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内容要旨

現在超並列処理システム(MPP)は、伝統的なベクトルプロセッサや SIMDマシンの

牙城であった多くの分野に進出している。これらのシステムは、入手が容易な高性能

CPUの急激な進歩をうまく利用し、これらを数百~数千個接続して均質なマルチプ
ロセッサのシステムとして構成したものである。しかし、これらのシステムの性能は、

現実の問題を解くときは必ずしも良くなく、常に公称の最高性能にははるかに及ばな

いのが現状である。これらのシステムではプロセッサ間の通信はすべて相互結合網に

よって行われるので、実現可能な最高性能を決める決定的な要素は相互結合網と、そ

れに使われる通信機構である。

本論文ではMPPの相互結合網に使われる、効率的な通信機構を実現する 2つの方法

を提案する。第 1は「特急ルータJの提案であり、これを相互結合網に用いた場合の

適合性を検註する。特急ルータは多重の単方向レジスタ挿入パスを利用して、時間

空間混合分割型ネットワークを実現するためのものである。異なる基数や次元数につ

いて、特急ルータのスイッチ回路とバッファ回路の性能を予測するための正確なモデ

ルを開発した。この結果、特急ルータは効率的な通信を行うためのすべての条件を満

足していることが確かめられた。さらに重要な点は、特急ルータはネットワークに故

障のある場合や、通信が錯綜する場合にも、低遅延時間、高スループットを損なわな

い経路制御が行えることである。シミュレーションによって評価した特急ルータのの

性能は、これまでに発表された固定経路選択方式のルータより優れており、また他の

適応経路市j御方式のルータに比べても、同程度あるいはそれを越えていることが確か

められた。

第2は経路長制限方式のマルチキャスト通信の提案である。マルチキャスト通信は

多くの並列処理問題において速度向上に寄与する通信方式である。そこでワームホー

ル通信方式において問題となるマルチキャスト通信におけるデッドロックの問題につ

いて研究した。そしてこの問題を解決する方法として経路長制限方式のマルチキャス

ト通信を提案し、この方式による通信性能をシミュレーションによって評価し、ユニ

キャスト方式やマルチパス方式によるマルチキャスト通信の性能と比較した。その結

果、提案する経路長制限方式のマルチキャスト通信は、パリヤ同期のためのクラスタ

へのマルチキャλ ト通信や、最近傍ノードへのマルチキャストや全ノードへの放送の

場合に、特に優れた解決法となることを明らかにした。
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High-Speed Message Routing MechanisnlS for・

Massively Parallel C0l11puters 

超並列計算機は，数百~数千個のプロセッサ要素を接続して並列に動作させ，超高速処理を

行わせようとするものである. ここで、はプロセッサ問の通信はすべて相互結合網によって行わ

れるので，このシステムの総合性能を決める決定的な要素は相互結合網の通信機構と通信制御

方式になるが，まだ十分に満足できるものが得られていないのが現状である.

本論文では相互結合網の通信機構と通信制御方式について研究し，新方式のルータ機構と，

独特の制御を行うマルチキャスト通信方式を提案してしも.新ししVトタ機構を「特急ルータj

と呼んでいるが，多重の単方向レジスタ挿入パスを用いて時分割・空間分割混合型ネットワー

クを実現し，ネットワークに故障のある場合や著しく通信量が多い場合にも，低遅延時間，高

スループットを損なわない経路制御が行えることを特長としている.実際シミュレーションに

よって詳細な性能評価を行った結果，従来の固定経路選択方式のルータより優れ，他の適応経

路制御方式のルータに比べても，遜色のない性能を持つことがことが確かめられている.

次に新しい通信方式としてパケット長制限方式マルチキャスト通信を提案している.マルチ

キャスト通信は多くの並列処理問題において必要とされる機能であるが，これをできるだけ高

速に行う必要がある.しかしワームホール通信の場合にはマルチキャスト通信はデッドロック

を起こす可能性があるという問題がある.この問題を研究した結果，パケット長を自動的に制

限してマルチキャスト通信を行えば，性能を損なうことなくデッドロックを回避できることを

証明した.また，シミュレーションによってこの方式の通信性能を評価した結果，バリヤ同期

のためのクラスタへのマルチキャスト通信や，最近傍ノードへのマルチキャストや全ノードへ

の放送の場合に，特に優れた効果を発揮することを確かめられた.

以上本研究は高性能の超並列計算機を構成するための重要な要素である相互結合網について，

その通信機構と通信制御方式についての新しい提案を行い，その効果を実証したものであり，

本論文は博士 (工学)の学位授与に値するものと判定する.
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Abstract 

Massi vely parallel processing systems (MPPs) are currently making inroads 

into many areas that are traditionally a stronghold for vector or SIMD pro-

cessors. These systems leverage the rapid advances being made in readily 

available high performance CPU s by connecting hundreds or thousands of 

them together to form homogeneous multiprocessor systems. Unfortunately， 

the performance of these systems when solving real-world problems has been 

somewhat disappointing and always falls far short of the theoretical peak 

performance quoted by system vendors. As all of the communications be-

tween processors in these systems rely on the interconnection network， a 

critical component in determining the maxirnum achievable performance is 

the interconnection network and the communications structures supported 

by it. 

This dissertation introduces two solutions to providing effective communi-

cations structures for MPP systems. The Tokky註router is presented and i ts 

suitability for use in MPP interconnection networks is demonstrated. The 

Tokkyu router utilizes multiple， unidirectional， register-inser七ionbuses to 

provide a hybrid timejspace division network. Accurate models are devel-

oped to predict the switch and buffer performance of Tokkyu routers for 

varying radix and dimension. The Tokkyu router meets all of the require-

ments necessary to be considered effective. Importantlyヲ thesupport for 

routing in the presence of faults or network congestion does not compromise 

the low latency and high throughput of the router. The simulated perfor-

mance of the Tokkyu router exceeds that of published results for oblivious 

111 



routers and is equal to or exceeds those reported for other adaptive routers. 

The multicast deadlock problem is investigated， as multicast has been 

identi五edas an area which can provide significant speedup to a number of 

parallel applications. Restricted-length multicast is introduced as a solution 

to multicast deadlock in wormhole routed networks and the implementation 

of this multicast scheme is examined. Restricted-length multicast is then 

compared to unicast and multi-path based multicasts by simulation. The 

results of the simulations indicate that restricted-length multicast provides 

a good solution to multicast problems such as multicasting to clusters of 

nodes found in barrier synchronization， multicasting to nearest neighbors 

and broadcasting to all of the nodes in the network. 
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Chapter 1 

Introd uction 

The peak performance levels of Massively Parallel Processing (MPP) systems 

have recently begun to rival those which are obtained using traditional vec-

tor and SIMD supercomputers. Many therefore believe that MPP systems， 

constructed by the interconnection of thousands of homogeneous computa-

tional nodes， are a promising technology for the construction of computers 

wi th teraflops performance. However， the e伍ciencyof multicomputer based 

MPP systems when solving real world problems tends to be disappointing， 

especially when compared to vector superCOTIlputers [11， 20] 

Although there are many ways in which the nodes of an MPP system can 

be connected， by far the most popular is the static or direct network. Each 

node in a direct network has a point-to-point， or direct， connection to itsう

'neighboring' nodes and these connections form the interconnection network 

as is illustrated in Fig. 1.1. Direct networks are popular as they are said to 

scale well， i.e. as the number of nodes in the system is increased， the total 

processing power， communication bandwidth and memory bandwidth of the 

system also increases. 

Inter-process communication， data-sharing and synchronization in an MPP 
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system are all achieved by the passing of messages via the interconnection net-

work (IN)， and therefore a critical component in determining the maximum 

achievable performance of MPP systems is the IN and the communications 

structures supported by it. A considerable amount of research has therefore 

been conducted in both the design and evaluation of interconnection net-

works [1， 2ぅ46ヲ5う42，47，22，23，24，25，26ヲ27ヲ28，29]， and this continues to 

be an acti ve avenue of research. 

The interconnection networks of massively parallel systems must provide 

effectiveうdynamicand arbitrary connectivity between all of the processors 

in the system. In order to be considered effective it is desirable that the 

interconnection network satisfies the following requirements: 

• the packet routing algorithm must be free from deadlock 

• the network must be free from livelock， i.e. packets must not be in-

五nitelydelayed in the network 
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• network latency should be as low as possible 

• network throughput should be as high as possible 

• the path taken by a packet should adapt dynamically to tra伍ccondi-

tions 

• network performance should degrade gracefully in the presence of faults 

Freedom from deadlock and livelock are both essential for the correct op-

eration of the network. Guaranteed freedorn from deadlock is essential to 

ensure that there is no potential for the network being brought to a com-

plete halt because of dependencies in the allocation of network resourcesう

and freedom from livelock is essential to ensure that packets do not end-

lessly cycle in the network， never reaching their destinations. Low latency 

and high throughput are necessary to allow a good balance of the compu-

tationj communication ratio of the system. Adaptive packet routing and 

graceful degradation of network performance in the presence of faults are 

both desirable features， provided they do not compromise the latency and 

throughput of the network[44]. Adaptive routi時 allowsbetter utilization of 

communication resourcesヲespeciallyat high network loads or in the presence 

ofhot叩 ottra伍c[31，9，32， 35，41ヲ15]，and networks which are fault tolerant 

are becoming increasingly important as the size and complexity of massively 

parallel systems grows. In addition to these requirements， multicast com-

munication， in which a source node transmits a single message to a number 

of destination nodes in the system， has been identi五edas being crucial to 

achieving acceptable performance in a number of application areas[37， 51]. 
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Organization of this Dissertation 

This dissertation focuses on simple and effective solutions to meeting the 

requirements for an IN to be considered effective and is divided into two 

distinct areas. An introduction to scalable multicomputer systems is given in 

Chapter 2 and this is followed in Chapter 3 with an examination of adaptive 

routing in multicomputer networks and the introduction and investigation 

of the Tokkyu interconnection network. In Chapter 4 an examination of 

multicast deadlock in wormhole routed networks is given and the concept 

of restricted-length multicαsting is introduced and investigated. Finally， a 

summary and conclusions are given in Chapter 5. 
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2.1 Node Structure 

Each node in most current MPP systems contains an off-the-shelf R1SC prか

cessor， local memory， a number of support units， an interface to a commu-

nications network and a message router， as illustrated in Fig. 2.1. Off-the-

shelf processors are often chosen for MPP system construction as they are 

inexpensive and can help to reduce the design time of the system. For ex-

ampleうtheConnection Machine CM-5 uses 32-MHz SPARC processors， the 

NEC Cenju-3 uses 75-MHz NEC VR4400SC processors and the 1ntel Paragon 

XP /S uses 50-MHz i860 processors. Support units may include vector prか

cessing units， a graphics controller and H1PPl， SCS1， ethernet or some other 

1/0 interface. The role of the network interface unit is to perform message 

assembly / disassembly and provide flow control for messages entering and 

leaving the network， while the router provides routing and flow control for 

messages within the communication network. By removing the functions of 

message assembly / disassemblゎrouti時 andflow control from the CPU， com-
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Figure 2.1: Generic node archi tecture 

munication and computation can occur concurrently， signi五cantlyincreasing 

the performance of the system. 

2.2 Interconnection Network Topologies 

The topology of a networ k de五neshow the nodes are connected and can 

usually be represented using graph notation. Therefore， a brief introduction 

to the relevant graph theory notation is presented before the discussion of 

static interconnection networks. 

Definition 1 A static interconnection network may be represented by the 

strongly connected directed graph， digraph， 1 = G( N， C)， where the vertex 

set N (1) and the arc set C (1) represent the no白sand channels of the network 

respectively. The degree of a vertex n， in 1甲 denotedd(η)ヲ isthe number 

of edges incident with η. The graph [1 = G( N， C) is a subg問 phof 1 if 

N(H) c N(I) and C(H) c C(I)， and H 1S a spanning subgraph of 1 if 

N(H) = N(I). 
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Figure 2.2: (a) Simple ri時 networkand (b) corresponding spanning s山graph

Figures 2.2( a) and (b) illustrate Definition 1. Figure 2.2( a) presents a 

simple ring network， which is a strongly connected digraph and Figure 2.2(b) 

represents a spanning subgraph of (a)， as it contains the same set of nodes. 

