a valid packet header. Upon the detection of the first word of a packet,
the header is decoded to generate the output request(s). A packet which is
J-dimensions from its destination will generate j valid output requests. If
the packet has finished traversing the current dimension (Dyem = 0) or the
output switch is not in the Passive state, then the output request(s) will be
passed to the global arbiter. Bypass is asserted if Dyern > 1 and the output
switch 1s Passive, to signal that the packet is passing to the output via the
packet expressway. The packet length is loaded into the input count register
and on each subsequent clock cycle I, is decremented as each new word of
the packet is received. Once I, has decremented to zero, indicating that
the entire packet has been received, Bypass is reset and the input controller

begins to sample the input for a valid header once again.
Output Controller Algorithm

With reference to Algorithm 3.2 the output controller operation is as follows;
Operation of the output controller begins with setting the output switch to
the Passive state, allowing any packet on the packet erpressway to pass
directly to the output register. Once an output request is detected and no
packet is currently bypassing the output, the request is processed and the
output switch is set accordingly. If an injection request is being made and
there exists sufficient space for any incident packet to be temporarily stored
while the new packet is being injected (Qmez = Jien), then the switch is set
to the injection input. This ensures that there always exists sufficient space

to buffer an arriving packet within the node while a new packet is injected

so that no information, i.e. no part of a packet, is lost. The packet length




3.2 Architecture of the Tokkyld Router 45

Algorithm 3.2 Output Controller Algorithm

1. Assert Passive;

2. If no output requests, wait;

3. If Bypass is asserted, wait;

4. Reset Passive;

5. While output requests do

6. If injection request,

7. It Qma:v > Jlen;

8. Assert Inject;

9. If Inject not asserted and output request,
10. Assert QOutput;

11. Get first output request;

i2. Olen = Plen;

13. While O, > 0 do

14. Output word;

15. Olen = Olen = 13

16. If Output asserted, Qien = Qlen — 1;
I Elaey i = ligg = 1

i8. Enddo;

29 .Enddo; |

20.Goto 1;




3.2 Architecture of the Tokkyi Router 46

is loaded into the output count register and a new word of the packet being
output is placed in the output register during each clock cycle. O, and

either of Qe or Jie, are decremented until the entire packet has been sent.

Global Arbiter Algorithm

Algorithm 3.3 Global arbiter algorithm
If no requests, wait;
. While requests do
Get first request;
If requested output(s) free,
Assign available queue;
Else, Assign random queue;
Enddo;
o ool

0 ~NO O AW

With reference to Algorithm 3.3 the output controller operation is as follows;
The global arbiter processes each output request sequentially, beginning with
the request at the head of the request queue. The arbiter examines the output
request and the current state of the queue switches and the output queues in
an attempt to profitably route the requesting packet. If it is not possible to
profitably route the packet, it will be randomly misrouted to any available
output queue. Although it may appear that this approach of immediately
misrouting blocked packets will result in excessive misrouting of packets, the
discussion in Sect. 3.3 and the simulation results of Sect. 3.4 demonstrate
that the careful selection of the switch and output queue sizes prevents this
from occurring.

The arbiter algorithm presented here processes each input sequentially.

At first glance it might be appear that it would be beneficial to process all




3.2 Architecture of the Tokkyi Router

HEEREEEEE
= i = e P
x| x| x 2
HH| V[TV FHF O
/+x -x q0 set
-X -x q0 a0
from +x +y » -x g0 at >
input | -y > -X g11 S%t >
O/P req., -xqla0
N -x gt al
(- . y g% s%t.
from -x _-t)(__>——_> Y 9Lay . 021
MPOTY ~yaisety
QP req.,, Global —yalal o, 1 a(1)
7z ; -ygila -
er_b Arbiter % bl
from +y X -x g0 a0 »
input | H— xq0al o
W -x q1 set »
s Tl
+X > =xqgtal o
-X -y 90 set >
from-y | 2 v g0 a0
input | B— *U—M q0 ai
O/P reg., -yalsety
\ -y ql a0 >
do d1 _‘Y__gj_gl_b
Random No.
Generator

Figure 3.4: Global arbiter inputs and outputs




3.2 Architecture of the Tokkyd Router 48

of the inputs simultaneously using a large combinatorial logic circuit, as this
may result in shorter average time to make routing decisions. However, with
reference to Fig. 3.4 which presents the inputs and outputs for the arbiter
section of a two-dimensional router with only two queues per output port, it
can be seen that this would require the solution to a boolean equation with
31 inputs. The resulting circuit would therefore be cumbersome and slow,

and so a sequential design was used in the simulations of Sect. 3.4.

Queue Controller Algorithm

Algorithm 3.4 Queue controller algorithm
If no packet assigned, wait;
. Request output;

. Select assigned port;

Llcn = Hen;

. While Li, > 0 do

Load word from input;

Lim = Lo — 13

Qlen = Qlen 4+ 1}

. Enddo;

10.Goto 1;

W 00 ~NO NS WN -

With reference to Algorithm 3.4 the output controller operation is as follows;
When the queue controller detects that a received packet has been assigned
to it, an output request is immediately made to the output controller and
the length of the packet from the assigned port is loaded into the queue load
count register (Lien). A new word of the packet is loaded into the queue in
each clock cycle, (Lje,) is decremented and the count of the number of words
currently stored in the queue (Qes) is incremented, until the entire packet

has been received (Ljen = 0).




3.3 Switch and Buffer Design 49

3.3 Switch and Buffer Design

The misrouting of packets provides a simple solution to the problem of dead-
lock. However, any packets which are misrouted will remain in the network,
requiring channel and buffer resources. This may exacerbate any existing
congestion and result in further misrouting. It is therefore desirable that the
output switch and buffer sizes be selected so that under normal operation
there is a minimal amount of misrouting occurring. Karol et al [33] and
Yeh et al [52] have studied in detail the design and performance of systems
employing output queues. However, their analyses have focused on those
systems in which an arriving packet can only select one possible output from
those available, and where the number of inputs, n, approaches infinity. We
extend their work here by examining the switch and buffer requirements for
those cases in which an arriving packet may select from a number of outputs,
and we focus on small values of n, typically 4 or 6. To simplify the following

discussion we assume that all packets are of fixed size.

3.3.1 Switch Evaluation

Assume that fixed size packets arrive at the n inputs to the k-ary n-cube
router. In each time slot, packet arrival is governed by independent and
identical Bernoulli processes and packets arrive independently at each input
with probability p. Under the assumption of uniform random traffic in a
k-ary n-cube, on average, each packet must traverse ¢ = k/4 channels in
each dimension and the average distance of a packet, d,ye, is (n X ). Of the

arriving packets, 1/d,,. are destined for the local processor and therefore the




3.3 Switch and Buffer Design 50

probability that an arriving packet is destined for one of the queue switches
associated with an output, which we define as a, is equal to p — (p/daye)-
The probability of i packets arriving at the router inputs, all destined for a

single output queue switch, a, has the binomial probabilities

- (@ey e

1

i = 0,1,2,...n

If the probability of misrouting is very low then most arriving packets will
be profitably routed, i.e. routed towards their destinations. Arriving packets
are therefore equally likely to be destined for only n — 1 of the available
outputs, as the n** output will send the packets in the opposite direction to

which they have just travelled, and thus Eq. 3.1 becomes

nfl (nc—rl)i(l_ nil)n—l_{ e

1

a;
i = 0,1,2,..,n—1

Packets arriving at the n router inputs to the k-ary n-cube must com-
pete for access to the m queues associated with each output, via the queue
switches. If 1 packets arrive at the inputs at the same time, all destined for
the same output, and ¢ < m, then all requests can be satisfied by the switch.
If i > m, then : — m requests will be rejected and these packets will have to
be misrouted. It follows then that the probability of an output request being

