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内容要旨

セルラーニューラルネットワーク (C N ~ ) には連続時間的な

ものと，離散時間的なものがあり，本研究は主に後者について議論

する. C 0: Nは1988年にカリフォルニア大学ノ〈ークレ校のL.O.Chua

教授らによって提案され，現在，アメリカ， ヨーロッパを中心に盛

んに研究が進められている . C N Nは従来のニューラルネットワー

クと異なり，近傍のセルとのみ結合しているため集積回路としての

実現が容易であり，画像処理用 Ci¥Nとして注目されている

第一章では，ニューラルネットワークに関する研究の動向，お

よび，人間の目と同様な処理機能を持つ連続時間 CNNに関する研

究の動向と，この論文で議論している離散時間 C

て簡単に述べている

の背景につい

第二章では，離散時間的な非均一 CNNとして 3 二相同期信号

の回路モデルを提案し，その安定性等について議論しである.この

モデルは各セルについて二相同期信号 l個で実現できるため， VLS 1 

の実現が容易であると云う特徴がある.まず，モデルの動作原理か

ら状態電圧，出力電圧の動作領域を明かにした.このことは物理的

に実現可能な CNNを設計するために重要である .つ ぎに，安定性

を議論するためにエネルギ一関数からリアフノフ関数を定義し，そ

の関数の時間単調減少の条件を利用して，大域的な安定性を持つ離

散時間 CNNの設計方法を明らかにした

第三章では，非線形システムにおける平衡点の求解法について

議論している .連想記憶に用いられる CNNは多くの平衡点をもち，



入力信号によってどの平衡点に到達するかが決定せられる. ロバス

トな連想記憶用 CN);を設計するためには，このような平衡点を調

べることが必要である.ここでは，解曲線追跡法に基づいた複数解

の求解アルゴリズムを提案している.このアルゴリズムは急激な解

曲線の変化を効率よく追跡できるように，エルミー卜予測子と BDF

積分公式に基づいている.また，大規模系に適用できるようにニュ

ートン・ラフソン法の代わりにブラウンの反復法を採用している

このようなアルゴリズを採用することによりロバストな C););の設

計が可能となる.

第四章では，離散時間 CNNによる連想記憶について述べてい

る.連想記憶は人間の脳の基本的な機能であり，ニューラルネット

ワーク応用研究のーっとして古くから盛んに研究されている .本章

では，離散的な CNl¥を用いた外積学習アルゴリズムと中点写像ア

ルゴリズムの 2種類の記憶方式を提案し，その性質を解明している .

まず，前者は，入力ノぞターンに対して，エネルギ一関数の値が最少

になるようにニューロン聞の接続を表す重み行列を設定しようと云

うものであり，これはHebbの理論に基づいている.また，上のよう

な手法で学習されたパターンを連想記憶できる条件について議論し

た.中点写像アルゴリズムは重み行列の設定方法に対して，いま考

えている中心セルからの近傍を定義し，近傍に存在するセルの状態、

をベクトル表示する .これを全てパターンについて実行し，このよ

うにして決定された行列によって写像されるセルのパターンが，元

の中心セルと同一のパターンを持つように重み行列を設定しようと

いうもので，数学的には一般化逆行列の理論に基づいている .この

ような学習方法の特徴は入力された画像が全て連想されると云うこ

とである.本章では，さらに，このことを応用例によって実証した

第五章では，画像処理への応用として，輪郭抽出，雑音除去，

視覚ノぞターンの認識に対する離散的な CNNについて述べている.