Definition 2 A tree is a connected graph which contains no cycles， and it 

follows that a subgraph which is a tree is called a subtree， and a spanning 

subgraph which is a tree is called a spαηning tr'ee. A directed tree is a digraph 

which becomes a tree when the directions of the edges are ignored and a rooted 

tree is a directed tree with one vertex of in degree 0， and all other vertices of 

in degree 1. 

Figures 2.3( a) and (b) illustrate Definition 2. Figure 2.3( a) presents a 

strongly connected digraph and Figure 2. 2(b) represents the corresponding 

directed tree. This tree is a binary tree and therefore i t is also a rooted tree. 

Some of the more important static evaluative measures of an interconnec-

tion network are its degree， diameter， average distance [2]， channel bisection 
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Figure 2.3: (a) Strongly connected digraph a吋 (b)corresponding directed 

tree， which is also a rooted tree. 

width [12]， maximum message density， and its ability to be scaled. The degree 

is defined as the number of channels incident on a node， the diameter as the 

maximum of the shortest distances between any two nodes in a system， and 

the average distance as the average number of channels that a message must 

traverse when traveling from a source node to a destination node. As the 

degree of a node and the average distance for a given network are often inter-

related， the normalized average distance， given byαverαge distαnce x degree， 

may provide a more useful measure for static evaluation. The channel bisec-

tion widthう B，is defined as the minimum number of channels that， when cut 

separate the network into two equal parts， and the maximum message den-

sity is the maximum of the total number of communications paths passing 

through each node in the system. Scalability is defined as the relative ease 

with which the number of processing elements in a system can be increased. 

A sy批 mwhich requires major hardware cha時 esandj or rewiri時 toincrease 

the number of processors is therefore not considered scalable when corupared 

to a sy批 min which an additional processor can be plugged in. Fe時 [21]
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classified the topologies of static networks according to the dimensions re-

quired for layout， i.e. one-dimensional， two-dimensional， three-dimensional， 

and hypercube. Multicomputer networks are typically constructed from ar-

rays of nodes in at least twかdimensions.Twかdimensionaltopologies include 

the ring， 2D mesh， torus and tree， while three-dimensional topologies include 

the 3D mesh and 3D torus. Presented in Figure 2.4 are a number of contem-

porary static network topologies. 

The networks under consideration here are bi-directional， as these net-

works allow locality of communication to be employed in the programming 

model of the parallel machine. Therefore， each arc in Fig 2.4 is divided 

into two communications channels， one in each direction. A router in a 2-

dimensional network will have communications channels in the 十九 -x，+y 

and -y directions， along with a connection to the local processor， as shown 

in Fig. 2.5. 

Torus 

The torus of Fig. 2.4( a) is a member of the general k-ary n-cube family. For 

the example torus of Fig. reffig:static，た=4 and n = 2. 

Definition 3 A k-ary n-cube is an n-dimensional cube of radix k， and a 

node within a k-ary n-cube can be identi五edby the n-digit radix k address， 

(α0，α1ぅ…?αηー1)' Each node in a k-ary n-c山 eis connected to every other 

node whose address differs in exactly one digit by土1modulo k. 

The number of nodes in the network， N， is related to n and k by: 

N=  kぺ(k= ¥IN， η== logk N) 
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Figure 2.5: Communications channels for a 2-dimensional router 

Although there are many possible topologies for the direct networks em-

ployed in MPP systems， by far the most popular in the current generation 

of MPP systems are k-ary n-cubes and those networks which are isomor-

phic to them 1. Parallel systems based on 2 and 3-dimensional k-ary n-cubes 

have been intensely investigated in the past， due to their ease of construc-

tion within the confines of 3-dimensional space and the natural mapping of 

a number of algorithms to them. Usually， low dimensional k-ary n-cubes are 

referred to as tori， while higher dimensional binary n-cubes are called hyper-

cゆes.The dia~eter of a torus is 2l n/2 J. Although the wrap-around links 

of the torus reduce the diameter of the system， they can complicate message 

routing in the system and may make it di伍cultto connect peripherals to the 

network. Howeverヲ severalparallel machines have been constructed using 

tori. The 2D torus is used in the iWarp[6] and the K2 parallel processor[3]， 

and more recently， the 3D torus has been used in the construction of the 

Cray Research T3D[43]. 

10ne notable exception to this is the CM-5， which is based on a fat-tree IN[36] 
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2D and 3D Mesh 

2D and 3D meshes are presented in Figs. 2.4(b) and (c) respecti vely. The 

mesh topology is an aperiodic variant of the k-ary n-cube family， and looks 

like a torus with the end around connections removed. The 2D mesh of Fig. 

2.4(b) has (η=2うた=4) and the 3D mesh of Fig. 2.4(b) has (η=3うた=3). 

In general a k-dimensional mesh with N = nk nodes has a node degree of 

2k and a network diameter of k(n -1). Several simple routing algorithms 

have been presented for the mesh， including fault tolerant algorithms， and 

the unused connections around the edge of the mesh provide an abundance 

of connections for peripheral devices. A number of commercial parallel com-

puters have been constructed based on the 2D rnesh， including the CM-2 and 

the Intel Paragon [53]， and a 3D mesh has been utilized in the J-mad山 e[16]

and the Wavetracer Inc. Data Transport Computer[53]. 

Binary Hypercube 

The 4-dimensional binary hyperc山 eof Fig. 2.4( d) is a member of the k-ary 

n-cube family， with k五xedat two. The hypercubeヲasi t is often referred 

toぅ hasa network diameter of n， which is one of the lowest known average 

communications distances of any IN. Many numerical algorithms are suited 

to this topology， and it is simple to embed other topologies in the hypercube. 

The main disadvantage of the hypercube is th.at the number of nodes in the 

system is increased by increasing the dimension of the network. Thus a large 

number of connections are required for each node if a large system is to be 

built. In spite of this， the hypercube topology has been used for a number 

of commercial and research machines including the Cosmic Cube， CM-2 and 
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nCube corporations nCube2. 

Fat-Tree 

The fat-tree takes a somewhat different approach to implementing a static 

IN. A typical binary tree has a bisection width of only 1， which results in 

severe message-traffic congestion at the root node of the tree. The number 

of communications channels， and therefore the communications bandwidth 

in a fat-tree， increases as you move up the tree hierarchy， thus alleviating 

the communications bottleneck experienced by a standard binary tree in-

terconnection network. One disadvantage of this scheme is that it requires 

several different types of routing nodes and the number of communications 

channels in the hierarchy can become very large. However， the network is 

qui te practical as the Connection Machine Corporation CM -5 is constructed 

using a 4-ary fat-tree [36]. The 4-ary fat-tree of Fig. 2.4( e) has clusters of 

four processors located at the leaves of a tree， each of w hich is connected to 

two rou ter chi ps. 

Mandala 

The Mandala network， presented in Fig. 2.4(f)， is a hierarchical network 

proposed by Takahashi and Flavell [22， 23， 24]. It can be described by the 

size of its clusters， C and number of levelsぅ L.For example the network in 

Fig. 2.4( f) is a (4三)Mandala network. The number of nodes in this sy批 m

is given by N = C L. Each of the nodes in a network of cluster size C， has 

C -1 communications channels forming a complete connection at level 1， 

wi th 1 channel per node reserved for connection to higher levels. The degree 
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Figure 2.6: Latency of various switching techniques 

of each node is given by C and the average distance is given by V万.

2.3 恥1essageSwitching 

The message switching technique， i.e. the method by which data is passed 

from the input of a router to the output， can have a significant effect on the 

lαtency of the network. There are a number of possible switching techniques 

and these include circuit switching， packet switching， virtual cut-through 

routing and ωormhole routing. Circuit switching was originally used in tele-

phone networks and involves the formation of a physical channel between 

the source and destination nodes. In packet switching， or store-and-forward 

networks， complete packets are buffered at each node between the source and 

destination and the header of a packet may not leave a node until the tail 

has been received. 

Both virtual cut-through [34] and wormhole ro凶 ng[12] use cut-through 
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to reduce the network latency by allowing a packet to be forwarded as soon 

as the routing decision has been made. 

Figures 2.6 (a)ー(c)present a comparison of the latency of packet switch-

ing， circuit switching and cut-through routing techniques respectively. In 

each case a single packet is sent from the source node S via the intermediate 

nodes nO， n1 and n2. Given a packet length of L bits， a channel bandwidth 

of W bi ts per second and a distance of D hops between the source and 

destination nodes the latency for circuit switching is given by 

えs- 乙etup+長+D (2.1 ) 

the latency for cu t-through rou ting is gi ven by 

Tct =トD (2.2) 

and the latency for store-and-forward switching is given by 

Tsf =会(D+ 1) (2.3) 

If L > > D then Tct becomes L/W and thus the distance has negligible effect 

on latency. Clearly the latency of store-and-forward routing is considerably 

higher than that of both circuit and cut-through routing. Also， in the absence 

of contentionヲthenetwork latency of cut-through based switching is similar 

to that of circui t swi tching. However， if there is a large amount of contention 

in the network， the time taken to establish a complete circuit between the 

source and destination nodes can add a considerable amount to the delay of 

a circuit switched message. 

When channels become blocked， networks using wormhole routing buffer 

only small uni ts of data called flow control digi ts orβits which are illus-
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trated in Fig. 2.7， whereas networks employing virtual cut-through routing 

buffer entire packets and therefore requires considerably more buffer resource 

than wormhole routing. Wormhole routing and virtual cut-through routing 

provide low latency message delivery and often make use of vir初 αlchαn-

nels， which can significantly improve the throughput of an interconnection 

network [13]. Moreover， deadlock free routi時 algorithmsfor many mul-

ticomputer topologies which utilize these switching mechanisms have been 

proposed [17ヲ30].Virtual channels provide excellent channel utilization and 

allow multiple disjoint logical networks to coexist on a single physical net-

work， which is very useful for adaptive routing. Figure 2.8 presents a physical 

channel which is being shared by three virtual channels. Even though two 

of the destination buffers are full， the physical channel can still be utilized 

as the third destination buffer is free. Thus， the data in the free channel can 

pass the data in the blocked channels. 
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Figure 2.8: Three virtual channels sharing a unidirectional physical channel 

2.4 Message Routing 

The routing of a message in a direct IN involves the selection of an appro-

priate path from the source node to the destination node. Routing can be 

classified in several ways. In SOUice iouting， as the name implies， the source 

nodes determines the entire path of a packet prilor to injecting it into the net-

work. While this method may reduce the complexity of the message router 

hardware， it requires that each packet carry the information in its' header， 

increasing the packet size. Also， the path of the packet is五xedand cannot be 

changed once it has left the source node. Most current state-of-the-art direct 

IN s employ distパbutediouting. In this case a routing decision is made at each 

intermediate router which lies on the path between the source and the desti-

nation nodes. The decision process determines whether the packet should be 

delivered to the local processor or forwarded to a neighboring router. If the 

message is to be forwarded， the routing algorithm decides which of the adja-
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cent routers the message should be passed to・Thisrouting decision should 

be as simple as possible to allow it to be easily implemented in hardware and 

provide minimal routing latency. 

Routing can also be classified as oblivious orαdαptive. In oblivious or de-

terministic routingぅthepath of a packet is cornpletely de五nedby i ts' source 

and destination addresses. The path taken by a packet in a network em-

ploying dynamic routing depends not only upon the source and destination 

address， but also on dynamic network conditions such as network load， or 

the presence of faulty channels. 