unsuccessful, for the case where a packet can be successfully routed via only




3.3 Switch and Buffer Design 51

one output, is given by the sum of the probabilities of 1 > m

- =2 ) n—1

i=m+1 1

G257 e

Extending Eq. 3.3 to the case where a packet can be profitably routed via

more than one output: If : packets arrive at the router inputs at the same
time, each of which can be profitably routed via j outputs, and 2 < ym, then
all of the requests can be satisfied by the switches. If 2 > jm, then i — jm
requests will be rejected and these packets will have to be misrouted. The
probability that : > jm is

e 7w~ 1

1 e o
- (i —jm)
@ i=jm+1 1

dEnili~as) || gt ik

In order to evaluate the effect of allowing packets to request more than

Pr(i > jm) =

one output, we need to determine f3;, the fraction of arriving packets with
j dimensions still to traverse, where 0 < j < n. To calculate 3;, we need
to determine the distance distribution for newly generated packets. This
is given by the number of ways in which the n-tuple describing the total
distance to travel in each dimension, (co,¢c;, ¢35 ..., Cn—1), can be arranged so
that the sum cy+c¢; + ¢ +...4¢n- is equal to the distance to travel, dy, where
0<a<k/2foralll =0,1,2,....,n — 1. The number of solutions for the
equation co+¢; + €2+ ... + €ae1 = dg, which we define as ¥, , is given by the

coefficient of z% in the generating function, f(z) = (1+z +z? + ... + z*/?)",




3.3 Switch and Buffer Design 52

Table 3.1: 2-tuples defining total distance to travel and ¥y, for packets in an
8-ary 2-cube

dy R J=2 Wy,
1 1(0,1)(1,0) ] 2
2 1(0,2)(2,0) (1,1) 3
3 1(0,3)(3,0) (1,2)(2,1) 4
110440 | 1L3)BDER2) | 5
) - (1a4)(4a1)(2a3)(3v2) 4
6 . 2.4)42)3,3) | 3
7 : (3,4)(4,3) 2
8 - (4,4) 1

0 < d; < nk/2. Table 3.1 shows the distance distribution of newly generated
packets, their corresponding 2-tuples and ¥4, for an 8-ary 2-cube.

If P;, is the probability that a packet is at a distance, d,, from its desti-
nation when it arrives at the input to a router and Py, 4,,5) is the probability
of that packet having j dimensions still to traverse, given that it started with

a distance to travel of d,, then §; is given by

k
B dg-1

Py= 3 3° Pi i) (3.5)
dg=1d,=0
where
Uy
P; = Z 3.6

and P4, 4, ) can be determined by considering the state transition diagram
for the distance distribution of a given k-ary n-cube. Fig. 3.5 shows the state
diagram used for determining distance distribution, Py , in an 8-ary 2-cube.
The vertices in the figure are the 2-tuples representing the (z,y) distances to

travel and the arcs are the probabilities of a transition from distance (z,y)

to distance (z’,y’).




3.3 Switch and Buffer Design 53

Figure 3.5: State diagram for determining the distance distribution in an
8-ary 2-cube

Using Eq. 3.5 we can predict the probability that a packet arriving at
an input has j dimensions still to traverse. This is important since the
probability that a packet will be misrouted due to contention for a queue or
switch decreases if j is greater than 1, and thus the size of the switches can
be reduced if f; is large for values of j greater than 1. Table 3.2 presents
the probabilities of §; , 0 < j < 3, for a 64 node 8-ary 2-cube, a 256 node
16-ary 2-cube and a 512 node 8-ary 3-cube. As can be seen in the table,
the probability that a packet can request 2 or more outputs is approximately
29% for the 8-ary 2-cube, 46% for the 16-ary 2-cube and 53% for the 8-ary
3-cube. We can therefore conclude that, under the assumption of uniform
traffic, as the radix or dimension of a network is increased, the probability

of misrouting due to queue or switch contention decreases.




3.3 Switch and Buffer Design

Table 3.2: Probability of j dimensions remaining to be traversed

8-ary 2-cube | 16-ary 2-cube | 8-ary 3-cube
Bo 0.25 0.125 0.167
B 0.46 0.413 0.303
B2 0.29 0.462 0.351
Ba n/a n/a 0.179

Finally, the probability of misrouting, for the case where arriving packets
can be profitably routed via j outputs, is given by the sum of the probabilities
of ¢ > ym multiplied by 3;, forall of 0 < 7 < n

n

Pr(M;s,) = Z

j=1

n—1 n—1
Bz ¥ G- jm)

i=jm+1 1

(nil) (1 - nil)ﬂ—l—‘]

Applying Eq. 3.7 we can evaluate how the rate of misrouting increases as

(3.7)

the load applied to a router increases. Figure 3.6 illustrates how the predicted
probability of misrouting varies as a function of the applied load for a single
node in a 16-ary 2-cube, along with results obtained by simulation. As can be
seen in the figure, the predicted results and simulated results remain in close
agreement, indicating that our model is suitable for predicting the switch
performance in networks where multiple outputs are available for routing.
Although the results of Fig. 3.6 are useful in quantifying the amount of
misrouting at a given applied load, any messages which are misrouted will

remain in the network and will require channel and buffer resources which

may result in further misrouting.




3.3 Switch and Buffer Design 55

o
e
8

1E-01 —

t
S
1

1E-03 — -

Probability of misrouting

1E-04 —

1E-05
| | I I | I I ! |

0 o1 02 03 04 05 06 07 08 09 1
Applied load (fraction of capacity)

Figure 3.6: Probability of misrouting versus applied load for 16-ary 2-cube.
Solid lines are predicted values, points are measurements taken by simulation




3.3 Switch and Buffer Design 56

3.3.2 Buffer Evaluation

The output of each port has a set of m queues for temporarily storing packets.
These FIFO queues operate as a single shared buffer for the associated port,
while the output controller ensures that a first-in first-out queuing discipline
is maintained for packets arriving at that output. If no packets are lost in
the queue switches, then in order to select an appropriate buffer size for
each dimension of the router we need to determine the probability that there
exists insufficient space in a queue to satisfy an output request. Assume
again that fixed size packets arrive at the n inputs to the router governed by
independent and identical Bernoulli processes and that the probability of :
packets arriving at a single shared buffer has the binomial probabilities given
in Eq. 3.2. Given the discrete-time Markov chain state transition diagram of
Fig. 3.7, the steady state queue size probabilities can be determined directly

from the Markov chain balance equations|33]

1 =
% = PrQ=0)=—
Qg
l—ag—a
6 = Brg=1)= ==,
ao
l—a % oa;
¢ = Pr(Q=n)= Gt — 3 —qni (3.8)
Qo =2 ao
n>2

and it follows that the probability that a queue size is greater than or equal

to some value, L, is the sum of the probabilities of queue lengths greater

than or equal to L

(3.9)




3.3 Switch and Buffer Design

ao+a1r> 0

Figure 3.7: The discrete-time Markov chain state transition diagram for the
output queue size

As packets are permitted to request more than one output, the probability
of misrouting is given by the sum of the probabilities that a packet has 7
dimensions still to traverse, 0 < 7 < n, multiplied by the probability that
the queue sizes of the requested queues exceed L, raised to the j** power

Pr(My=r) = Xﬂj [ﬁj (i Q’i)j] (3.10)

i=1 i=L

Applying Eq. 3.10, we can evaluate the probability of misrouting if the
queue sizes are fixed at L packets. Figure 3.8 illustrates how the probability
of misrouting due to buffer overflow varies as a function of the applied load
for queue sizes of 2, 4 and 8 packets in a 16-ary 2-cube, along with results
obtained by simulation of a single router. As can be seen in the figure,
the results predicted by the Markov chain model remain in close agreement

with the simulation results, except at high applied loads where the Markov

approximation overestimates the overflow rate.