多くの結果から処理時間は従来のものと比較して極端に短縮される

ことが分かった.また，不均一離散時間 Cf¥Nによって，一つ画面

中に多数の異なる視覚ノぞターンを同時に認識できることも分かった。

第六章では，不均一離散的な CNNの特徴と今後の問題点につ

いて述べている
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審査結果の要旨

セルラーニュラルネットワーク (C州)に関する研究は1988年にカリフォルニア大

学のしo.Chuaらによって提案され，アメリカ，ヨーロッパを中心に盛んに研
究されている. CNNにはアナログ型と離散的なものがあり，彼の研究はセル聞が

不均一に結合した二相同期信号を利用した離散時間 C~N (DTCNN)についてである

本論文では， DTCNNの安定性対する十分条件を導出し， 2種類の連想メモリーの

設計手法を提案した.一つはHebbの理論に基づし 1た外積学習アルゴリズムを利用

するものであり，他は写像されるセルのパターンが元の中心セルと同ーのパター

ンを持つように重み行列を設定しようという中点写像アルゴリズムをもちいるも

のである.これに関する論文は電子情報通信学会の英文誌，中国，ハワイで開催

された国際会議に報告されている

一般に，ニューラルネットワークは多くの平衡点を持っており，その性質を解

明するためには，演算効率のよい平衡点の求解法が必要である .本論文では予測

子-修正子法を用いた一求解法を提案している.これに関する論文は電子情報通

信学会の英文誌に報告されている

さらに， DTCNNの画像処理への応用として，輪郭抽出，雑音除去，視覚ノぞター

ンの認識用C0INについて述べている

彼の提案したDTCNNはとくに演算処理時間と安定性の点で優れており， VLSIに

よる実現が期待されている

以上のように本研究は， 学会，国際会議でも評価されており， 本論文は博士

(工学〉の学位授与に値するものと判定する .
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Chapter 1 

General Introduction 

1.1 Background 

1.1.1 The neuron 

The human brain is one of the most complicated things that we have studied in detail， 

and in the same time， is poorly understood on the whole. 

The neuron is the basic unit of the brain， it is shown in Fig.1.1. 

synapse 

)--、

W~ 
J 

come from another neuron 

3 
Xj 

¥一一γ___;

soma 

come from another neuron 

1 
X 
J 

-

y 

Figure 1.1: The structure of the neuron 
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The soma is the body of the neuron. Attached to the soma are long， irregularly 

sharped五laments，called dendrites. The dendrites act as connections through which 

all the inputs to the neuron arrかe.Another type of nerve process attached to the soma 

is called an axon. This is electrically active and serves as the output channel of the 

neuron. The axon terminates in a specialized contact called a synapse that couples the 

axon with the dendrites of another cells. 

The dendrites can perform addition on the inputs. The axon is a non-linear device， 

producing a monoもoneincreasing output voltage when the resting potential within 

the soma varies over a certain critical threshold. The contact strength between the 

dendrites and other neuron 's synapse is different from another. 

1.1.2 Development of artificial neural networks 

The year 1943 is often considered as the initial year in the development of arti五cial

neural neもworks[l].McCulloch and Pitts[2] outline the first formal model of an elemen-

tary computing neuron. The model included all necessary logic computing element. 

Although the implementation of this model was not technologically feasible in that era， 

their model laid the groundwork for future developments. 

Donald Hebb[3] first proposed a learning scherne for updating neuron's connections 

that we now refer to as the Hebbian learning rule. He stated that the information 

can be stored in connections， and postulated the learning technique that had a pro-

found impact on future developments in this field. Hebb's learning rule m乱deprimary 

contributions to neural networks theory. 

During the 1950s， the first neuron computers were built and tested[4]. Theyadapted 

connections automatically. During this stage， the neuron-like element called a percep-

tion was invented[ 5]. It was aもrainablemachine capable of learning to classify cert乱ln

patterns by modifying connections to the threshold elements. The idea caught the 

imagination of engineers and scientists. 

Despite the successes and enthusiasm of the early and mid-1960s， the existing learn-

lngもheoremsin that time wereも00weak to support more complex problems. Mean-

while， the artificial intelligence area emerged as a dominant and promising research 

field， which took over， among others， many of the tasks that could not be solved by 

neural networks of that time. the research activity in the neural network field had 

sharply decreased. 

During the period from 1965 to 1984， further pioneering work was accomplished by 



CHAPTER 1. GENERAL INTRODUCTION 10 

乱 handfu1of researchers. The study of 1earning in in networks of thresho1d e1ements 

and of the mathematica1 theory of neural networks was pursued by S.Amari[6，7]. Also 

in Japan， K.Fukushima developed a class of neural network architectures called as 

neocognlもrons[8]. The neocognitron is a model for visual pattern recognition and is 

concerned with biological plausibi1ity. The network emulates the retina1 images and 

processes them using two-dimensiona11ayers of neurons. 