2.4.1 Deterministic Routing 

Most current state-of-the-art interconnection networks employ deterministic 

routing. Although deterministic routers are not fault tolerant and have poor 

performance in networks experiencing high traffic loads or hot-spots， they are 

extremely simple and therefore fast. This makes them suitable in the prac-

tical implementation of interconnection network hardware[44]. Many multi-

computer systemsぅsuchas the Cosmic Cube， NCUBE， J-machine， iWarp and 

Intel Paragon， therefore utilize deterministic routers. The most widely used 

ro凶時 algorithms for these machines are the e-cube ro凶 ngalgorithm [49]， 

which is used for routing on hypercubesヲanddimension order routing， which 

is used on n-dimensional meshes. 

e-cube Routing 

In an n-cube with N = 2ηnodes， each nodeヲsaddress is binary coded as 

α= (α0，α1，・汁αηー1)'Given a source address s = (so， S1，…ぅ Sn-l)and a des-
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tination address d = (do， d1，…， dnー1)the ro凶 ngfunction should determine 

a route from s to d wi th a minimum number of steps. Denoting the n dimen-

sions as i = 1，2γ ・.，n， where the i“th dime釘nsioncorresponds to the (i -1 )st 
bit in the node address and letting υ =υηー 1・・・ VlVo be any node along the 

packet route， the route is determined as follows: 

1. Compute the direction bit Ti = Si-l⑦ di-1 for all n dimensions (i = 

1，2，・・・ ?η

2. Start with dimension i = 1 and υ=s 

3. If Ti = 1， route from the current node υto the next node v⑦ 2i-l， else 

ski p this step. 

4. Move to dimension i + 1(i.e・，1， ←i+l). Ifi三n，go to step 3， else 

quit. 

An example of e-cube routing on a 16 node hypercube is presented in 

Fig. 2.9. In the example n = 4ヲs= 0000 and d = 1101. Thus T = T4T3T2Tl = 

1101. The routing steps are summarized in Table 2.1. As can be seen in the 

example， the packet is routed from dimension 1 to dimension 4. If the ith 

bit of s and d are the same， no routing is needed along dimension i. Thus in 

the example， no routing is required for dimension 2. If the ith bit of s and 

d differ then the packet is routed from the current node along dimension i. 

this process is repeated until the destination is reached. 

Dimension order Routing 

Dimension order routing is somewhat similar to e-cube routing. As was 

discussed previously， a k-ary n-cube is an n-dimensional cube of radixム

τ;一一一 一.
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dim2 

dim4 

s = 0000 
d = 1101 
r = 1101 

Figure 2.9: e-cube routing on a hypercube 

Table 2.1: Routing steps from s = 0000 to d = 1101 

Step γi Operation Next node 

0000 ED 20 0001 

i = 2 。 skip 
i = 3 1 0001 ED 22 0101 
i = 4 1 0101⑦ 23 1101 

20 
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E 

Figure 2.10: Dimension order routing on a 2D mesh 

and a node within a k-aryη-cube can be identified by the n-digit radix k 

address， (αoぅα1，…，αηー1).Given a source address s = (SO，Sl'…ヲ Sn-1)and 

a destination address d = (do， d1，…，dnー1)，a packet is routed along each 

dimension i = 1， 2ヲ・・・ ，n，where the ith dimension corresponds to the (i -1 )st 

digit in the node address， until Si-1 is equal to diー1・

This is illustrated in Fig. 2.10， which shows routi時 betweenfour (source， 

destination) pairs on a twかdimensionalmesh. A packet from any source 

node S = (X1y1) to any destination node d = (X2Y2) wiU first route along 

the X-axis until it reaches column Y2， where d is located. It will then route 

along the Y-axis until d is reached. A west-north route is taken from node 

(1，0) to (0，4). An east-north route is traversed from node (1，1) to (3，3). A 

west-south route is needed from node (4，4) to node (1，3) and an east-south 

route is required from node (リ)to node (6，1) .. 

Dimension order routing alone is sufficient to ensure that deadlock does 

not occur in mesh connected networksぅ asit prevents a circular wait for 
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Figure 2.11: (a) Dimension order routing (b) Adaptive routing 

channel resources. However， the same dimension ordering scheme will not 

prevent a deadlock from occurring in a torus network. This is discussed in 

further detail in Section 2.5 

2.4.2 Adaptive Routing 

Although deterministic routers are simple to Ilmplement and therefore fast， 

they suffer from poor performance in the presence of hot-spot tra伍cand 

are not fault tolerant. Figure 2.11(a) presents a simple example in which 

dimension order routing may result in poor use of channel resources. Node 

(0，4) is sending a packet to (4，4)ヲwhileat the same time node (1，4) has a 

packet to send to (4，1)， node (2，4) as a packet to send to node (4，2) and 

node (3，4) has a packet to send to node (4，3). As dimension order routing in 

a two-dimensional mesh requires that the message be sent along the X-axis 

五同ぅ nodes(1，4)， (2，4) and (3，4) are unable to sent their packets， even though 



、~

2.4 Message Routing 

.-.7"'-
ア¥六ミ¥

J二~Virtual corrrnunications 

23 

Figure 2.12: Physical communication channels divided into routing planes 

a plethora of available channels exist. In Fig. 2.11 (b) the routi時 ruleshave 

been relaxed to allow adaptive routing so that the packets from nodes (1，4)， 

(2，4) and (3，4) can be transmitted concurren七lywi th the packet from node 

(0，4). This allows better channel 凶 lizationand lower packet latency. 

A number of different approaches have been proposed for the construc-

tion of adaptive and fault tolerant routers. Many of these proposals have 

advocated the use of virtual channels to supply multiple virtual paths be-

tween a gi ven (sou悶ヲ destination)pair and thus provide varying degrees of 

adaptivity and fault tolerance. These include P/αnai-Adαptive Ro山 ng[9]， 

Viitua/ Netωo巾 [32]， Adαptive Ro山句 ωithViitUα/ Chαnnels [15] and The 

TUin Mode/ fOi Adαptive Ro山 ng[30]. 

A general technique for providing adaptive routing is to partition the 

physical network into a number of disjoint subsetsヲwhereeach subset consti-

tutes a corresponding subnetwork. Packets are routed through different sub-

networks depending upon the location of the source and destination nodes. 

Figure 2.12 illustrates an application of this method to a 2D mesh. The 
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network is partitioned into four subnetworks or planes， the +X+ Y plane， 

the -X+Y plane the +X-Y plane and the -X-Y' plane. If， for example， the 

destination node is to the left and above the source node， that is， if dxく Sx

and dν> Sれ thenthe packet will be routed a.long the -X+ Y plane. If in 

this example dx was equal to sx， then the packet can be routed in either of 

the +X+ Y or the -X+ Y planes. This adaptive routing algorithm is said to 

be mznzmαl and fully adaptive， that is， a packet can be delivered through 

any of the shortest paths between the source and destination. In addition to 

this， for the 2D mesh i t can be proven to be deadlock free. However， provid-

ing minimal fully adaptive and deadlock free routing algorithms using this 

method for the general class of k-ary n-cubes rnay require additional chan-

nels. Linden and Harden [38] have demonstrated that a k-ary n-cube will 

require 2n-1 subnetworks or routing planes and thus the number of chan-

nels required increases rapidly with n. The use of virtual channels is also 

expensive in terms of latency and cycle time[8] and requires that fiow con-

trol information be sent in the reverse directioIl to signal the availability of 

buffering on the receiving node. This fiow control information either requires 

extra wires， or will consume communications bandwidth from the reverse 

communications channel. 

Ngai and Seitz also proposed a non-minimal adaptive mesh router which 

allows complete freedom of path selection between any (source， destination) 

pair， by using misrouti時 toprevent deadlock[41]. However， this approach 

requires the use of time stamps and prioritization to prevent livelock， requir-

ing that extra state information be stored for each packet and results in a 

complex router design. 
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Main Xbar 

Figure 2.13: Twcトdimensionalchaos rou ter 

Another non-minimal adaptive router which utilizes misrouting to avoid 

deadlock is the Chaos router proposed by Konsta凶 nidouand Snyder [35]. A 

block diagram of a twかdimensionalrouter is presented in Figure 2.13. The 

Chaos router utilizes randomization to provide probablistic freedom from 

livelock and therefore does not require any extra state information to make 

routing decisions. The central queue of Fig. 2.13 is used to store packets 

which arrive at an input frame and are unable to be routed to an output 

frame before the entire packet is received. Once the central queue becomes 

full and a message is speci五edto be sent to the queue， one of the packets 

in the queue will be randomly selected and sent to the五rstavailable output 

frame. 

Konstantinidou and Snyder have shown that no packet in a router is ever 

mis-routed with certainty or in other words， every message has a non-zero 
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chance to avoid mis削

demonstrated t凶ha抗t七山heprobability that a packet will not have been routed 

after i routing steps， where i→∞ 1S: 

kQ(i)=(1-ε同 N)i= 0 (2.4) 

Therefore， the longer that a message remains in the network， the more prob-

able that it will be delivered to its' destination. The major disadvantages of 

this router are that it requires a central misrouting queue， queues at both 

inputs and outputsヲandextra state information to make the misrouting de-

cision. These factors may result in a large and slow implementation. 

2.5 Deadlock 

Deadlock occurs in an IN of a parallel computer when no packet can advance 

towards its destination because the queues or channels of the message system 

are full and no packet can release the queue space that it currently holds. This 

phenomenum has been studied extensively for wormhole routed networks and 

a general solution for deadlock avoidance in any wormhole routed network， 

based on the concept of virtual channels， has been proposed [18]. Deadlock 

in wormhole routed networks is normally descriibed in terms of a network's 

routing function and channel dependency grαph. 

Definition 4 A routing function， R : C x N→Cヲmapsthe current channelう

Cc， and the destination node， Nd， to the next channel， C川 onthe rou te from 

the source node to the destination node. A channel is not allowed to route 

to i tselfヲCc-1-Cn. 
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Figure 2.14: (a) Network and (b) its channel dependency graph without 

virtual channels. (c) Network and (b) its' channel dependency graph with 

extra virtual channels. 
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Definition 5 A chαηηel dependency graph， D， for an interconnection net-

work， 1， and routing function，沢， is the directed graph， D = G( C， M). The 

vertices， D(C)， are the channels of 1 and the edges， D(M)， are the pairs of 

channels mapped by the routing function， R. 

The routing functionヲ況， for a network is deadlock free iff there are no 

cycles in its channel dependency graph. Deadlock can occur in the network 

of Fig. 2.14(a)， due to a circular wait for channels， as there is a cycle in 

itピchanneldependency graph， shown in Fig. 2.14(b). A circular wait for 

channels can occur if， for example， a flit from ηo that is destined for n2 is 

holding Co， a flit from n3 that is destined for nl is holding C3， a flit from n2 

that is destined for no is holding C2 and a flit from η1 that is destined for n3 

is holding C1. By adding a set of virtual channels to the networkうasshown in 

Fig. 2.14( c)， and modifying the routi時 functionappropriately， the cycles in 

the channel dependency graph are removed， as shown in Fig. 2.14( d). 1n the 

五gure，packets at nodes numbered less than their destination are routed on 

high channels and packets at nodes numbered greater than their destination 

are routed on low channels. Channel Coo is not used. There is now an 

ordering of virtual channels according to their subscripts: C13 > C12 > Cll > 

ClO > Co3 > Co2 > Col and the routing function is now deadlock free. 

2.6 Multicast Messages 

Point to point， or unicast communication， in which a source node sends a 

message to a single destination node， is the basic structure supported by 

present multicomputers. Broadcast and multicast communications are the 

-・'一一一一一一一一-----
孟益E
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transmission of a message from a source node to all other nodes in the system， 

and from a source node to a subset of the nod.es in a system respectively. 

Broadcast communication can be viewed as a special case of a multicast 

communication， in which the same message is delivered. to all of the nod.es 

in the system [40]. 

Two parameters commonly used to measure the e伍ciencyof multicast 

schemes are chαηηel tr、α:fficand communication latency. Channel traffic is 

defined as the number of channels used to deliver the message under consider-

ation and latency is defined. as the longest packet transmission time involved. 