3.3 Switch and Buffer Design 58

1E+00

1E-01 —

1E-02 —

1E-03 —

1E-04 —

1E05 —

1E-06 —

Probability of misrouting

1E-07 —
1E-08 —

1E-09 —

1B ";1 S e T R T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Applied load (fraction of capacity)

Figure 3.8: Performance of output queues. Solid lines are predicted values,
points are measurements take by simulation




3.4 Performance

3.4 Performance

In this section, we evaluate the performance of the Tokkyi router under a
variety of traffic conditions by simulation. The simulator is a C++ program
with a graphical user interface and includes a dynamic display of the simu-
lation progress. The simulator supports programmable network size, buffer
size, routing algorithm, traffic pattern and packet length as shown in the
dialog for setting the simulation variables of Fig. 3.9. In addition to this
there is a test mode which can be used to verify the routing algorithms,
buffer assignments and the correct operation of the simulator. This is illus-
trated in Fig. 3.10, where node (0,0) is sending a single, 16 word packet to
node (15,15) in a 2D mesh. As can be seen in the figure the route taken by
the packet is minimal and fully adaptive. All of the nodes of the simulator
operate synchronously and a word is transferred between nodes in a single
clock cycle. Figures 3.11, 3.12 and 3.13 illustrate snapshots of the simulation
display for random, hot-spot and fault simulations respectively. Each square
in the display windows +X Load, -X Load, +Y Load and -Y Load, represents
the buffer load for the given dimension of the corresponding router, while
the display window, Ave. Load, shows the average load of the buffers of the
corresponding router. The display has proved invaluable in the development
of the simulator, as well as providing insight into the results obtained.
Network performance under uniform random traffic, hot-spot traffic and
traffic in the presence of router faults has been simulated. Simulations were
all performed with two-dimensional tori (16-ary 2-cubes) and a packet size of

16 words. In order to accurately model the performance of a practical router




3.4 Performance

—Network/Routing:

{J 2D Uni-Torus/RI
& 2D Bi-Torus/RI
(J 2D Bi-Mesh/RI

—Simulation Mode:
& Random

() Hot Spot
() Fault

() Test

—Default Switch Mode:

& Passive
() Active

Cancel | |)

Buffer Size:

O/P Buffer:

words

Network Size:

X Size:

nodes

Y Size:

nodes

Max. Packet Length:

Length:

words

Simulation Settings:

Start Load:

End Load:

5

Step Size:

Res. Space:

Arb. Delay:

cycles

Sw . Size:

Figure 3.9: Dialog for setting simulation variables




3.4 Performance

key

Mesh Simulation Test

-X Load

-Y Load

Ave. Load

TIME

s

MODE

TESTING f

LOAD

o]

(a)

Full

Empty
Faulty

(b)

Figure 3.10: (a) Simulation display showing test mode (b) Simulation display




3.4 Performance

62

Bi-Torus Random Simulation

-¥ Load

Ave. Load

TIME
45449

MODE
Recording

Gen.Rate
100%

sl

(a)

Full

Empty
Faulty

Figure 3.11: (a) Simulation display showing random simulation (b) Simula-

tion display key

o —



3.4 Performance

Bi-Torus Hot Spot Simulation

L—H Load .[
|

Ave. Load
|

-Y Load

_TIME
48526 |
MODE

— e

Recording |

Gen.Raté
100% |

b ——— —

(a)

tion display key

(b)

Full

Empty
Faulty

Figure 3.12: (a) Simulation display showing hot-spot simulation (b) Simula-




3.4 Performance

Bi-Torus Fault Simulation

+¥ Load

-¥ Load

~ TIME

33805
|

' Startup |

[ eaike
Ave. Load | 10% |

(a)

Figure 3.13: (a) Simulation display showing fault simulation (b) Simulation

display key

Full

Empty
Faulty




3.4 Performance 65

we have fixed the uncongested routing latency of each router at 4 cycles. The
assumed cycle-by-cycle operation of the router is as follows; The header of a
packet entering the router will be decoded and a routing request made in the
first clock cycle. The routing decision will be made and an output assigned
in the second and third cycles and the header will be updated and sent to the
output in the fourth cycle. This is typical of current generation routers[8].
Packets using the packet expressway only require that the header be checked
for a value of zero, indicating that the packet has completed routing in the
current dimension. Therefore the packet ezpressway has a latency of only
one cycle. In all instances, collection of results was not initiated until the
latency and throughput measurements of the network under test had reached
a steady state. In the presentation of the results, the applied network load
of the networks has been normalized such that full load corresponds to all of

the network channels transmitting simultaneously.

3.4.1 Simulation of Uniform Random Traffic

In order to evaluate the performance of the network under uniform random
traffic a constant rate source with exponential interarrival times was applied
to each input and the time from the creation of the first word of the packet
until the last word of the packet is accepted at the destination was measured.

Figures 3.14 and 3.15 present the predicted and simulated misrouting
rates in a 16-ary 2-cube for varying switch and queue sizes respectively. In
these simulations a packet requesting more than one output was randomly
assigned to one of those outputs available to it. The simulation result for a

queue switch size of 4:1 in Fig. 3.14 is initially higher than the predicted re-




3.4 Performance

0 1E+00
= *
b
o121}
£ 1Eo01 -
bl
=
(o)
Bt
Rz
S 1B-02
1E-03 —
1E-04 —
onacdy [ERSE) TRy ny CHEEN RN LREa LEeR NS Emamy

0 01 02 03 04 05 06 07 08 09 1
Applied Load (fraction of capacity)

Figure 3.14: Performance of queue switches for 256 node 16-ary 2-cube. Solid
lines are predicted values, points are measurements taken by simulator
sult, due to the higher traffic present in the network as a result of misrouting.
At 30% applied load the measured network load is 45% and the misrouting
rate is 13.4%. At approximately 35% applied load the extra traffic produced
by misrouting causes network operation to become unstable and results in a
misrouting rate of 50%. A switch size of 4:2 is sufficient to maintain stable
network operation and the simulation and predicted results remain in close
agreement.

The predicted misrouting due to buffer contention in Fig. 3.15 overesti-
mates the measured rate for buffer sizes of 2, 4 and 8 packets. All of the
simulations remained stable, with the misrouting rate rising steadily as the
applied load was increased. A minimum buffer size of only 2 packets per

port is sufficient to guarantee stable network operation. Figures 3.16 and




3.4 Performance

1E+00
1E-01 —
1E-02 —
1E-03 —

1E-04 —

Misrouting rate

1E-05 —
1E-06 —
1E-07 — R e )
1E-08 A Y SR 1L=4
wos |/ R L=8

ot A ISR SR B (RN S

0 01 02 03 04 05 06 07 08 09 1
Applied Load (fraction of capacity)

Figure 3.15: Performance of output queues for 256 node 16-ary 2-cube. Solid
lines are predicted values, points are measurements taken by simulator

3.17 show the average packet latency and network throughput as a function
of applied network load respectively, for a 256 node 16-ary 2-cube and a
number of different switch and buffer configurations. With a single switch
output and buffering for one packet per port, (m=1,L=1), the misrouted traf-
fic causes the network to saturate at 35% applied load, and the throughput
is reduced to just 3%. Increasing the number of switch outputs to two and
the buffer size to two packets, (m=2,L=2) gives a significant improvement
in performance with a saturation throughput of 80%. Increasing the switch
and buffer sizes to three outputs and three packets respectively, (m=3,L=3)
further increases the saturation throughput to 90%, while further increases

in buffer size give diminishing returns. This is highlighted by the plot for a

switch size of three outputs and a buffer size of 16 packets, which saturates




3.4 Performance

450 ,

y 5

@ i

2 200 = i

Q |

2 | -

L 350 A [

o | P — ‘ ........

2 300 —

— 250 — —h————
200 =

150 —

100 —

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Throughput (fraction of capacity)

Figure 3.16: Latency versus offered traffic for a 256 node 16-ary 2-cube under
uniform random traffic

at 95% throughput.