Associative memory research has been pursued by， among others， T. Kohonen[9・11]

and J.A.Anderson[12]. Unsupervised learning networks were developed for feature map-

ping into regular arrays of neurons[10]. S.Grossberg and G.Carpenter have introduced 

a number of neural architectures and theorems and developed the theory of adaptive 

resonance networks[13，14]. 

During the period from 1982 until1986， several seminal publications were published 

that significantly furthered the potential of neural networks. The era of renaissance 

started with J.J .Hopfield[15ヲ16]introducing a recurrent neural network architecture 

for associative memories. His papers formu1ated computationa1 properties of a fully 

connected network of uniもs.

Another revitalization of the field came from the publication in 1986 of two volumes 

on parallel distributed processing， edited by J .M[cClelland and D .Rume1hart[17]. The 

new 1e乱rningru1e and other concepts introduced in this work have removed one of the 

most essentia1 network training barriers that grounded the mainstream efforts of the 

mid-1960s. 

Beginning in 1986-87， many new neural networks research programs were initiated. 

Among of them， the researchs of cellular neural network theorems and applications are 

very activity and developed in surprising speed. 

1.1.3 Cellular neural networks 

Cellular neural network( CNN) is a non1inear dynamica1 analog processing array having 

a 2-， or 3-dimensional grid architecture[18， 19]. There are on1y finit loca1 connections 

from each processing cell to their adj acent elenaentsう sothat it is very suitable for 

the tasks where signal values are placed on a regular 2-D or 3-D geometric grid and 

the direct interactions between the signals are linaiもedwithin a local neighborhood[20]. 

Differing from general neural networks， CNN cells capture the geometric， nonlinear， 

andjor delay-type properties in the interaction weights. Also differing from Hopfield 

network， due to their loca1 connectivity， CNN can be easily realized with VLSI tech-
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nique. Meanwhile， the range of dynamics and the connection complexity are inde-

pendent of the toもalnumber of processing cells， the implementation is reliable and 

robust. 

Since 1988， just in a short period， it has given rise to wide interests in theもheo-

retical researches for various generalizations and their applications in the areas like 

as image processing， pattern recognition， robot vision， motion detection and oth-

ers. T.Roska and L.O.Chua presented a strueture with nonlinear and delay-type 

もemplates[21]，H.Harrer and J.A.Nossek extended the eontinuous model to diserete-time 

arehitecture[22]. At the same time， many other rese乱rchersalso make significant contri-

butions to the CNN paradigm， which have been documented in some proceedings[23ぅ24]

and special issues[25， 26]. 

1.2 Purpose of this study 

In Chapter 2う first，we will show the cell model of the continuous-time CNN， and 

some typical types of 2-D array structures briefly. After introducing a two phases 

synchronous-updating signal into a continuous-time CNN， we obtain a synchronous-

updating CNN， we call it as SCNN. By extracting the v乱luesof state variations Vi and 

output variations Yi at the updating momenもst = kTう k -0，1，2.・・・， we derive a 
discrete-time CNN which topology and output fumction are distinct from the DTCNN 

presented by Harrer and Nossek. With the dynamic route method， the dynamical 

properties of out DTCNN are analyzed. Moreover， the generalized energy functions 

for our SCNN and DTCNN are presented respectively. After then， two convergent 

theorems for our DTCNN are described. Since these convergent theorems are suitable 

for gener乱lizednon-uniform DTCNN， they provide the potential to apply our DTCNN 

more widely， for examples， to multi-types of visual patterns recognition， associative 

memories and others. 

In Chapter 3， we present a modified BDF curve tracing method. The results shows 

this algorithm could be used efficiently to trace those solution curve with some sharp 

turning points. Specially， we want to point out that the Brown method is a kind of 

the Gauss-Seidel algorithm to be used for nonlinear乱1gebraicfunctions. It is known 

that the convergence ratio is second order near to the solution. Furthermore， a number 

of the function evaluations is (N2 + 3N)j2 when the function consists of N functions. 
Observe that that the Newton method takes N2 evaluations of the partial derivatives 
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乱ndN eva1uations of functions. Thus， the Brown method is efficient1y applied to trace 

solution curve， such that the approximate solution is obtained by Hermite po1ynomial. 