These two parameters are somewhat interrelated. as is illustrated. in Fig. 2.15. 

The unicast based. multicast generates tra伍c= 14 and has has distance = 3， 

the tree based. multicast has tra伍c= 9 and d.istance = 3 and. the path based. 

multicast has traffic = 7 and. d.istance = 4. 

Multicast communications can be implemented. using multiple unicasts， 

software multicast trees， or by hardware multicast facilities. Multiple uni-

casts， while simple to implement， generate large amounts of unnecessary traf-

日cwhich can cause blocking and contention in the network [37]. Software 

multicast trees， in which a worker node will forward the multicast message 

to its neighbors upon reception of the message， exhibit considerable speedup 

when compared to multiple unica山 [51]， but are still inferior to hardware 

based multicast schemes. Although hardware based multicast schemes of-

fer the best potential performance for the implell1entation of multicasting， it 

has been shown that these schemes may result in deadlock in those networks 

which employ wormhole routing [37] 



可，.......--

2.6 Multicast Messages 30 

口口
(a) 

口口
¥，ノ
'hU 

/
，

.
1
 

口
口日

日口口
Figure 2.15: (a) M ulticast by unicast (b) Tree based multicast (c) Path based 
multicast 

園田 ." ーーーー・E ・-ー圃園田ーー回目・

皇、



ws 

2.6 MultIcast孔1essages 31 

一一一一一炉 Channelsheldby mes泊伊

ーーーー--)l降、Channelsrequired by mess勾e

I Output buffer 
口川川

Figure 2.16: Multicast deadlock in binary tree 

2.6.1 Multicast Deadlock 

One of the properties of wormhole rou ted， tree based multicast schemes is 

that， due to the small amount of buffer space at each node， a potentially 

large number of network resources must be concurrently held by a single 

multicast message. The resources that the messages are competing for in the 

network are the communication channels and rnessage buffers of each node. 

Each physical communication channel has a dedicated message buffer and 

typically the message buffers are partitioned into separate virtual channel 
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While a number of routing algorithms， such as e-cube routing in hy-

percubes and dimension oidei routing in meshes， guarantee deadlock free 

routing of unicast messages， multicast trees based on these algorithms are 

prone to deadlock. In fact， networks which are inherently free of deadlock， 
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such as the n-αry tree and fat tree [36]， may also deadlock if more than one 

tree based multicast occurs concurrently. In the simple example presented 

in Fig. 2.16 a deadlock has occurred as the channels (N3，N6)ぅ(N3，N7)that 

are held by N3 are required by N2う andthe cl即日lels(N2，N4)，(N2，N5) that 

are held by N2 are required by N3. 

Although the unicast routing algorithm of this network is deadlock free， 

a deadlock has occurred because of cyclic dependency in the concurrent al-

locαtion of multiple resources between the two multicasts. Thus， multicast 

deadlock differs significantly from traditional unicast deadlock， as in multi-

cast deadlock， the resources contributing to the deadlock situation are dis-

tributed over a number of nodes. Traditional methods of deadlock avoidance， 

such as releasing all of the deadlocked resources once deadlock is detected or 

requesting all of the required resources prior to initiating an operation which 

might result in deadlock， are not suitable for prevention of multicast dead-

lock. Releasing the distributed deadlocked resources results in considerable 

waste of communications bandwidth and may be di伍cultto implement due 

to the large number of distributed resources which may need to be released， 

while requesting all of the necessary channels prior to initiating a multicast 

would significantly increase the multicast latency. New methods of deadlock 

avoidance for multicast must therefore be found. 

Multicast deadlock avoidance has typically been achieved by limiting the 

growth of the multicast tree and Lin， McKinley， and Ni have extensively 

studied the use of multi-path multicasting algorithms utilizing Hamiltonian 

paths to ensure that deadlock does not occur [40， 37，51]. In addition to dead-

lock avoidance， multi-path multicast allows arbitrary multicast destinations 
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。十
Figure 2.17: Multipath multicast 

and they have demonstrated that this technique has the added advantage 

of reducing the amount of traffic in the network. Figure 2.17 illustrates a 

multi-path broadcast in an 6 x 6 mesh network. As can be seen in Fig. 2.17う

a multi-path message is broadcast by sending four copies of the message 

on individual multicast paths. Similarly， Byrd et al. have investigated the 

restricted branch multicast approach to ml山icasti時 [7].This approach閃

quires t凶ha抗ta mul川ticαas“tmessage can only be s叩pl以it比ti凶ntωotwo paths a抗tany given 
n∞od白e，and that one of these paths must be connected to the local processing 

element. 

Multi-path and restricted branch multicasting have a number of disad-

vantages. For example both restricted branch and multi-path multicasting 

require that the packet header store multiple destination addressesうasall of 
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the destinations for a broadcast or multicast must be stored in the header， 

which increases the length of a packet and complicates router design. In 

addition to this， restricted branch multicasting requires an extra port re-

source to guarantee deadlock freedomヲandthe algorithm used in multi-path 

multicasting to determine the multicast paths is complex. 
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Chapter 3 

Tokkyu: A High-Pe]~formance ラ

RandomizingぅAdapltive

Message Router wit:h Packet 

Expressway 

The Tokkyu router is a new high-performance message router for k-ary n-cube 

multicomputer systems[26， 29， 28]. The k-ary rings that make up the inter-

connection network are constructed using uni-directional register-insertion 

buses. Tokkyu utilizes misrouting to prevent deadlock and randomization to 

prevent livelock in a fully adaptive routing environment. Any packet arriving 

at an input to a Tokkyu router that can not be profitably routed is imme-

diately misrouted. This is signi五cantlydifferent than both the NgaijSeitz 

router and the Chaos router which defer the misrouting of a packet that is 

waiting for an output until it is to be overwritten by a newly arriving packet. 

The misrouting rate is minimized by utilizing a small number of queues， 

placed at the outputs of the communication ports. As blocking or buffering 

fiow control is not used， all of the available cornmunications bandwidth can 

be utilized for sending messages between processors in the system. Finally， 



可~

3.1 The Register-insertion Bus 36 

uncongested network performance is improved by the inclusion of the pαcket 

expresswαy， which provides a low latency bypass path for packets which need 

not pass through the core of the router. 

3.1 The Register-insertion JBus 

High performance ring buses have become a favorable alternative in the im-

plementation of local area networks [45]. However， LAN /WAN structures 

are not direct1y applicab1e to INs due to differences in the node structure 

and communications patterns [15]. The use of the unidirectional regi批 r-

insertion bus in the construction of IN s does， however， have a number of 

advantages. These advantages include: 

• A packet may propagate through a 1arge number of bus interfaces with-

out being buffered. 

• Processors are free to inject packets at any time， subject to avai1ab1e 

space in the transmit queue. Thus there is no globa1 arbitrationぅas

each processor can decide whether to inject a packet according to in-

formation 10ca1 to i ts bus interface. 

• Active repeaters can be used at the output of each message router， 

instead of the pulldown structure required for a bi-directiona1 bus， thus 

making the network more sca1ab1e. 

3.1.1 Register-insertion Bus Operation 

With reference to Fig 3.1 the operation of a register-insertion bus is as fo1-

10ws; Assume that the input and output data is synchronized at the same 

で:一一一一 一.
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transrnission rate， so that for each word receivedうanothercan be transrni t-

ted. The transmit (tx.) buffer is used to ternporarily store a packet frorn the 

local processor while it is waiting for injection onto the bus. These packets 

are of variable length and so only a portion of the tx. buffer rnay be used for 

a particular packet， however， the packet length rnust not exceed the length 

of the tx. buffer. The function of the delay buffer can explained by五rst

considering the area currently being used. The used， or active portion of the 

delay bu百er，operates as a FIFO queue that delays the incorning packets. 

Assurning that the entire delay buffer has a capaci ty of n words and that i 

words are currently used， 1 :S; i :S; n， then n -i words rernain for the unused 

or inactive portion. Thus locations ωoぅωh・・・，Wi-lof the delay buffer are 

active and locations Wi，ωi+l， • .・?ωn-lare inactive. If， in each tirne step t， 

a new word can be received， and a new word is to arrive at tirne t + 1， then 

the active portion of the delay buffer represents a FIFO queue containing 

the words which arrived at tirnes t， t + 1， ・・ ，t + (i -1). A t tirne t + 1 the 

word stored in Wo is removed frorn the queue and sent to the output. Si-

rnultaneously， the incorning word is added to the queue such that locations 

ω0，ω1， • .・ ?ωi-lnow contain data which arrived at tirnes t十1，t+2，・・・，t十九

and the queue length rernains unchanged. 

It is desirable that in each tirne step， if i 2:: 1， the queue size be reduced. 

A reduction can take place iff the data received at the input is not part 

of any packet destined for the output. In this case， the previous discussion 

should be modified so that the incorning word is not stored in location ωi-l 

and also so that i is red uced to i'ニ i-1. Furtherrnoreうifi = 0， then any 

incorning word need not be stored at all and can pass directly to the output. 
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Figure 3.1: Register-insertion bus interface 
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In this case the incoming word is not stored in location ωi-l and i is constant 

at i = O. 

The inactive portion of the buffer is essential for the injection of packets 

into the network from the tx. buffer. Assuming that the tx. buffer contains 

a packet of length ム1三lく (η-i)， and that at time t + i the五rst

word of the of this packet is to be sent to the output， then the previous 

FIFO discussion should be modified as follows; In this case， at time t + i 

the incoming word is stored in location ωi and i is increased to i' = i + l. 

A t time t + (( i + l) -1)， after the last word of the transmi tted packet has 

been sent， the locations ω0，ω1，・・・ ?ω(i+l)-lof the delay buffer now contain 

words t， t + 1，...， t + ((i + l) -1). In addition， the requirements for queue 

reduction must be modified such that queue reduction can only occur iff the 

data received at the input is not part of any packet destined for the output 

and no packet is currently being sent from the local tx. buffer. 

From the preceding discussion we can observe that if i -0， the delay 

experienced by a packet is only due to the propagation delay through the 

output selector. Also if no packet is being sent from the transmit buffer 

and i is less than the length of the incoming packet， then the packet will 

cut-through the FIFO. Finally if i is greater than the length of the incoming 

packet， or a packet is being transmitted and l is greater than the length of 

the incoming packet， then the incoming packet will be completely buffered 

in the FIFO， in a store-and-forward manner. 

The concept of the register-insertion bus can easily be extended to the 

k-ary n-cube as is shown in Fig. 3.2， which illustrates the structure of a single 

port of an n-dimensional register-insertion bus router. The delay buffer of 
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Figure 3.2: N-dimensional register-insertion bus port. 

Fig 3.1 is replaced by a group of output buffers. These buffers store packets 

that are changing dimensions， in addi tion to those w hich must be delayed 

while the local processor injects new packets into the network. Also， the 

control is now distributed between the input and output control sections to 

improve performance. 

3.2 Architecture of the Tokkyu Router 

The archi tecture of a twかdimensionalTokkyu router is presented in Fig. 3.3. 

The input queues of a typical oblivious router have been replaced by m queues 

per output and n : m switches connect the inputs to the queues， where n = 4 

for a twかdimensionalrouter. A small input fra.me is also provided in each 

input controller to temporarily store several words of an incoming packet 

while a routing decision Is made. Each of the output queues is capable of 

holding multiple， variable length packets and all of the queues support cut-

through routing. As the router may buffer cornplete packets when output 

contention occurs， it requires the use of compara.tively short packets， i.e. less 
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than 32 bytes. An output controller schedu1es the output of packets from the 

output queues in a FIFO manner and a1so contro1s the injection of packets 

into the network via the output switch. Under the assumption of uniform 

tra伍cdistribution， each packet in a k-ary n-cube traversesσ = kj4 channe1s 

in each dimension before a rou ting decision must be made. Therefore we 

have provided the pαcket expressωαy w hich， in the absence of b1ocking， allows 

packets to pass directly to an output. Thus， a single unidirectional channe1 

in any dimension can be viewed as a high speed register-insertion ring[26]. 