Figure 3.18 illustrates the effectiveness of the packet ezpressway by com-
paring a network in which packets make use of the packet ezpressway with a
network in which all packets are forced to pass through the core of the router.
The average latency of packets in the network which utilizes the packet ez-
pressway is reduced significantly when compared to the network in which the
packet expressway is disabled. This decrease in latency occurs at all applied
loads and varies from a maximum of 43%, which occurs at 10% applied load,
to 23% at an applied load of 95%. The maximum throughput of the network
utilizing the packet ezpressway is also slightly higher, 95% versus 92%, due

to packets in the network spanning a greater number of channels at any given

time.




3.4 Performance

Throutput (fraction of capacity)

m=3,L=16
m=3,L=3
=2 =3
m=1L=1

I I I [ [ I
01 02 03 04 05 06 07

under uniform random traffic

] I
08 0.9

-------- 4-—- m=3,L=3 enabled
—#—— m=3,L=3 disabled

400 — —-—B—-—  Latency reduction

Latency (cycles)

300 —
--ﬂ'"“ﬂ'-—ﬂ—-—g—-—n‘-

=

100%

— 90%

— 70%

— 30%

— 20%

— 10%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9 1

Throughput (fraction of capacity)

1

Appled Load (fraction of capacity)

Figure 3.17: Throughput versus offered traffic for a 256 node 16-ary 2-cube

Reduction in packet latency (%)

Figure 3.18: Latency and reduction in latency versus applied load under
uniform random traffic with packet ezpressway enabled and disabled




3.4 Performance

70

400

300

Latency (cycles)

200

100

0

————----

I I I [ |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput (fraction of capacity)

Figure 3.19: Latency versus offered traffic for a 256 node 16-ary 2-cube under

bit reversal traffic

3.4.2 Simulation of Hot-spot Traffic

Adaptive routing allows better utilization of communication resources, es-

pecially at high network loads or in the presence of hot-spot traffic. One

method of generating large imbalances in the channel loads within a network

is to apply bit-reversal traffic. Under bit- reversal traffic, each node, p, sends

packets to node g, where the address of node q is the bit reversal of the ad-

dress of node p. For example node 27,6 in our 16-ary 2-cube sends messages

to node E4,¢. Figures 3.19 and 3.20 present the average packet latency and

network throughput as a function of applied network load respectively, for a

256 node 16-ary 2-cube under bit-reversal traffic. The maximum throughput

for (m=2,L=2) and (m=3,L=3) are 63% and 65% respectively. Increasing

the applied traffic rate past these points results in a decrease in the through-




3.4 Performance

0.9 —

0.8 —

0.7 —
S g . N

Throughput (fraction of capacity)

0
I [ I I I I I i
01 02 03 04 05 06 07 08 09 1

Applied load (fraction of capacity)

Figure 3.20: Throughput versus offered traffic for a 256 node 16-ary 2-cube
under bit reversal traffic

put to 56% and 58%. Increasing the buffer size to 16 packets results in an
increase in latency prior to saturation, due to packets queueing in the larger

buffers, and an increase in the maximum throughput of 70%.

3.4.3 Simulation of Traffic in the Presence of Faults

The correct operation of the router requires that the aggregate input and
output data rates remain balanced. Failure of a single channel of a router
will require that the in-degree of the router be reduced by one to maintain
the balance in data rates. In Fig. 3.21, the +Y channel of router (4,5) has
failed and so it is bypassed, creating a connection between nodes (3,5) and
(5,5). Depending upon the nature of the fault it may be possible to use the

packet ezpressway of node (4,5) to provide the bypass path.




3.4 Performance

T

N4

! bl
doob

Figure 3.21: Faulty node is bypassed

f

Figures 3.22 and 3.23 present the performance of a Tokkyu network in
the presence of faults. The network on which the faults were simulated had
switch and buffer sizes of two outputs and two packets respectively, a con-
stant applied load of 50% and uniform random traffic. Ten fault simulations
were carried out, each with randomly generated fault sets and the results
were averaged to produce Fig. 3.22 and Fig. 3.23. The network performance
degraded only slightly, even with 10% of the available channels faulty, as can
be seen in the figures. There was only a 26% increase in the packet latency

from a fault-free network to a network with 10% faulty channels and the

throughput remained fixed at approximately 50%.




3.4 Performance

100
~~
7]
= %0
L
)
gy LSS
P
g 70 —
L
bt
<
—

40 —

30 —

20 —

10 —

— 88— m=2L=2

e - et T |

I | I I
% 1% 8% 9% 10%

Percent faulty channels

Figure 3.22: Average latency versus percent faulty channels at 50% applied
load (m=2, L=2). Mean latency averaged over ten random fault sets

Throughput (fraction of capacity)
o °e o o
" Tl ) t | Y T

e
=

== =
_ N W

o

—&— m=2,L=2

5%

[ I I I
% 1% 8% 9% 10%

Percent faulty channels

Figure 3.23: Throughput versus percent faulty channels at 50% applied load
(m=2, L=2). Mean throughput averaged over ten random fault sets




3.4 Performance

3.4.4 Discussion of Results

A.A. Chien has illustrated the hazards of making comparisons between differ-
ent router implementations based on channel utilization and latency without
considering the important effects of implementation complexity[8]. The effect
of these factors is difficult to quantify without simulation at the gate-level or
actual implementation of the router. We can however, highlight a number of
features of the Tokkyi router when compared to other similar implementa-
tions. The predicted low load throughput and latency of Tokky is as good
as or exceeds the published performance of virtual channel based oblivious
routers[50, 48, 16] due to the low latency path provided by the packet ez-
pressway. In networks experiencing high load, hot-spots or fault conditions,
small Tokkyi routers, (m=2,L=2) or (m=3,L=3) have a clear throughput
and latency advantage over oblivious routers. The predicted latency and
throughput performance of the Tokkyi router with a small number of buffers,
(m=2,L=2) and (m=3,L=3), also closely matches, or exceeds the through-
put and latency performance reported for the adaptive Dally/Aoki router,
with 16 virtual channels per physical channel and a similar amount of total
buffer space. These results are encouraging as many of the routers which
make use of virtual channels to implement adaptivity require large cross-
bars and complex arbitration, which contribute to their size and complexity.
The use of virtual channels is also expensive in terms of latency and cycle
time[8]. However, as the Tokkyi router must buffer complete packets when
output contention occurs, it requires the use of comparatively short packets,

i.e. less than 32 bytes. The cost of message disassembly for transmission




3.4 Performance 75

and reassembly at the destination, along with the cost of potentially larger
packet headers, would have to be included in the latency and throughput
measurements to make a direct comparison with virtual channel routers.
Both the Chaos router and the Ngai/Seitz router have similar architec-
tures to the Tokkyu router and thus a more accurate comparison can be
made between them. The simulated performance characteristics of these
two routers are again similar to the results reported here. The low latency
register-insertion ring formed by the packet ezxpressway allows the Tokkyu
router to achieve lower packet latency than the Chaos and Ngai/Seitz router,
especially at low network load. The packet ezpressway achieves lower latency
in a manner similar to the Ezpress Cubes proposed by Dally [14]. However,
unlike Express Cubes, the packet expressway does not require additional
interchanges and wiring, thereby simplifying the network design and imple-
mentation. The simple routing decisions made by the Tokkyu router, which
are made using only the message header and current buffer and switch in-
formation of the router, will allow for simpler arbiter implementation and
therefore faster operation. The simulation results demonstrate that, for a
16-ary 2-cube, two or three queue switch outputs, each with sufficient buffer
space for a single packet, are sufficient for a low probability of misrouting,

low latency and high throughput.