The a1gorithm presented here can be usefu1 in the ana1ysis of neura1 networks， e.g. 

during the design of temp1ates for cellu1ar neural networks. 1七canbe乱ppliedto 1arge 

networks provided that the extreme spariもyand the structure of the coefficients are 

exp1oited. The method can be app1ied for some types of neurons with smooth non-

linear output functions or piecewise linear output functions. In genera1， there does not 

seem to be much hope for an e伍cientway to filnd a11 equi1ibrium points in a given 

neura1 network un1ess appropriate guide1ines are fo11owed during the synthesis process. 

In Chapter 4， first， we describe the outer product 1earning approach to set up the 

weights with suitab1e va1ues which is re1ated to the object patterns information， it is 

ca11ed as storing object patterns into a ce11ular associative memory. Meanwhile， some 

analyses about the stationary property of the ce11ular associative memory with outer 

product 1earning ru1e are taken. A condition i:s presented which ensure the stored 

pa七ternsas the stab1e states of a ce11u1ar associative memory. After then， a midd1e-

mapping 1earning a1gorithm for cellu1ar associative memory is presented， which makes 

full use of the properties of七hecellular neural network so that every stored pro七0もype

can be guaranteed as an equilibrium point of our memory. At the s乱metime， it 

has ability of iterative 1earning. This kind of eomputation is typica1 of a learning 

process: once the synaptic matrix has been cornputed from a given set of prototype 

vectors， the addition of one extra item of know1edge does not require that the who1e 

computation is performed again. One just h乱sto carry out one iter乱tion，st乱rtingfrom 

the previous matrix， so that the computational e伍ciencycan be improved. Besides， 

its implementation with circuiもsis more feωible because the weight matrix is not 

symmetric. 

Since the synchronous updating ru1e is used in both of them， their associative speeds 

are very fast compared to the Hopfield associative memory. 

In Chapter 5うfirstうwe乱pplyour DTCNN to the feature extraction and noise remove 

forもheimage processing. Some rea1 image are chosen as our processing object and 

then， input to DTCNN乱sboth input signa1s and initial states. After a few times 

iterative operations， desired resu1ts are obtained. Although the same function can 

a1so be carried by continuous-time CNN， time consuming differentia1 operations are 

taken during the procedure and more iterative operations are required， Contrasting 

it， our DTCNN rea1ized by software simulation can do them on1y with 5% or 10% 
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computing cost， so it is faster and effi.cienter tha，n continuous-time CNN in this case. 

After then， we illustrate the potential of DTCNN for the visual pattern recognition. 

From a prototype composed by over two types of elementsうwecan detect desired visual 

patterns successfully. When there exist obvious differences between these two types 

of element8， it is easily recognized by human vision system. But for some similar 

composed elements， it is said to be very diffi.cult and time consuming for human vision 

system. For our DTCNN， after suitable template is designed， it is easily and quickly 

to pick out our desired patterns from a prototype in both cases. This technique can be 

applied for robot vision. Finally， based on our convergent analysis result in Chapter 2， 

we design space-varying non-uniform DTCNN for multiple visual patterns recognition. 

1n a non-uniform DTCNN， two or more templates are used for the cells lying in differenも

region of 2-D processing array. Two examples are given to show the ability of non-

uniform DTCNN to detect multiple visual patterns from a prototype at the same time， 

which have distinct geometrical charac七er80 th句rcan not be picked out by unique 

template at once. It extented the application region of our DTCNN more over. Since 

the weight matrix A and B contributed by two or more distinct templates are not 

symmetrical matrixes， or， AijヲtAjtand Bij 子~ l~ji generally， the stability analysis of 

non-symmetric continuous-time CNN is still open problem and dose not been solved， 

the similar application by continuous-time CNN has not been reported until now. 
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Chapter 2 

Discrete-time Cellular N eural 

Network 

2.1 Introduction 

In this chapter， 自附，a continuous-time ce11ular neural ne凶twor吋比k仁叩NぜN)presented by 