The header of each packet is updated prior to entering the output register， 

when passing through the inc or dec modules， to refiect the progress of the 

packet through the network. 

As misrouting is used to prevent deadlock and randomization is used to 

prevent 1ive1ockヲcorrectoperation of the router can be guaranteed provided 

no packet， or part of a packet， is lost due to bu百eroverfiow. The aggregate 

data rate into any router must therefore never exceed the aggregate data 

rate out of the router. A simple way for the data rates within the network 

to remain tight1y matched is through the use of a globally distributed clock. 

Then， by restricting packet injection to only occur when su伍cientspace 

exists to complete1y store any packet which may arrive while injection is 

taking p1ace， buffer overfiow is guaranteed not to occur. 

3.2.1 Router Operation 

The operation of the router can be understood by examining the contro1 

algorithms of its major components. These cornponents are the input and 

the output controllers of each port， the queue controller associated with each 
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output queue and the arbiter which controls access to the output queues 

via the queue switches. Throughout this section the following notation is 

adopted for convenience: 

Drem : Distance remaining in this dimension 

p/en : Length of current packet 
h~ : Input count register 
J/eη : Injec七ioncount register 

L/en : Queue load count register 
Q/en : No. of words stored in queue 

Qmax : Max. contiguous queue space 

O/en : Output count register 

Output : Queue output selected 

PαSS'lve 
BypαSS 

Inject 

: Pαcket expressωαy selected 

: Pαcket expressωαy ln use 

: Packet injection selected 

Input Controller AIgorithm 

A19orithm 3.1 Input Controller Algorithm 

1. If no packet， wai七;
2. Decode header; 

3. 1 f D rem == 0 0 r Pαssive not asserted， 
4. Request new output(s); 

5. Else， assert BypαSS 

6 . 1/ en == P/ en - 1 
7. While hen > 0 do 
8. I/en == hen - 1 
9. Enddo; 

10. Reset BypαSS 

11.Goto 1; 

丸町ithreference to Algorithm 3.1 the input contJroller operation is as follows; 

The received data is sampled by the input controller on each clock cycle to 
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test for a valid packet header. Upon the detection of the first word of a packet， 

the header is decoded to gene凶 ethe output request(s). A packet which is 

j-dimensions from its destination will generate j valid output requests. If 

the packet has finished traversing the current dimension (Drem = 0) or the 

output switch is not in the Pαssive state， then the output request(s) will be 

passed to the global arbiter. Bypαss is asserted if Drem三1and the output 

switch is Pαs幻ve，to signal that the packet is passing to the output via the 

pαcket expressωαy. The packet length is loaded :into the input count register 

and on each subsequent clock cycle I1en is decremented as each new word of 

the packet is received. Once I1en has decremented to zero， indicating that 

the entire packet has been receivedうBypαssis reset and the input controller 

begins to sample the input for a valid header once again. 

Output Controller AIgorithm 

With reference to Algorithm 3.2 the output controller operation is as follows; 

Operation of the output controller begins with setting the output switch to 

the Pαssive state， allowing any packet on the pαcket expressωαy to pass 

directly to the output register. Once an output request is detected and no 

packet is currently bypassing the output， the request is processed and the 

output switch is set accordingly. If an injection request is being made and 

there exists sufficient space for any incident packet to be temporarily stored 

while the new packet is being injected (Qmaxどみen)うthenthe swi tch is set 

to the injection input. This ensures that there always exists sufficient space 

to buffer an arriving packet within the node while a new packet is injected 

so that no informationぅi.e.no part of a packet， is lost. The packet length 
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A19orithm 3.2 Output Controller Algorithm 

1. Asser七 Pαsszve;
2. If no output requests， wait; 

3. If Bypαss is asserted， wait; 

4. Reset Pαsszve; 
5. While output requests do 

6. If injection reques七，

7. If Qmαz 三 J1en，
8. Assert Injeci; 

9. If Injeci not asserted and output request， 

10. Assert Output; 
11. Get first output reques七;

12. Olen = P1en; 
13. While Olen > 0 do 
14. Output word; 

15. Olen = Olen - 1; 
16. If Output asserted) Qlen Qle:n - 1; 
1 7 . E 1 s e) J1 eη = J1eπ - 1; 
18. Enddo; 

29.Enddo; 

20.Go七o1; 
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is loaded into the output count register and a new word of the packet being 

output is placed in the output register during each clock cycle. Olen and 

either of Qlen or J1eη are decremented until the町ltirepacket has been sent. 

Global Arbiter Algorithm 

A19orithm 3.3 Global arbiter algorithm 

1. If no reques七s，wait; 
2. While requests do 

3. Get first request; 

4. If requested output(s) free， 
5. Assign available queue; 

6. Else， Assign random queue; 
7. Enddo; 

8. Goto 1; 

With reference to Algorithm 3.3 the output controller operation is as follows; 

The global arbiter processes each output request sequentially， beginning with 

the request at the head of the request queue. The arbiter examines the output 

request and the current state of the queue switches and the output queues in 

an attempt to profitably route the requesting packet. If it is not possible to 

profitably route the packet， it will be randomly misrouted to any available 

output queue. Although it may appear that this approach of immediately 

misrouting blocked packets will result in excessive misrouting of packets， the 

discussion in Sect. 3.3 and the simulation results of Sect. 3.4 demonstrate 

that the careful selection of the switch and output queue sizes prevents this 

from occurring. 

The arbiter algorithm presented here processes each input sequentially. 

At first glance it might be appear that it would be beneficial to process all 
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of the inputs simultaneously using a large combilnatoriallogic circuit， as this 

may result in shorter average time to make routing decisions. However， with 

reference to Fig. 3.4 which presents the inputs and outputs for the arbiter 

section of a twかdimensionalrouter with only two queues per output port， it 

can be seen that this would require the solution‘to a boolean equation with 

31 inputs. The resulting circuit would therefore be cumbersome and slow， 

and so a sequential design was used in the simulations of Sect. 3.4. 

Queue Controller AIgorithm 

A19orithm 3.4 Queue controller algorithm 

1. If no packe七 assigned，wait; 
2. Request output; 

3. Select assigned port; 

4. L1en = ~ 
5. While L1en > 0 do 
6. Load word from input; 

7. L1en 二 L1en 一 1; 

8. Qlen = Qlen + 1; 
9. Enddo; 

10.Goto 1; 

With reference to Algorithm 3.4 the output controller operation is as follows; 

When the queue controller detects that a received packet has been assigned 

to it， an output request is immediately made to the output controller and 

the length of the packet from the assigned port is loaded into the queue load 

count regi山 r(L1en). A new word of the packet is loaded into the queue in 

each clock cycleぅ(Llen)is decremented and the count of the number of words 

currently stored in the queue (Q len) is incrementedう untilthe entire packet 

has been received (L1en = 0) 
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3.3 Switch and Buffer Desi!~n 

The misrouting of packets provides a simple solution to the problem of dead-

lock. However， any packets which are misrouted will remain in the network， 

requiring channel and buffer resources. This rnay exacerbate any existing 

congestion and result in further misrouting. It is therefore desirable that the 

output switch and buffer sizes be selected so that under normal operation 

there is a minimal amount of misrou ti時 occurring. Karol et al [33] and 

Yeh et al [52] have studied in detail the design and performance of sy批 ms

employing output queues. However， their analyses have focused on those 

systems in which an arriving packet can only select one possible output from 

those available， and where the number of inputsヲへ approachesin五nity.We 

extend their work here by examining the switch and buffer requirements for 

those cases in which an arriving packet may select from a number of outputs， 

and we focus on small values of n， typically 4 or 6. To simplify the following 

discussion we assume that all packets are of五xedsize. 

3.3.1 Switch Evaluation 

Assume that五xedsize packets arrive at the n inputs to the k-ary n-cube 

router. In each time slot， packet arrival is governed by independent and 

identical Bernoulli processes and packets arrive independently at each input 

with probability p. Under the assumption of uniform random tra伍cln a 

k-ary n-cube， on average， each packet must traverse σ= k / 4 channels in 

each dimension and the average distance of a packet， dαυe， is (η ×σ). Of the 

arriving packets， 1/ dαve are destined for the loca.l processor and therefore the 
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probability that an arriving packet is destined for one of the queue switches 

associated with an output， which we define asαヲ isequal to p一(p/dωe). 

The probability of i packets arriving at the router inputs， all destined for a 

single output queue switch，αi， has the binomial probabilities 

ヨ解

αi 

i = 0，1，2ヲ…?η

(3.1 ) 

If the probability of misrouting is very low then most arriving packets will 

be profitably routed， i.e. routed towards their destinations. Arriving packets 

are therefore equally likely to be destined for only n -1 of the available 

outputs， as the ηth output will send the packets in the opposite direction to 

which they have just travelled， and thus Eq. 3.1 becomes 

αt (3.2) 

。，1，2ヲ…?η-1

Packets arriving at the n router inputs to the k-ary n-cube must com-

pete for access to the m queues associated with each output， via the queue 

switches. If i packets arrive at the inputs at the same time， all destined for 

the same output， and iく m，then all requests can be satisfied by the switch. 

If i > m， then i -m requests will be rejected and these packets will have to 

be misrouted. It follows then that the probability of an output request being 

unsuccessful， for the case where a packet can be successfully routed via only 
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one output， is given by the sum of the probabilities of i > m 

Pr(Mj=l ) 
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(3.3) 

Extending Eq. 3.3 to the case where a packet can be pro五tablyrouted via 

more than one output: If i packets arrive at the router inputs at the same 

timeうeachof which can be profitably routed via j outputs， and i三jm，then 

all of the requests can be satisfied by the switches. If i > jmヲtheni -jm 

requests will be rejected and these packets will have to be misrouted. The 

probability that i > jm is 

Pr(i > jm 
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(3.4) 

In order to evaluate the effect of allowing packets to request more than 

one output， we need to determine sj， the fraction of arriving packets with 

j dimensions still to traverse， where 0三j:::; n. To calculate sj， we need 

to determine the distance distribution for newly generated packets. This 

is given by the number of ways in which the n-tuple describing the total 

distance to travel in each dimension， (匂，Cl， C2， ・・，Cn-l)ぅcan be arranged so 

that the sum向+Cl+C2+...+Cπー1is equal to the distance to travelヲdg，where 

0三C[:::;k/2 for alll = 0，1，2，…?η-1. The number of solutions for the 

equation co + Cl + C2 +…+ Cn-l = dg， which we de五neas並dg，is gi ven by the 

coefficient of xdg in the generating function， f( x) = (1 + x + x2 + ... + xk/2)ぺ
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Table 3.1: 2-tuples defining total distance to travel and W dg for packets in an 
8-ary 2-cube 

dg J = 1 j=2 Wdg 
(0，1)(1，0) 2 

2 (0三)(2，0) (1ヲ1) 3 

3 (0，3)(3，0) (1ス)(2，1) 4 
4 (0，4)(4，0) (1，3)(3，1)(2ス) 5 

5 (1，4)(り)(2，3)(3，2) 4 
6 ー (2，4)(4ス)(3，3) 3 

7 (3，4)( 4，3) 2 

8 (4，4) 

Oく dg三川/2.Table 3.1 shows the distance distribution of newly generated 

packets， their corresponding 2-tuples and W d
g 
for an 8-ary 2-cube. 

If Pdr is the probability that a packet is at a distance， dr， from its desti-

nation when it arrives at the input to a router and P(dg，dr，j) is the probability 

of that packet having j dimensions still to traverse， given that it started with 

a distance to travel of dg， then sj is given by 

sj = L: 2二PdrP(dg，川) (3.5) 

where 

Pri _ Wdr ー一
凶

2ごWdg
(3.6) 

and P(dg，dr，j) can be determined by considering the state transition diagram 

for the distance distribution of a given k-ary n-cube. Fig. 3.5 shows the state 

diagram used for determining distance distribution， Pdr， in an 8-ary 2-cube. 