Chapter 4

Restricted-length Hardware
Multicasting in Multicomputer
Networks

We begin this chapter by carrying out an in-depth investigation into multicast
deadlock in wormhole routed communication networks. This is followed by
a presentation of a hybrid virtual cut-through/wormhole routing method
for the effective distribution of broadcast and multicast messages in MPP
system networks, called restricted-length multicasting [27]. This method uses
a single enlarged flit buffer per physical communications channel to provide
virtual cut-through routing for multicasts at the nodes where the message is

replicated, thus preventing deadlock.

4.1 Preliminaries

4.1.1 Definition of Multicast Deadlock Problem

Multicast deadlock will now be examined in detail using a graph theoretical

approach. Any graph theoretical terminology not defined here may be found

in [10, 39]. In the following discussion we make the following assumptions:




4.1 Preliminaries 77

1. There are no cycles in the channel dependency graph of the unicast

routing algorithm, i.e. unicast is deadlock free!.

2. There are no cycles in the channel dependency graph of the multicast

routing algorithm.

3. A destination node will eventually consume a message.

Let the set of nodes, M = {ng,ny,...,nk_1} C N, be referred to as the
multicast set, M, with kK — 1 destinations. Let no be the source node and
D = {n;,...,ng_1} be the destination nodes of the multicast set, and let P
be the number of nodes in the set N(G). A unicast is therefore a multicast

with £ = 2, and a broadcast is a multicast with k& = P.

Definition 6 The multicast routing function ®m : N x N — C maps the
current node, n., and the destination nodes, ny € D, to the next channel(s),

Cn, for the routes from n. to ng € D.

Definition 7 The resource tree of the multicast set M is the rooted subtree,
RT(N,C) of G(N,C), which has ng as the root, and where N(RT) C N(G)
and C(RT) C C(G). The vertices N(RT') and the arcs C(RT) are the nodes
and channels of the interconnection network respectively, and are defined by
fm for the multicast set M. The resource tree of a unicast is therefore a

rooted tree RT(N,C) with only one branch.

Let L be the length of the multicast packet P, in flits, and By be the

depth of a flit buffer in node n.. If node n. € RT contains the tail of the

1For a complete discussion of channel dependency and deadlock avoidance for unicast
messages in wormhole routed networks refer to [18].




4.1 Preliminaries 78

multicast packet P, in one of its flit buffers, then the concurrent resource
tree of RT at time t, is the rooted subtree, CT(N,C) of RT(N,C), whose
root is n.. The nodes N(CT) C N(RT) and arcs C(CT) C C(RT) are the
set of resources WhiCl;l are required concurrently, before the tail of P, can
leave n.. The path length of a vertex in CT is defined as the number of edges
from n. to the vertex. The height of the tree CT, defined H(CT), is the
maximum of the path lengths in CT, and the number of nodes in the path
of maximum length is equal to H(CT) + 1. If {L/Bd > H(CT) + 1} then
CT = RT, and if {H(CT) = 1} then either L < By, or n. is adjacent to the
destination nodes ng € D. Let CT(N,C) and CT'(N,C) be the concurrent
resource trees of RT(N,C) and RT’(N, C) respectively. The intersection of
two concurrent resource trees, I = CTNCT’, is given by N(CT)NN(CT") and
C(CT)NC(CT'). The number of components of I, denoted w([), is defined
as the number of connected subgraphs of I, that are not contained in any
other connected subgraph of I, and let w(I.) be the number of components
of I, whose degree > 1. If a component in I has a degree equal to zero, then

the component consists of a single vertex, with no incident arcs.

Theorem 1 Let R, = {CTo,CTy,...,CTi_1} be the set of concurrent re-
source trees for ¢ concurrent multicasts at ttme t,. Deadlock due to the con-
current allocation of resources may only occur if and only if the following

conditions apply:

V(RT., RT;) € Ry, 3{I|(I = RT,NRT; #0),(0<i < £,0 < j < 4,i # j)}
(4.1)




4.1 Preliminaries

1.1

1.2

1.3

V(I #0), Hw(L)lw(L) > 2} (4.2)

Proof: «<—

Let CT and CT’ be two concurrent resource trees in R,, where I = CTNCT".

I = (), no concurrent resources are shared by the concurrent multicasts
in R,. Therefore assumptions 1, 2 and 3 are sufficient to guarantee

deadlock avoidance.

If I # 0 and w(l.) = 0, it follows that N(CT) N N(CT') # 0 and
C(CT)N C(CT') = 0. Therefore only node resources are shared by
concurrent multicasts and assumptions 1, 2 and 3, and a fair local

arbitration scheme are sufficient to guarantee deadlock avoidance.

If I # 0 and w(l;) = 1 then there is a single rooted subtree in I,
which we denote S,. Let n, be the root node of S,, with output
ports py, and ¢, € p, be the output channels of n, defined by ®m for
the packets associated with CT and CT'. If at time t,, n, allocates
all of the output channels ¢, to the packet associated with C'T, then
CT’ will remain blocked until the packet associated with C'T releases
its resources. Thus, only one multicast is given access to the resources
below n, and assumptions 1, 2 and 3, and a fair local arbitration scheme

are sufficient to guarantee deadlock avoidance.




4.1 Preliminaries 80

2.1 If I # 0 and w(I.) = 2 then there are two rooted subtrees in I that
are required concurrently by CT and CT’, which we denote S, and S,,.
Let n, and n, be the root nodes of S, and S,, and ¢, € p, and ¢, € p,
be the output channels of n, and n, defined by R®m for the packets
associated with CT and CT’ respectively. If at time t,, n, allocates
¢y € p, to the packet associated with CT and n, allocates ¢, € p, to
the packet associated with C'T", a concurrent allocation of dependent

resources has occurred, and a deadlock situation has been reached.

Corollary 1 Deadlock due to the concurrent allocation of resources cannot

occur in a network employing virtual cut-through routing.

Proof: <

3.1 By definition, the length of a packet in a network employing virtual
cut-through is L < Bd. H(CT) is therefore equal to 1, and V(I #
0),w(I.) < 1. Thus by proofs 1.1 and 1.2, multicast is free of deadlock

due to the concurrent allocations of resources.

Figures 4.1(a) and (b) illustrate a multicast and its associated concurrent
resource trees respectively for virtual cut-through routing. In Figure 4.1(b)
V(I # 0),w(I;) <1 and therefore deadlock cannot occur due to the concur-
rent allocation of resources. If a single channel of a branch in the restricted-
length multicast tree becomes blocked, it will not result in the rest of the

tree holding channel resources, as is the case in conventional tree-based mul-

ticasting.




4.2 Restricted-Length Multicasting

A

Pl

®00®
Q0 £
@@ ®

Figure 4.1: (a) Multicast by node (2,1) and (b) the resulting concurrent
resource trees

4.2 Restricted-Length Multicasting

Rather than restricting the branching of a multicast, we propose restricted-
length multicasting, in which the packets of a multicast message are restricted
in length so that they are routed in a virtual cut-through manner in a network
which usually supports wormhole routing. Messages are usually divided into
one or more packets at the source, prior to injection into the network. Thus,
in order to implement restricted-length multicasting in a network which nor-
mally supports wormhole routing, the source node must divide a multicast
message into packets of length L < Bd. By ensuring that a flit buffer is
sufficiently large to hold a complete multicast packet, or that a packet is
sufficiently small to fit in a single buffer, it is therefore possible to imple-

ment deadlock free multicasting utilizing existing routing algorithms such




4.2 Restricted-Length Multicasting 82

as dimension order, or e-cube routing. As has been previously stated, each
router must also implement a fair local arbitration scheme to prevent mul-
ticast packets from indefinitely holding output port resources, while waiting
for others to become free. However, as this requires only local information a
simple timeout and resource release scheme will be sufficient to avoid dead-
lock.