Chua and Yang[山1]，and the network grid structure are introduced， their b紛icprop-

erties of continuous-time CNN are briefly described here. After then， as our study， a 

synchronous-updating clock signal is introduced into an original continuous-time CNN， 

by sampling the output values at a series of updating moments， we obtain another 

type of discrete-time CNN which circuit topology is different from that by Harrer and 

Nossek[2]. After then， some detail analyses about the dynamical property and stability 

of out DTCNN are performed. The results ShO"T that， if the parameters in the tem-

plates are designed carefully so that the convergent sufficient conditions are met， the 

generalized energy function is monotone decreasing and the stability of DTCNN can 

be guaranteed. 

Cellular neural network( CNN) is a locally connected， nonlinear dynamical analog 

processing array having 2-， or 3-dimensional grid architecture. One processing element， 

called as a cellうwithpiecewise linear output function七emplateis shown on Figure 2.1. 

In general， a11 ce11s are arranged on a 2-D geometrical regular grid( one layer)， but 

this layer can be duplicated to form 3-D multilayer CNN if it is required. Some typical 

2-D regular grids are shown in Figure 2.2. 

For simplicity， in this study， we just consider the case in which a 2-D rectangular 

regular grid with M rows and N columns， as Figure 2.2(a)， is used. In this grid， each 

square represents a CNN cell. The c( i， j) denotes a celllying in ith row and jth column. 

16 
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Figure 2.1: A continuous-time CNN cell 
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Figure 2.2: Some typical 2-D regular grids 
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Every cell just only connects directly with near cellsうwhichconstitute a neighborhood 

Nrぽoundthat cell， and the neighborhood of c( i， j) is denoted by Nr( i， j). The radius 

ofもheneighborhood Nr is denoted by r， the number of the cells in Nr is equal to 

(2r+1)x(2r+1) 

For the cell circuit shown in Figure 2.1うastate equation and an output equation of 

a continuous-time CNN are written as follows: 

DISCRETE-TIME CELLULAR .NEURAL NETWORK CHAPTER2. 

(2.1a) 

(2.1b) 

二一干↓Lいυ叫~附tり3
A む切X c(k，州，1り)ε Nr(υiしω，jρ) 

+乞 B(i，j;k， l)Ukl(t) + 1 
c(k，l)εNr(i，j) 

=;(|Ut仲

c色辿
dt 

Yij (t) 

Vjε{1?2F-~N} Viε{1，2γ ・.，M}，

In order to analyze system characもereasily， we rearrange all cells into one-dimensional 

vector form in the order of rows. Then， the cell is denoted by c( i)， iε{1，え・・・，n}and 

n=λ1/ x N. 

(2.2) 

Corresponding to this description style， we defilne a matrix SεRnxη乱S

S三{S;j: 

In this way， the continuous-time CNN is described by following equations. 

1
i

ハU

一一一一
ィ
J
.
7
4

Q

U

Q

U

 

(2.3a) 

(2.3b) 

-Av(t) + Ay(t) + Bu + 1 

Sαt(v(t)) 

伽
一
の
川
W

C

3

 

where 

-1 ~ Yi三1，i = 1γ ・1n};

with入 ]ι>0
.L"X 

AεRη×η三 {Aij;1三t三仏 1三jざη};

vεRぺuεRぺyε Dn三 {YiεRη:

Aε Rnx
η
三 diag[入・・・入]
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Bε Rnx
η
三 {Bij;1三iS n， 1三j三η}

Here， both A and B are sparse matrixes. Their elements satisfy the following condi-

tions: 

Aij = Aij . Sij (2.3c) 

Bij = Bij . si~í (2.3d) 

It means that， when Sij = 0， Aij and Bij are equal to zero， but in other case， they 

are equal to arbitrary real number decided by the particular purpose of CNN. 