The vertices in the figure are the 2-t叩 lesreprese凶時 the(x， y) distances to 

travel and the arcs are the probabili ties of a transition from distance (x， y) 

to distance (xペダ)
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Figure 3.5: State diagram for determining the distance distribution in an 
8-ary 2-cube 

Using Eq. 3.5 we can predict the probability that a packet arriving at 

an input has j dimensions still to traverse. This is important since the 

probability that a packet will be misrouted due to contention for a queue or 

swi tch decreases if j is greater than 1， and thus the size of the swi tches can 

be reduced if sj is large for values of j greater than 1. Table 3.2 presents 

the probabilities of sj ， 0 ~ j ~ 3， for a 64 node 8-ary 2-cube， a 256 node 

16-ary 2-cube and a 512 node 8-ary 3-cube. As can be seen in the table， 

the probability that a packet can request 2 or more outputs is approximately 

29% for the 8-ary 2-cube， 46% for the 16-ary 2-cube and 53% for the 8-ary 

3-cube. We can therefore conclude thatヲunderthe assumption of uniform 

traffic， as the radix or dimension of a network is increased， the probability 

of misrouting due to queue or switch contention decreases. 
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Table 3.2: Probability of j dimensions remlaining to be traversed 

8-ary 2-cu be 16-ary 2-cube 8-ary 3-Cl仇 l

so 0.25 0.125 0.167 

s1 0.46 0.413 0.303 

s2 0.29 0.462 0.351 

s3 0.179 

Finally， the probability of misrouting， for the case where arriving packets 

can be profitably routed via j outputs， is given by the sum of the probabilities 

of i > jm multiplied by sjヲforall of 0 :::; j :::; n 

Pr(Mj>d SFjjZ1川 η;1
(3.7) 

Applying Eq. 3.7 we can evaluate how the rate of misrouting increases as 

the load applied to a router increases. Figure 3.6 illustrates how the predicted 

probability of misrouting varies as a function of the applied load for a single 

node in a 16-ary 2-cube， along with results obtained by simulation. As can be 

seen in the五gure，the predicted results and simulated results remain in close 

agreement， indicating that our model is suitable for predicting the switch 

performance in networks where multiple outputs are available for routing. 

Although the results of Fig. 3.6 are useful in quantifying the amount of 

misrouting at a given applied load， any messages which are misrouted will 

remain in the network and will require channel and bu:ffer resources which 

may result in further misrouting. 
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Solid lines are predicted values， points are measurements taken by simulation 
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3.3.2 Buffer Evaluation 

The output of each port has a set of m queues for temporarily storing packets. 

These FIFO queues operate as， a single shared buffer for the associated port， 

while the output controller ensures that a first-in五rst-outqueuing discipline 

is maintained for packets arriving at that output. If no packets are lost in 

the queue switches， then in order to select an appropriate buffer size for 

each dimension of the router we need to determine the probability that there 

exists insu伍cientspace in a queue to satisfy an output request. Assume 

again that fixed size packets arri ve at the ηinputs to the router governed by 

independent and identical Bernoulli processes and that the probability of i 

packets arriving at a single shared buffer has the binomial probabilities given 

in Eq. 3.2. Given the discrete-time Markov chain state transition diagram of 

Fig. 3.7， the steady state queue size probabilities can be determined directly 

from the Markov chain balance equations[33] 

q。

q1 

qn 

Pr(Q = 0) =と2
UO 

(1-α。ーα1)Pr(Q = 1) = ，- -V  -'1./ qo 
uo 

町Q=η)=与生qπ-1-玄手qn-i
uo i=2 uo 

n>2 

(3.8) 

and it follows that the probability that a queue size is greater than or equal 

to some value， L， is the sum of the probabilities of queue lengths greater 

than or eq ual to L 
cxコ

Pr(Q三L)= L qi (3.9) 
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Figure 3.7: The discrete-time Markov chain state transition diagram for the 

output queue size 

As packets are permitted to request more than one output， the probability 

of misrouting is given by the sum of the probabilities that a packet has j 

dimensions still to traverse， 0三j~ n， multiplied by the probability that 

the queue sizes of the requested queues exceed L， raised to the jt九power
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Applying Eq. 3.10ぅwecan evaluate the probability of misrouting if the 

queue Slzes are五xedat L packets. Figure 3.8 illustrates how the probability 

of misrouting due to buffer overfiow varies as a function of the applied load 

for queue sizes of 2， 4 and 8 packets in a 16-ary 2-cube， along with results 

obtained by simulation of a single router. As can be seen in the五gure，

the results predicted by the Markov chain mode:l remain in close agreement 

with the simulation results， except at high applied loads where the Markov 

approximation overestimates the overflow rate. 
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3.4 Performance 

In this section， we evaluate the performance of the Tokkyu router under a 

variety of tra伍cconditions by simulation. The simulator is a C++ program 

with a graphical user interface and includes a dynamic display of the simu-

lation progress. The simulator supports prograrnmable network size， buffer 

size， routing algorithm， tra伍cpattern and packet length as shown in the 

dialog for setting the simulation variables of Fig. 3.9. In addition to this 

there is a test mode which can be used to verify the routing algorithms， 

bu百'erassignments and the correct operation of the simulator. This is illus-

trated in Fig. 3.10， where node (0，0) is sending a single， 16 word packet to 

node (15，15) in a 2D mesh. As can be悶 nin the日gurethe route taken by 

the packet is minimal and fully adaptive. All of the nodes of the simulator 

operate synchronously and a word is transferred between nodes in a single 

clock cycle. Figures 3.11， 3.12 and 3.13 illustrate snapshots of the simulation 

display for random， hot-spot and fault simulations respectively. Each square 

in the display windows +X Load， -X Loadヲ+Y Load and -Y Loadぅrepresents

the buffer load for the given dimension of the corresponding router， while 

the display window， A ve. Load， shows the average load of the buffers of the 

corresponding router. The display has proved invaluable in the development 

of the simulator， as well as providing insight into the results obtained. 

Network performance under uniform random tra伍c，hot-spot tra伍cand 

tra:ffic in the presence of router faults has been simulated. Simulations were 

all performed wi th twかdimensionaltori (16-ary 2-c山 es)and a packet size of 

16 words. In order to accurately model the performance of a practical router 
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Figure 3.10: (a) Simulation display showing test mode (b) Simulation display 
key 
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Figure 3.11: (a) Simulation display showing random simulation (b) Simula-
tion display key 
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Bi-Torus Fault Simulation 
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we have fixed the uncongested routing latency of each router at 4 cycles. The 

assumed cycle-by-cycle operation of the router Is as follows; The header of a 

packet entering the router will be decoded and eL routing request made in the 

first clock cycle. The routing decision will be ll1ade and an output assigned 

in the second and third cycles and the header will be updated and sent to the 

output in the fourth cycle. This is typical of current generation routers[8]. 

Packets using the pαcket expressωαy only require that the header be checked 

for a value of zero， indicating that the packet has completed routing in the 

current dimension. Therefore the pαcket expressωαy has a latency of only 

one cycle. In all instances， collection of results was not initiated until the 

latency and throughput measurements of the network under test had reached 

a steady state. In the presentation of the results， the applied network load 

of the networks has been normalized such that fullload corresponds to all of 

the network channels transmitting simultaneously. 

3.4.1 Simulation of Uniform Random Traffic 

In order to evaluate the performance of the network under uniform random 

tra伍ca constant rate source with exponential interarrival times was applied 

to each input and the time from the creation of the first word of the packet 

until the last word of the packet is accepted at the destination was measured. 

Figures 3.14 and 3.15 present the predicted and simulated misrouting 

rates in a 16-ary 2-cube for varying switch and queue sizes respectively. In 

these simulations a packet requesting more than one output was randomly 

assigned to one of those outputs available to it. The simulation result for a 

queue swi tch size of 4: 1 in Fig. 3.14 is ini tially higher than the predicted re-
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Figure 3.14: Performance of queue switches for 256 node 16-ary 2-cube. Solid 

lines are predicted values， points are measurements taken by simulator 

sult， due to the higher tra伍cpresent in the network as a result of misrouting. 

At 30% applied load the measured network load is 45% and the misrouting 

rate is 13.4%. At approximately 35% applied load the extra tra伍cproduced 

by misrouting causes network operation to become unstable and results in a 

misrouting rate of 50%. A switch size of 4:2 is su缶cientto maintain stable 

network operation and the simulation and predlicted results remain in close 

agreement. 

The predicted misrouting due to buffer contention in Fig. 3.15 overesti-

mates the measured rate for buffer sizes of 2， 4 and 8 packets. All of the 

simulations remained stable， with the misrouting rate rising steadily as the 

applied load was increased. A minimum buffer size of only 2 packets per 

port is sufficient to guarantee stable network operation. Figures 3.16 and 
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Figure 3.15: Performance of output queues for 256 node 16-ary 2-cube. Solid 

lines are predicted values， points are measurem印式staken by simulator 

3.17 show the average packet latency and network throughput as a function 

of applied network load respectively， for a 256 node 16-ary 2-cube and a 

number of different switch and buffer con五gurations.With a single switch 

output and buffering for one packet per port， (m=l，L=l)， the misrouted traf-

五ccauses the network to saturate at 35% applied load， and the throughput 

is reduced to just 3%. lncreasing the number of switch outputs to two and 

the buffer size to two packets， (m=2，L=2) gives a signi五cantimprovement 

in performance with a saturation throughput of 80%. lncreasing the switch 

and buffer sizes to three outputs and three packets respectively， (m=3，L=3) 

further increases the saturation throughput to 90%， while further increases 

in buffer size give diminishing returns. This is highlighted by the plot for a 

switch size of three outputs and a buffer size of 16 packets， which saturates 
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Figure 3.16: Latency versus offered traffic for a 256 node 16-ary 2-cube under 

uniform random traffic 

at 95% throughput. 

Figure 3_18 illustra七esthe effectiveness of the pαcket expressωαy by com-

paring a network in which packets make use of the pαcket expressωαy with a 

network in which all packets are forced to pass through the core of the router. 

The average latency of packets in the network which utilizes the pαcket ex-

pressωαy is reduced significantly when compared to the network in which the 

pαcket expressωαy is disabled. This decrease in latency occurs at all applied 

loads and varies from a maximum of 43%， which occurs at 10% applied load， 

to 23% at an applied load of 95%. The maximurn throughput of the network 

utilizing the pαcket expressωαy is also slightly higher， 95% versus 92%， due 

to packets in the network spanning a greater nurnber of channels at any given 

time_ 



『・，.....-

69 3.4 Performance 

m=3，L=16 

m=2，L=2 

m=3.L=3 

m=l，L=l 

一--一。一一一

ーーーー.ーーーー

一一一一治r一一一一

0.2 

n

u

n

u

n

u

 

(
h
M
3吋
弘
司
ハ
ニ

O
口
。
2
0
5』
)

百

円

3
2
0
H
Z
H

0.7 

0.6 

0.3 

0.5 

0.1 

Appled Load (fraction of capacity) 
0.3 0.2 0.1 

。

Figure 3.17: Throughput versus offered traffic for a 256 node 16-ary 2-cube 
under uniform random tra伍c
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Simulation of Hot-spot Tra:ffic 3.4.2 

Adaptive routing allows better utilization of communication resources， es-

One pecially at high network loads or in the presence of hot-spot tra伍c.

method of generating large imbalances in the channelloads within a network 

is to apply bit-reversal tra伍c_U nder bi t-reversal tra伍c，each node， p， sends 

packets to node q， where the address of node q is the bit reversal of the ad-

dress of node p. For example node 2716 in our 16-ary 2-cube sends messages 

to node E416・Figures3.19 and 3.20 present the average packet latency and 

network throughput as a function of applied network load respectively， for a 

256 node 16-ary 2-cube under bit-reversal tra伍c.The maximum throughput 

for (m=2，L=2) and (m=3，L=3) are 63% and 65% respectively. Increasing 

the applied traffi.c rate past these points results in a decrease in the through-
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Figure 3.20: Throughput versus offered traffic for a 256 node 16-ary 2-cube 

under bi t reversal tra缶c

put to 56% and 58%. Increasing the buffer size to 16 packets results in an 

increase in latency prior to saturation， due to packets queueing in the larger 

buffersヲandan increase in the maximum throughput of 70%. 