The buffers of most current generation routers, which employ wormhole
routing, can only store one or two flits each. As the header information
for a single packet is typically one or two flits in length also, it would be
impractical to implement restricted-length multicasting on these systems. A
simple solution would be to increase the size of the buffers so that a complete
packet could be stored in each buffer, thus implementing virtual cut-through
routing. However, this would significantly increase the size of the message
router, which would complicate its design and result in lower performance.
Another approach would be to increase the size of a single buffer so that it
can hold an entire packet. While this approach is preferable to increasing the
size of all of the buffers, the size of a buffer capable of storing the maximum
length packet employed in the system may still be prohibitively large. Our
proposed approach is therefore to increase the size of a single buffer, while
restricting the length of multicast packets. When a packet appears at the
input to a router, a single bit in the header indicates whether the message is
a multicast or a unicast. If the multicast bit is set, then the message must
request the enlarged buffer, while unicast messages are free to be placed in

any available buffer.




4.2 Restricted-Length Multicasting

Request Registers

Reset L i
Hesetlane 7 Multicast Request

Output Select

Unicast Requests

A > To Multicast
:6 Controller

pd
i To Virtual

4

Control

-

LD3 l [ LDO

LD2] | LD1
Datain. } 16

|

L3 2 RD2 L1 RD1 LO RDo

4.2.1 Gate-array Implementation

However, a number of advantages exist in taking a

[36].

7> Channel Arbiters

LO-L3: Virtual channel
buffers

LDO-LD1: Virtual channel
load.

RDO0-RD3: Virtual channel
read.

Figure 4.2: Organization of a single MEGA router input

A number of researchers and commercial enterprises have developed hardware
routers for use in multicomputer networks in recent years [17, 19, 50]. These
have typically been implemented using full custom VLSI techniques, which

have enabled them to achieve high throughput and low switching latency.

semi-custom approach to

the design. These include a shorter design time, lower production costs for

small volumes of devices, and well established design and simulation tools

We are therefore undertaking the design of a MEssage passing Gate-




4.2 Restricted-Length Multicasting 84

Array (MEGA) router [25], using a 1.2 um CMOS gate array. The design
tools available include schematic capture, design rule checking, functional
simulation and critical path analysis. Qur second prototype router design has
four virtual channel buffers per port, which are 16 bits wide and typically 4
words deep, and the router contains 10 uni-directional ports which are formed
into 5 bi-directional pairs. The minimum requirement for the implementation
of restricted-length multicasting is that a single packet of a multicast can be
accommodated in a virtual channel buffer. As the header of each packet in our
system requires 4 bytes, this would result in only 4 message bytes per packet
for multicasting. To increase the ratio of message information to header
information we have enlarged a single flit buffer per physical communications
channel, labeled L0 in Fig. 4.2. The buffer load lines (LD0-LD3) are operated
by the input control to load a virtual channel buffer in response to a request
on the input control lines. The input control section also controls the request
register associated with each virtual channel, placing a new request in a
register whenever a new packet is received. These requests are passed to
the appropriate arbiters via the request and the select lines. Once a packet
has been passed to an output, the output control section (not shown) will
assert the reset lane line to indicate that the lane is now free. The output
controllers are also responsible for asserting the virtual channel read lines
(RDO-RD3), once for each word which is read.

The basic unit for the implementation of digital logic within a gate array
is the Basic Cell (BC or cell). Each BC is typically implemented as two pairs
of P-channel and N-channel transistors and the logical function performed

by each basic cell is determined by the metalization pattern assigned to it. A




4.2 Restricted-Length Multicasting

Buffer Size Cell Count | Terminals | Nets

4 lanes x 4 words 2119 3709 734

3 lanes x 4 words, 1 lane x 8 words 2512 3351 847
3 lanes x 4 words, 1 lane x 16 words 3440 6408 1322

Table 4.1: Resource usage for various buffer structures

user creates a design using Unit Cells (UCs), such as NAND gates, flip-flops
and shift registers, by interconnecting them using wiring networks (nets) and
this design is then mapped to the gate array by the design software. Most
UCs are made up of a number of BCs and thus these also require intercon-
nection by nets. Terminals are used to provide the connections between BCs
and nets, and also between nets on different metalization layers within the
device. ‘Although current gate array devices offer BC counts of more than
100,000 cells, the number of nets and terminals can significantly reduce the
maximum utilization of these cells. In order to evaluate the effect on the gate
array implementation of our router due to enlarging a single virtual chan-
nel buffer in each input port, we examined the increase in the cell, terminal
and net counts for varying sizes of virtual channel buffer. These results are
presented in Table 4.1, which gives the cell, terminal and net counts for the
input section of a single port. In each case the number of virtual channels
is fixed at four, and the size of one lane is increased from 4 to 16 words in
depth. As can be seen in the table, increasing the size of a single buffer per
port from 4 to 16 words results in a considerable increase in the number of
cells, nets and terminals. However, this increase is significantly less than that

which would occur if the size of all of the buffers was to be increased.




4.3 Simulation

4.3 Simulation

4.3.1 Multicast Latency

In order to evaluate the potential benefits of utilizing restricted-length mul-
ticasting we have implemented a simulator, which determines the latency of
sending a multicast from a single node, based upon the design parameters of
our message router. In our simulations we therefore assume a 2D mesh topol-
ogy with 16 bit data paths, a header length (L4) of a unicast message of 4
bytes, and that the standard size of a flit buffer is 4 double-byte words. Two
bytes of the header contain the destination address, while the remaining two
bytes contain the packet length and sequence information etc. Given a mul-
ticast message of length L,, bytes, the latency of sending a multiple-unicast

based multicast to NV destinations is given by:

NZY (L + Lp)Dpias(3)

D.= ¥

i=o L fiix

(4.3)

where Dy is the average delay in sending each flit to destination i and
Ly is the size of a flit buffer. Figure 2.17 illustrated that, in a 2D mesh,
a multi-path multicast message is broadcast by sending four copies of the
message on individual multicast paths. The header appended to each copy of
the message must contain a list of all of the destination addresses. Assuming
that, as in the case of a unicast, each destination address requires 2 bytes, and
that 2 additional bytes of status information are appended to the header, the
average number of bytes per header for a multi-path message being broadcast

to N destinations in a 2D mesh is given by




4.3 Simulation 87

- (42

and the send latency for a multi-path based multicast with four paths is

therefore

3 .
L (Lm + Ln)Dgiis(2)
P = g L s1;¢
3 (lm + (-N—zﬂ)) Die(2)

= 2

i=0 Ly

(4.5)

A restricted-length multicast will divide the L,, bytes of the multicast
message into a number of flit sized packets. The data content of the each
packet is Py = (L — L) and the total amount of header information for
required to broadcast a message of Lm bytes, assuming each header requires
4 bytes, is 4Ny ,where Ny is given by Ny = L,/ P; and is rounded up to the
nearest whole number. The send latency of restricted-length based multicast

is therefore given by

(4.6)

L, +4N
Ly = Dy x ( T —f)

Lpi
Note that the send latency of restricted-length multicast is independent of

the number of destinations of the multicast.

4.3.2 Simulation Results

We have assumed that the multicast set is an 8 x 8 mesh and the load in the
network is simulated by varying the probability of blocking at a single port
(Pr(b)) from 0 to 0.7. If multiple outputs are required concurrently, as is
the case in restricted-length multicast, then the total probability of blocking

(P,) is given by P, = 1 — (1 — B,)™, where n is the number of output ports




4.3 Simulation 88

requested. A node is chosen at random to initiate the multicast, and the
time taken from the initialization of the broadcast until the tail of the last
flit arrives at the last node is measured. The results of each multicast method
were then averaged over 100 simulations.