3.4.3 Simulation of Traffic in the Presence of Faults 

The correct operation of the router requires that the aggregate input and 

output data rates remain balanced. Failure of a single channel of a router 

will require that the in-degree of the router be reduced by one to maintain 

the balance in data rates. In Fig. 3.21， the + ~{ channel of router (4点)has 

failed and so it is bypassed， creating a connection between nodes (3点)and 

(5点).Depending upon the nature of the fault it may be possible to use the 

pαcket expressωαy of node (4，5) to provide the bypass path. 
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Figure 3.21: Faulty node is bypassed 

Figures 3.22 and 3.23 present the performance of a Tokkyu network in 

the presence of faults. The network on which the faults were simulated had 

switch and buffer sizes of two outputs and two packets respectively， a con-

stant applied load of 50% and uniform random tra伍c.Ten fault simulations 

were carried out， each with randomly generated fault sets and the results 

were averaged to produce Fig. 3.22 and Fig. 3.23. The network performance 

degraded only slightly， even with 10% of the available channels faulty， as can 

be seen in the figures. There was only a 26% increase in the packet latency 

from a fault-free network to a network with 10% faulty channels and the 

throughput remained五xedat approximately 50%. 
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3.4.4 Discussion of Results 

A.A. Chien has illustrated the hazards of making comparisons between differ-

ent router implementations based on channel utilization and latency without 

considering the important effects of implementation complexity[8]. The effect 

of these factors is di伍cultto quantify wi thout simulation at the gate-level or 

actual implementation of the router. We can however， highlight a number of 

features of the Tokkyu router when compared to other similar implementa-

tions. The predicted low load throughput and latency of Tokkyu is as good 

as or exceeds the published performance of virtual channel based oblivious 

routers[50， 48， 16] due to the low latency path provided by the pαcket ex-

pressωαy. In networks experiencing high load， hot-spots or fault conditions， 

small Tokkyu routers， (m=2，L=2) or (m=3，L==3) have a clear throughput 

and latency advantage over oblivious routers. The predicted latency and 

throughput performance of the Tokkyu router with a small number of buffers， 

(m=2，L=2) and (m=3，L=3)， also closely matches， or exceeds the through-

put and latency performance reported for the adaptive Dally / Aoki router， 

with 16 virtual channels per physical channel and a similar amount of total 

buffer space. These results are encouraging as many of the routers which 

make use of virtual channels to implement adaptivity require large cross-

bars and complex arbitration， which contribute to their size and complexity. 

The use of virtual channels is also expensi ve in terms of latency and cycle 

time[8]. However， as the Tokkyu router must buffer complete packets when 

output contention occurs， it requires the use of comparatively short packets， 

i.e. less than 32 bytes. The cost of message disassembly for transmission 
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and reassembly at the destination， along with the cost of potentially larger 

packet headers， would have to be included in the latency and throughput 

measurements to make a direct comparison with virtual channel routers. 

Both the Chaρs router and the NgaijSeitz router have similar architec-

tures to the Tokkyu router and thus a more accurate comparison can be 

made between them. The simulated performance characteristics of these 

two routers are again similar to the results reported here. The low latency 

register-insertion ring formed by the pαcket eJ.;piessωαy allows the Tokkyu 

rou ter to achieve lower packet latency than the Chaρs and NgaijSeitz router， 

especially at low network load. The pαcket expiessωαy achieves lower latency 

in a manner similar to the Expiess Cubes proposed by Dally [14]. However， 

unlike Express Cubes， the pαcket expiessωαy does not require additional 

interchanges and wiring， thereby simplifying the network design and imple-

mentation. The simple routing decisions made by the Tokkyli router， which 

are made using only the message header and current buffer and switch in-

formation of the router， will allow for simpler arbiter implementation and 

therefore faster operation. The simulation results demonstrate that， for a 

16-ary 2-cube， two or three queue switch outputs， each with su伍cientbuffer 

space for a single packet， are su缶cientfor a low probability of misrouting， 

low latency and high throughput. 
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Chapter 4 

Restricted-length H:ardware 

Multicasting in Multicomputer 

Networks 

We begin this chapter by carrying out an in-depth investigation into multicast 

deadlock in wormhole routed communication networks. This is followed by 

a presentation of a hybrid virtual cut-throughjwormhole routing method 

for the effective distribution of broadcast and multicast messages in MPP 

system networksぅcalledrestricted-length multicasti時 [27].This method uses 

a single enlarged fiit buffer per physical communications channel to provide 

virtual cut-through routing for multicasts at the nodes where the message is 

replicated， thus preventing deadlock. 

4.1 Preliminaries 

4.1.1 Definition of Multicast Deadlock Problem 

Multicast deadlock will now be examined in detail using a graph theoretical 

approach. Any graph theoretical terminology not de五nedhere may be found 

in [10， 39]. In the following discussion we make the following assumptions: 
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1. There are no cycles in the channel dependency graph of the unicast 

routing algorithm， i.e. unicast is deadlock free1. 

2. There are no cycles in the channel dependency graph of the multicast 

routing algorithm. 

3. A destination node will eventually consurne a message. 

Let the set of nodes， M = {η0，η1γ・スk-l}三Nう bereferred to as the 

multicαst set， M， with k -1 destinations. Let no be the source node and 

D = {nl' ...， nk-l} be the destination nodes of the multicast set， and let P 

be the number of nodes in the set N (G). A u山I

with k = 2， and a broadcast is a multicast with k = P. 

Definition 6 The multicast routing function 沢m:NxN→C maps the 

current node，ηCヲandthe destination nodes， ndεD， to the next channel( s)， 

Cn， for the routes from nc to ndεD. 

Definition 7 The resource tree of the multicas，t set M is the rooted subtree， 

RT(N， C) of G(N， C)， which has ηo as the root， and where N(RT) c N(G) 

and C(RT) c C(G). The vertices N(RT) and the arcs C(RT) are the nodes 

and channels of the interconnection network respectively， and are de五nedby 

沢m for the multicast set M. The resource tree of a unicast is therefore a 

rooted tree RT(N， C) with only one brαηch. 

Let L be the length of the multicast packet P m in fiits， and Bd be the 

depth of a fiit bu:ffer in node nc. If node ncεRT contains the tail of the 

1 For a complete discussion of channel dependency and deadlock avoidance for unicast 
messages in wormhole routed networks refer to [18] 
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multicast packet Pm in one of its fiit buffers， then the conCUT'T'ent T'eSOUT'ce 

tT'ee of RT at time tαis the rooted su bt附 ，CT(N， C) of RT(N， C)， whose 

root is nc. The nodes N(CT) c N(RT) and arcs C(CT) c C(RT) are the 

set of resources which are required concurrently， before the tail of P m can 

leave nc. The pαth length of a vertex in CT is de五nedas the number of edges 

from nc to the vertex. The height of the tree CT， defined H( CT)， is the 

maximum of the path lengths in CT， and the number of nodes in the path 

of maximum length is equal to H(CT) + l. If {LjBd三H(CT)+l}then 

CT = RT， and if {H( CT) = 1} then either L ~~ Bd， or nc is adjacent to the 

destination nodes ηdε D. Let CT(N， C) and CT'(N， C) be the concurrent 

resource trees of RT( N， C) and RT'( N， C) respectively. The intersection of 

two concurrent resource treesぅ1= CTnCT'， is given by N( CT)nN( CT') and 

C(CT) n C(CT'). The numbeT' of components of 1ヲdenotedω(1)， is de五ned

as the number of connected subgraphs of 1， that are not contained in any 

other connected s山graphof 1， and let ω(Ic) be the number of components 

of 1， whose degree 三l.If a component in 1 has a degree equal to zero， then 

the component consists of a single vertex， with no incident arcs. 

Theorem 1 Let Rs = {CTo， CT1，…，CTI-1} be the set of concuT'T'ent T'e-

SOUT'ce tT'ees foT' e conCUT'T'ent multicαstsαt time tα・Deadlockdue to the coη-

CUT'T'entαllocαtion of T'eSOUT'ces mαy only OCCU7' ifαnd only if the following 

conditions αpply: 

V(RTi， RTj)εRs， 3{II(I = RTi n RTj子。)ぅ(0三i三e，o三j三f，iヂj)}

(4.1 ) 
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V(I昇。)，ヨ{ω(Ic)Iω( Ic)三2} (4.2) 

Proof:牛=

Let CT and CT' be two concurrent resource trees in Rs， where 1 = CTnCT'. 

1.1 1 =仇noconcurrent resources are shared by the concurrent multicasts 

in Rs. Therefore assumptions 1， 2 and 3 are su伍cientto guarantee 

deadlock avoidance. 

1.2 If 1ヂoand ω(Ic) = 0， it follows that N(CT) n N(CT')ヂoand 
C( CT) n C( CT') = o. Therefore only node resources are shared by 

concurrent multicasts and assumptions 1， 2 and 3， and a fair local 

arbitration scheme are su伍cientto guarantee deadlock avoidance. 

1.3 If 1ヂoand ω(Ic) = 1 then there is a single rooted s山 treein 1， 

which we denote Su・ Letnu be the root node of S川 withoutput 

ports Pu， and Cuε Pu be the output channels of nu defined by ~m for 

the packets associated with CT and CT'. If at time tα， nu allocates 

all of the output channels Cu to the packet associated with CT， then 

CT' will remain blocked until the packet associated wi th CT releases 

its resources. Thus， only one multicast is given access to the resources 

below nu and assumptions 1， 2 and 3ぅanda fair local arbitration scheme 

are sufficient to guarantee deadlock avoidance. 

===> 
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2.1 If 1 =1-o and ω(lc) = 2 then there are two rooted subtrees in 1 that 

are required concurrently by CT and CT'， which we denote 5u and 5v. 

Let nu and nv be the root nodes of 5u and 5v， and Cu εPu and Cv εPv 

be the output channels of nu and 川 definedby沢m for the packets 

associated with CT and CT' respectively. If at time ta， nu allocates 

Cuε Pu to the packet associated wi th CT and nv allocates cvεpv to 

the packet associated with CT'， a concurrent allocation of dependent 

resources has occurred， and a deadlock si tuation has been reached. 

Corollary 1 Deαdlock due to the concurrentαllocαtion of resources cαηηot 

occur znαnetwor土employingvirtuα1 cut・throughrouting. 

Proof:牛=

3.1 By de五nition，the length of a packet in a network employing virtual 

cu t-through is L三Bd. H(CT) is therefore equal to 1， and ¥/(1子

。)，ω(lc)~ 1. Thus by proofs 1.1 and 1.2" multicast is free of deadlock 

due to the concurrent allocations of resources. 

Figures 4.1(a) and (b) illustrate a multica計 andi ts associated concurrent 

resource trees respectively for virtual cut-through ro凶時・ InFigure 4.1 (b) 

¥/(I=1-O)，ω( lc)三1and therefore deadlock can.not occur due to the concur-

rent allocation of resources. If a single channel of a branch in the restricted-

length multicast tree becomes blocked， i t will not result in the rest of the 

tree holding channel resources， as is the case in conventional tree-based mul-

ticasting. 
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Figure 4.1: (a) Multicast by node (2，1) and (b) the resulting concurrent 
resource trees 

4.2 Restricted-Length Multicasting 

Rather than restricting the branching of a multicastヲwepropose restricted-

length multicastingヲinwhich the packets of a multicast message are restricted 

in length so that they are routed in a virtual cut.-through manner in a network 

which usually supports wormhole routing. Messages are usually divided into 

one or more packets at the source， prior to injection into the network. Thus， 

in order to implement restricted-length multica.sting in a network which nor-

mally supports wormhole routing， the source node must divide a multicast 

message into packets of length L ::; Bd. By ensuring that a flit buffer is 

su伍cientlylarge to hold a complete multicast packet， or that a packet is 

su伍cientlysmall to五tin a single buffer， it is therefore possible to imple-

ment deadlock free multicasting utilizing existing routing algorithms such 
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as dimension order， or e-cube routing. As has been previously stated， each 

router must also implement a fair local arbitration scheme to prevent mul-

ticast packets from indefinitely holding output port resources， while waiting 

for others to become free. Howeverぅasthis requires only local information a 

simple timeout and resource release scheme will be sufficient to avoid dead-

lock. 

The buffers of most current generation routers， which employ wormhole 

routing， can only store one or two fiits each. As the header information 

for a single packet is typically one or two fii ts in length also， i t would be 

impractical to implement restricted-length multicasting on these systems. A 

simple solution would be to increase the size of the buffers so that a complete 

packet could be stored in each bufferぅthusimpllementing virtual cut-through 

routing. However， this would signi五cantlyincrease the size of the message 

router， which would complicate its design and result in lower performance. 

Another approach would be to increase the size of a single buffer so that it 

can hold an entire packet. While this approach is preferable to increasing the 

size of all of the buffers， the size of a buffer capable of storing the maximum 

length packet employed in the system may still be prohibitively large. Our 

proposed approach is therefore to increase the size of a single buffer， while 

restricting the length of multicast packets. ¥Vhen a packet appears at the 

input to a router， a single bit in the header indicates whether the message is 

a multicast or a unicast. If the multicast bit is set， then the message must 

request the enlarged buffer， while unicast messages are free to be placed in 

any available buffer. 
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Figure 4.2: Organization of a single MEGA router input 

4.2.1 Gate-array Implementation 

A number of researchers and commercial enterprises have developed hardware 

routers for use in multicompl巾 rnetworks in recent years [17， 19， 50]. These 

have typically been implemented using full custom VLSI techniques， which 

have enabled them to achieve high throughput and low switching latency. 

However， a number of advantages exist in taking a semi-custom approach to 

the design. These include a shorter design time， lower production costs for 

small volumes of devices， and well established design and simulation tools 

[36]. 

も'Neare therefore undertaking the design of a MEssage passing Gate-
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Array (MEGA) router [25]， using a 1.2μm Cl¥10S gate array. The design 

tools available include schematic capture， design rule checking， functional 

simulation and critical path analysis. Our second prototype router design has 

four virtual channel buffers per port， which are 16 bits wide and typically 4 

words deep， and the router contains 10 uni-directional ports which are formed 

into 5 bi-directional pairs. The minimum requirement for the implementation 

of restricted-length multicasting is that a single packet of a multicぉtcan be 

accommodated in a virtual channel buffer. As the header of each packet in our 

system requires 4 bytes， this would result in only 4 message bytes per packet 

for multicasting. To increase the ratio of message information to header 

information we have enlarged a single flit buffer per physical communications 

channel， labeled LO in Fig. 4.2. The buffer load lines (LDO-LD3) are operated 

by the input control to load a virtual channel buffer in response to a request 

on the input controllines. The input control section also controls the request 

register associated wi th each virtual channel， placing a new request in a 

register whenever a new packet is received. These requests are passed to 

the appropriate arbiters via the request and the select lines. Once a packet 

has been passed to an output， the output control section (not shown) will 

assert the reset lane line to indicate that the lane is now free. The output 

controllers are also responsible for asserting the virtual channel read lines 

(RDO-RD3)， once for each word which is read. 

The basic unit for the implementation of digitallogic within a gate array 

is the Basic Cell (BC or cell). Each BC is typically implemented as two pairs 

of P-channel and N-channel transistors and the logical function performed 

by each basic cell is determined by the metalization pattern assigned to i t. A 
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Buffer Size Cell Count Terminals Nets 

4 lanes x 4 words 2119 3709 734 

3 lanes x 4 words， 1 lane x 8 words 2512 3351 847 

3 lanes x 4 words， 1 lane x 16 words 3440 6408 1322 

Table 4.1: Resource usage for various buffer structures 

user creates a design using U ni t Cells (U Cs)， s吋 1as N AND gatesぅ自ip-fiops

and shift registers， by interconnecting them usi時 wiringnetworks (nets) and 

this design is then mapped to the gate array by the design software. Most 

UCs are made up of a number of BCs and thus these also require intercon-

nection by nets. Terminals are used to provide the connections between BCs 

and nets， and also between nets on different rnetalization layers within the 

device. . Although current gate array devices offer BC counts of more than 

100，000 cells， the number of nets and terminal:s can signi五cantlyreduce the 

maximum utilization of these cells. In order to evaluate the effect on the gate 

array implementation of our router due to enlarging a single virtual chan-

nel buffer in each input port， we examined the increase in the cell， terminal 

and net counts for varying sizes of virtual channel buffer. These results are 

presented in Table 4.1， which gives the cell， terminal and net counts for the 

input section of a single port. In each case the number of virtual channels 

lS五xedat four， and the size of one lane is increased from 4 to 16 words in 

depth. As can be seen in the tableぅincreasingthe size of a single buffer per 

port from 4 to 16 words results in a considerable increase in the number of 

cells， nets and terminals. However， this increase is significantly less than that 

which would occur if the size of all of the buffers was to be increased. 
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4.3 Sinlulation 

4.3.1 Multicast Latency 

In order to evaluate the potential bene五tsof utilizing restricted-length mul-

ticasting we have implemented a simulator， which determines the latency of 

sending a multicast from a single node， based upon the design parameters of 

our message router. In our simulations we therefore assume a 2D mesh topol-

ogy with 16 bit data paths， a header length (Lh) of a unicast message of 4 

bytes， and that the standard size of a fiit buffer is 4 double-byte words. Two 

bytes of the header contain the destination addressヲwhilethe remaining two 

bytes contain the packet length and sequence information etc. Given a mul-

ticast message of length Lm bytesぅthelatency of sending a multiple-unicast 

based multicast to N destinations is given by: 

D.， = 二一~(Lm + Lh)D!lit(i) 
u コ Lflit 

(4.3) 

where D flit is the average delay in sending each fiit to destination i and 

L flit is the size of a fiit buffer. Figure 2.17 illustrated that， in a 2D mesh， 

a multi-path multicast message is broadcast by sending four copies of the 

message on individual multicast paths. The hea.der appended to each copy of 

the message must contain a list of all of the destination a.ddresses. Assuming 

that， as in the case of a unicast， each destination address requires 2 bytesヲand

that 2 addi tional bytes of status information are appended to the header， the 

average number of bytes per header for a multi-path message being broadcast 

to N destinations in a 2D mesh is gi ven by 
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瓦=(与_1_) (4.4 ) 

and the send latency for a multi-path based multicast with four paths is 

therefore 

ふ(Lm+ Lh)Dfμt(i) 
・ ー

ロ Lf1it

ふ(Lm+ (与引 Df1it(i)
訂 Lflit 

A restricted-length multicast will divide the Lm bytes of the multicast 

Dmp = 
(4.5) 

message into a number of flit sized packets. The data content of the each 

packet is Pd = (L flit -L九)and the total amount of header information for 

required to broadcast a message of Lm bytes， assuming each header requires 

4 bytes， is 4Nf ，where Nf is given by Nfニ Lm/Pd and is rounded up to the 

nearest whole number. The send latency of restricted-length based multicast 

is therefore gi ven by 
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Note that the send latency of restricted-length multicast is independent of 

the number of destinations of the multicast. 

4.3.2 Simulation Results 

We have assumed that the multicast set is an 8 x 8 mesh and the load in the 

network is simulated by varying the probability of blocking at a single port 

(Pr( b)) from 0 to 0.7. If multiple outputs are required concurrently， as is 

the case in restricted-length multicast， then the total probability of blocking 

(Pt) is given by Pt二 1-(1一九)η，where ηis the number of output ports 



.._. 

4.3 Simulation 88 

requested. A node is chosen at random to iniitiate the multicastヲ andthe 

time taken from the ini tialization of the broadcast until the tail of the last 

flit arrives at the last node is measured. The results of each multicast method 

were then averaged over 100 simulations. 

Figure 4.3 shows the latency of sending a rnulticast (in cycles) with Lm 

五xedat 16 bytes， while varying the probability of blocking from 0 to 0.7. Re-

sults for multiple unicast， multi-path， and restricted-length multicasting with 

buffer sizes of B=l， 2 and 4 flits are given. All instances of the restricted-

length multicast provided a reduction in latency for Pr( b)三0.43. By in-

creasing the size of one flit buffer so that it can accommodate 2 flits， the 

probability of blocking must exceed 0.65 before the blocking， due to the re-

questing of multiple outputs， degrades the performance of restricted-length 

multicasting to below that of multi-path multicasting. Figure 4.4 illustrates 

the effect of varying the message length， from 4 bytes to 2048 bytes for a 

五xedprobability of blocking. The header overhead of multi-path multicast 

is evident in its poor performance for small messagesぅwhileunicast performs 

poorly regardless of message size. 
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4.3.3 DiscussIon of Results 

As expected， the performance of unicast based multicast is much lower than 

the other methods of multicast investigated here， as each of the unicast mes-

sages must wait until the preceding message has left the sending node before 

it can be sent. This result could be improved upon by adding additional 

input ports to each node in the system and allowing multiple unicぉtsto be 

sent concurrently from a single node. However， as the unicast based multi-

cast generates the most tra伍cof those methods presented here， this would 

probably result in an increase in network congestion which would adversely 

affect the network performance of the entire system. 

Both multi-path and restricted-length mu.lticasts exhibited signi五cant

speedup when compared to unicast based multicast. As was the case with 

unicast based multicast， the performance of multi-path based unicast could 

also be improved by allowing multiple messages to be concurrently injected 

into the network from a single node. The performance of restricted-length 

multicast with only two enlarged fiit buffers was superior to that of multi-

path based multicast except for when the probability of blocking exceeded 

0.65. As restricted-length multicast makes use of well known routing algか

rithms， little modification would be required to existing router designs to 

allow them to support it. 



Chapter 5 

Concl usions 

Effective communication structures are essential if the full potential of MPP 

systems is to be realized. The requirements for an interconnection network 

and its communications structures to considered effective include freedom 

from deadlock and livelock， low latency and high throughput， adaptive rout-

ing， fault tolerance and support for multicast communication. This disserta-

tion has focused on two solutions to meeting these requirements. 

The Tokkyu router was presented and its suitability for use in MPP in-

terconnection networks was demonstrated. Accurate models were developed 

to predict the switch and buffer performance of Tokkyu routers for varying 

radix and dimension and these models can be used in the design of routers 

for networks other than those investigated here. The Tokkyu router meets 

all of the requirements necessary to be considered effective， as defined in the 

introduction. Importantly， the support for routing in the presence of faults or 

network congestion does not compromise the low latency and high through-

put of the router. The sin1ulated performance of the Tokkyu router exceeds 

that of published results for oblivious routers and is equal to or exceeds those 

reported for other adaptive routers. These performance predictions are es-
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pecially encouraging when the simplicity of the control structures required 

to implement the Tokkyu router are taken into consideration. 

The multicast deadlock problem was stated explicitly using a graph theか

retical approach which enabled the conditions necessary to avoid deadlock to 

be defined. Restricted-length multicast was introduced and the implemen-

tation of this multicast scheme was examined. Restricted-length multicast 

was then compared to unicast and multi-path based multicωts. The sim-

ulation model allowed the relative merits of restricted-length multicast to 

be evaluated， and under all but very high sirnulated congestion conditions 

restricted-length multicast provided lower latency than unicast or multi-path 

multicasting. The results therefore indicate that restricted-length multicast 

provides a good solution to multicast problems such as multicasting to clus-

ters of nodes found in barrier synchronization， multicasting to nearest neigh-

bors and the broadcasting to all of the nodes in the network. 
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