Figure 4.3 shows the latency of sending a multicast (in cycles) with L,,
fixed at 16 bytes, while varying the probability of blocking from 0 to 0.7. Re-
sults for multiple unicast, multi-path, and restricted-length multicasting with
buffer sizes of B=1, 2 and 4 flits are given. All instances of the restricted-
length multicast provided a reduction in latency for Pr(b) < 0.43. By in-
creasing the size of one flit buffer so that it can accommodate 2 flits, the
probability of blocking must exceed 0.65 before the blocking, due to the re-
questing of multiple outputs, degrades the performance of restricted-length
multicasting to below that of multi-path multicasting. Figure 4.4 illustrates
the effect of varying the message length, from 4 bytes to 2048 bytes for a
fixed probability of blocking. The header overhead of multi-path multicast
is evident in its poor performance for small messages, while unicast performs

poorly regardless of message size.




=
4.3 Simulation
~ 1E+04 -
7¢] 4 P
- ] p---@---@---B---B-"F
>, 2
N [N W0 -
----- LD i
) B=2
1E =
[
= ~TTTtTTTT Multipath o
= ---®--- Unicast e
g
sl
1E+02H4 s o
] R e
3'_':':'_".':8'-"-"-'--'8’
1E+01 T T ™ T i T '
0.0 0.2 0.4 0.6 0.8
Probability of Blocking P(b)
Figure 4.3: Send latency for L,, = 16 bytes
~ 1E+06
w 3
== -
S, 1E+05 -
e : LS
3 ) g
o 1E+04 i b
= 3
et - g
S 1E+03'§
] =2
1E+02 ¥ B=1
e — — Ba2
1 L et 5
1E+01 § B...4
3 ---B---  Unicast
] —-—&—-=__Muyltipath
1E+00 T T I T T 7o T T yt,lp.a.,..,
1 10 100 1000 10000
Message Length (bytes)
Figure 4.4: Send latency for Pr(b) = 0.5




4.3 Simulation

4.3.3 Discussion of Results

As expected, the performance of unicast based multicast is much lower than
the other methods of multicast investigated here, as each of the unicast mes-
sages must wait until the preceding message has left the sending node before
it can be sent. This result could be improved upon by adding additional
input ports to each node in the system and allowing multiple unicasts to be
sent concurrently from a single node. However, as the unicast based multi-
cast generates the most traffic of those methods presented here, this would
probably result in an increase in network congestion which would adversely
affect the network performance of the entire system.

Both multi-path and restricted-length multicasts exhibited significant
speedup when compared to unicast based multicast. As was the case with
unicast based multicast, the performance of multi-path based unicast could
also be improved by allowing multiple messages to be concurrently injected
into the network from a single node. The performance of restricted-length
multicast with only two enlarged flit buffers was superior to that of multi-
path based multicast except for when the probability of blocking exceeded
0.65. As restricted-length multicast makes use of well known routing algo-

rithms, little modification would be required to existing router designs to

allow them to support it.




Chapter 5

Conclusions

Effective communication structures are essential if the full potential of MPP
systems is to be realized. The requirements for an interconnection network
and its communications structures to considered effective include freedom
from deadlock and livelock, low latency and high throughput, adaptive rout-
ing, fault tolerance and support for multicast communication. This disserta-
tion has focused on two solutions to meeting these requirements.

The Tokkyt router was presented and its suitability for use in MPP in-
terconnection networks was demonstrated. Accurate models were developed
to predict the switch and buffer performance of Tokkytu routers for varying
radix and dimension and these models can be used in the design of routers
for networks other than those investigated here. The Tokkytu router meets
all of the requirements necessary to be considered effective, as defined in the
introduction. Importantly, the support for routing in the presence of faults or
network congestion does not compromise the low latency and high through-
put of the router. The simulated performance of the Tokkyi router exceeds
that of published results for oblivious routers and is equal to or exceeds those

reported for other adaptive routers. These performance predictions are es-



92

pecially encouraging when the simplicity of the control structures required
to implement the Tokkyi router are taken into consideration.

The multicast deadlock problem was stated explicitly using a graph theo-
retical approach which enabled the conditions necessary to avoid deadiock to
be defined. Restricted-length multicast was introduced and the implemen-
tation of this multicast scheme was examined. Restricted-length multicast
was then compared to unicast and multi-path based multicasts. The sim-
ulation model allowed the relative merits of restricted-length multicast to
be evaluated, and under all but very high simulated congestion conditions
restricted-length multicast provided lower latency than unicast or multi-path
multicasting. The results therefore indicate that restricted-length multicast
provides a good solution to multicast problems such as multicasting to clus-
ters of nodes found in barrier synchronization, multicasting to nearest neigh-

bors and the broadcasting to all of the nodes in the network.




References

[1] Agarwal, A., “Limits on Interconnection Network Performance”, IEEE
Trans. on Parallel and Distributed Computing, vol. 2, no. 4, pp. 398-412,
October 1991.

[2] Agrawal, D. P., Virenda, J. K., “Evaluating the Performance of Mul-
ticomputer Configurations”, IEEE Computer, vol. 19, no. 5, pp. 23-37,
May 1986.

[3] Annaratone, M., et. al., “The K2 Parallel Processor: Architecture and
Hardware Implementation”, Proc. of the 17th Ann. Int. Symp. on Com-

puter Architecture, pp. 92-101, May 1990.

[4] Athas, W. C. and Seitz, C. L., “Multicomputers: Message-Passing Con-
current Computers.”, IEEE Computer, vol. 21, no. 8, pp. 9-24, August
1988.

(5] Bhuyan, L. N., Yang, Q., Agrawal, D. P., “Performance of Multipro-

cessor Interconnection Networks”, IEEE Computer, vol. 22, no. 2, pp.

25-37, February 1989.




REFERENCES 94

[6]

[7]

8]

(9]

[10]

[11]

[12]

[13]

Borkar, S., et. al., “Supporting Systolic Memory Communication in
iWarp”, Proc. of the 17th Ann. Int. Symp. on Computer Architecture,
pp. 70-81, May 1990.

Byrd, G. T. et al., “Multicast Communication in Multiprocessor Sys-
tems”, in Proceedings of the 1989 Conference on Parallel Processing, pp.
1196-1200, 1989.

Chien, A. A., “A Cost and Speed Model for k-ary n-cube Wormbhole

Routers”, In Proc. of Hot Interconnects 93, August 1993.

Chien, A. A. and Kim, J. H. , “Planar-Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors”, Proc of the 19th Ann. Int.

Symp. on Computer Architecture, pp. 268-277, May 1992.

Clark, J. and Holton, D. A, A First Look at Graph Theory., Singapore,
World Scientific, 1991.

Cybenko, G. and Kuck, D. J., “Supercomputers: Reinventing the
Machine-Revolution or evolution?”, IEEE Potentials, vol.29, no. 9, pp.
39-41, Sep. 1992.

Dally, W. J., “Network and Processor Architecture for Message-Driven
Computing”, in VLSI and Parallel Processing, R. Suya and G. Birtwistle
eds., Morgan Kaufmann, pp. 140-222, 1989.

Dally, W. J., “Virtual Channel Flow Control”, IEEE Trans. on Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194-205, March 1992.




REFERENCES 95

[14)

[15]

[16]

[17]

18]

[19]

[20]

Dally, W. J., “Express Cubes: Improving the Performance of k-ary n-
cube Interconnection Networks”, IEEE Trans. on Computers, vol. 40,

no. 9, pp. 1016-1023, September 1991.

Dally, W. J. and Aoki, H., “Deadlock-Free Adaptive Routing in Multi-
computer Networks using Virtual Channels”, IEEFE Trans. on Parallel
and Distributed Systems, vol. 4, no. 4, pp. 466-475, April 1993.

Dally, W. J., et. al., “The Message-Driven Processor: A Multicomputer
Processing Node with Efficient Mechanisms”, IEEE Micro, pp. 23-39,
April 1992.

Dally, W. J. and Seitz, C. L., “The torus routing chip”, Distributed
Computing, vol. 1,pp.187-196, 1986.

Dally, W. J. and Seitz, C. L., “Deadlock Free Message Routing in Multi-
processor Interconnection Networks.”, IEFE Transactions on Comput-

ers, vol. C-36, no.5, pp. 547-553.

Dally, W. J. and Song P., “Design of a self-timed VLSI multicomputer
communication controller”, in Proceedings of the International Confer-

ence on Computer Design, IEEE Computer Society Press, pp.230-234,
October 1987.

Dongarra, J. J., “Performance of Various Computers Using Standard
Linear Equations Software.”, ACM Computer Architecture News, vol.

20, no. 3, pp. 22-44, June 1992.




REFERENCES 96

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Feng, T., “A Survey of Interconnection Networks”, IEEE Computer, vol.
14, no. 12, pp. 12-27, December 1981.

Flavell, A. C., Kanoh, T. and Takahashi, Y., “Mandala: An Intercon-
nection Network for a Scalable Massively Parallel Computer”, in Proc.
of the 43rd Annual Convention of the IPSJ, vol. 6, pp. 91-92, October
1991.

Flavell, A. C. et. al., “Mandala: An Interconnection Network for a Scal-
able Massively Parallel Computer”, Technical Report of the IPSJ, vol.
91, no. 100, pp. 91.101-91.109, November 1991.

Flavell, A. C. and Takahashi, Y., “Mandala: An Interconnection Net-
work for a Scalable Massively Parallel Computer”, in Proceedings of the

33rd IPSJ Programming Symposium, pp. 79-90, January 1992.

Flavell, A. C. and Takahashi, Y., “The MEGA Router: A Hardware
Message-Passing Gate Array Router”, in Proceedings of the 45th All

Japan Symposium on Information Science, vol.6, pp. 183-184, October
1992.

Flavell, A. C. and Takahashi, Y., “Continuum: A Hybrid Time/Space
Communications Paradigm for k-ary n-cubes”, Proc. of the International

Conference on Parallel Processing 1994, vol. I, pp. 138-141 , August 1994.

Flavell, A. C. and Takahashi, Y., “Restricted Length Hardware Multi-

casting in Multicomputer Networks”, Transactions of the IPSJ, vol. 36,

no. 5, pp. 1228-1238, May 1995.




REFERENCES 97

[28] Flavell, A. C. and Takahashi, Y., “The Tokkyd Router: A Randomizing
Router for k-ary n-cubes”, Proc. of the International Symposium on

Parallel and Distributed Supercomputing, pp. 127-134, September 1995.

(29] Flavell, A. C. and Takahashi, Y., “Tokkya: A High-Performance, Ran-
domizing, Adaptive Message Router with Packet Expressway”, IEICE
Trans. on Information and Systems, vol.E78-D, no. 10, pp.1248-1260,
October 1995.

[30] Glass, C. J. and Ni, “Adaptive Routing in Mesh-Connected Networks”,
in Proceedings of the 12th International Conference on Distributed Com-

puting Systems, pp. 12-13, June 1992.

[31] Hwang, K., Advanced Computer Architecture, McGraw Hill, New York,
1993.

[32] Jesshope, C. R. and Yantchev, J. T., “ High Performance Communi-
cations in Processor Networks”, Proc of the 16th Ann. Int. Symp. on

Computer Architecture, pp. 150-157, 1989.

[33] Karol, M. J., et al, “Input Versus Output Queuing on a Space-Division
Packet Switch”, IEEE Trans. on Communications, vol. COM-35, no. 12.
pp. 1347-1356, December 1987.

[34] Kermani, P. and Kleinrock, L., “Virtual Cut-through: A New Commu-
nications Switching Technique, Computer Networks, vol 3, no. 4, pp.

267-286, 1979.




REFERENCES 98

[35] Konstantinidou, S. and Snyder, L., “Chaos router: Architecture and

Performance”, SIGARCH, vol. 19, no. 1, pp. 212-221, March 1991.

[36] Lieserson, C. E., et. al., “The Network Architecture of the Connection
Machine CM-5", Proc. of the {th Ann. ACM Symp. on Parallel Algo-
rithms and Architectures, ACM, pp. 272-285, June 1992.

[37] Lin, X. and Ni, L. M., “Deadlock-Free Multicast Wormhole Routing in
Multicomputer Networks.” Proceedings of the 18th Annual International

Symposium on Cémputer Architecture, pp. 116-125, May 1991.

[38] Linder, D. and Harden, J., “An Adaptive and Fault-tolerant Wormbhole
Routing Strategy for k-ary n-cubes”, IEEE Trans. on Computers, vol.
C-40, no. 1, pp. 2-12, January 1991.

[39] Liu, C. L., Elements of Discrete Mathematics., New York, McGraw Hill,
1977.

[40] McKinley, P. K., Xu, H., Esafahanian, A. H. and Ni, L. M., “Unicast-
Based Multicast Communication in Wormhole-Routed Networks.”,
Tech. Rep. MSU-CPS-ACS-57, Department of Computer Science, Michi-

gan State University, East Lansing, MI, January 1992.

41] Ngai, J. Y. and Seitz, C. L., “A Framework for Adaptive Routing in
g
Multicomputer Networks”, SIGARCH, vol. 19, no. 1, pp. 6-14, March

)

1991.

[42] Ni, L. M., McKinley, P. K., “A Survey of Routing Techniques in Worm-

hole Networks”, Tech. Rep. MSU-CPS-ACS-46, Department of Com-




REFERENCES 99

puter Science, Michigan State University, East Lansing, MI, October
1991.

[43] Oed, W. and Walker, M., “An Overview of Cray Research Computers
including the Y- MP/C90 and the new MPP T3D”, Proc. of the 5th Ann.
ACM Symp. on Parallel Algorithms and Architecture, pp. 271-272, June
1991.

[44] Panda, D. K., “A Report of the ICPP 94 Panel on - Sea of Interconnec-
tion Networks: What’s Your Choice?”, Department of Computer and
Information Science, Ohio State University, Columbus, OH, November

1994.

[45] Reames, C. C. and Lui, M. T., “A Loop Network for Simultaneous
Transmission of Variable-Length Messages”, Proc. of the 2nd Ann. Int.

Symp. on Computer Architecture, pp. 7-12, January 1975.

[46] Reed, D. A., Fujimoto, R. M., Multicomputer Networks: Message-Based
Parallel Processing, MIT Press, Cambridge MA, 1987.

[47] Reed, D. A., Grunwald, D. C., “The Performance of Multicomputer
Interconnection Networks”, IEEE Computer, vol. 20, no. 6, pp. 63-73,
June 1987.

[48] Seitz, C. L., “Concurrent Architectures”, in VLSI and Parallel Com-
putation, R. Suya and G. Birtwistle eds., Morgan Kaufmann, pp. 1-84,
1990.




REFERENCES 100

[49] Sullivan, H. and Bashkow, T. R., “A Large Scale, Homogeneous, Fully
Distributed Parallel Machine”, Proc. of the 4th Symp. on Computer
Architecture, vol. 5, pp.105-124, Mar 1977.

[50] Tamir, Y. and Frazier, G. L., “High Performance Multi-Queue Buffers
for VLSI Communication Switches”, in Proc. 19th Annual Symposium
on Computer Architecture, IEEE Computer Society Press, pp.343-354,
June 1988.

[51] Xu, H., McKinely, P. K. and Ni, L. M., “Efficient Implementation of
Barrier Synchronization in Wormhole-Routed Hypercube Multicomput-
ers”, in Proceedings of the 12th International Conference on Distributed

Computing Systems, pp. 118-127, June 1992.

[52] Yeh, Y., et al, “The Knockout Switch: A Simple, Modular Architecture
for High- Performance Packet Switching”, IEEE Journal on Selected
Areas in Communications, vol. SAC-5, no. 5, pp. 1274-1283, October
1987.

[63] Zorpette, G., “Supercomputers/Reinventing the Machine - The Power
of Parallelism”, IEEE Spectrum , vol. 29. no. 9, pp. 28-33, September
1992.










	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119