Iε Rn三 {11ん...In} 

sαt(v(t)) = [5αt(V1(t)) 5at(v2(t)) ... 5αt(Vn(t)) ]T 

;

1
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cu 

叫>1 

-1 S Vi S 1 
叫<-1 

(2.3e) 

When the next two conditions are met， 

IVi(O) 1三1，IUil S 1 (2.4) 

the range of dynamics is bounded by a single number M which can be calculated in 

terms of the cloning templates: 

M = max{lvil} = max{l +九111+九乞 (IAij1 + IBij I)} (2.5) 
c(j)εNr(i) 

Moreover， if the following condition is satisfied， 

Aii>土 (2.6) 

for symmetric continuous-time CNN， its stability can be proved. Then，もheconver-

gent results can be derived as follows: 

民 1Vi(t) 1> 1 

iEqiut(t)=土l

(2.7) 

(2.8) 
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2.2 Discrete-time cellular n4Bural network 

In this section， we build up a model for our discrete-time CNN. First， a state updating 

signal is introduced into a cellular neural network， so that a synchronous-updating 

cellular neural 附 work(SCNN)is obtained. which means that， at the kth updating 

time t == kT， the states of all cells are alもeredsimultaneously. Here， T describes the 

updating period in our SCNN， According to this rule， a cell of SCNN is shown as 

Figure 2.3(a). 

Y i (t) 

Buu i 

己~)

Biju j 

.1 

~ """1 YCj(t~ (b) Piecewise-linear output function 
Y I Yj(k) 

kT <k+l)T 

(a) A cell c(i) of SCNN (c) Clock signal for SCNN 

Figure 2.3: A synchronous-updating CNN cell 

φand φin Figure 2.3(a) are a clock signal and :its inverse， they control two updating 

switchs respectively φis shown as Figure 2.3(b). Cx and Cy are two sample-hold 

capacitors. 

DuringゆTlphase of the kth clock periodうtε (kT，kT+Tl]，k=O，1，2，・・1φ=1， 

φ=  0， the terminal voltage Vi(t) in Cx is kept as its initial value Vi(t) = vi(k)， k = kT 

The voltage-controlled voltage source Yi(t) == sat(vi(t)) is also a constant during this 

phase， denoted by Yi(k). The capacitor Cy is charged by the voltage source Yi(k) 

through the resistance Ry. Sinceもhevalue of RJ~ is a very small and in the order of 

the internal resistance of the voltage source Yi(t)， this charge is finished quickly in very 

short time， we can write YcJt) = Yi(k) after the transient response， about 2.3RyCいis
completed. The voltage VRi(t) is determined by the resistance Rx， the current source 
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Ii and the voltage-controlled current sources AijYcj (t) and Bijuj， jε Nr(i). The 

equivalent circuit is illustrated in Figure 2.4， it is a one-order nonlinear dynamic circuit. 

Figure 2.4: The equivalent circuit of SCNN cell duringゆ'Tl

A state equation and an output equation of this circuit model are 
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ν dt 
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1.1  :::.. ，.!!: 

仇ω州4パぷ刈(t例tの) 二 一石ト瓦句叫州州tパぷ刈(t例tの)H+FE?子lプ(Aん川i
j ヲ手t:i

Then， we considerもheゆT2phase of the kth clock period， tε( kT + T1， (k + l)T] 
and φ=0φ= 1 in Figure 2.3. The piecewise linear voltage-controlled voltage source 

Yi(t) is varying with the voltage Vi(t)， but since φ=  0， it has no feedback effectionも0

Vi(t) during this phase. The one-order dynamic circuit is consists of Cx， Rx， Ii乱n

the voltage-controlled current sources AんtりijY釣Cりj(t例tの)a 凶 B広ijρ川刈i刈刈川U的Lりj，here， YCj (t) is the terminal 

voltage in Cνof the jth cell. Since the terminal voltage YCi (t) =ぉ(k)?t=1?2?...?n

is held as a constant here， this dynamic circuit is equivalent to a linear RC dynamic 

circuit， the initial value of the terminal voltage in Cx is determined by Vi(t) in previous 

clock updating moment t = kT， i.e.，的(k).Obviously， after 2.3RxCx， the transient re-

sponse is settled to zero， the circuit must convergenももoiもssteady state. The equivalent 

circuit is shown in Figure 2.5. 

Corresponding to this circuit model， we can derive a state equation and an outpuも

equation as follows: 
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VRi (t) V i (t) -
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Figure 2.5: The equivalent circuit of SCNN cell duringゆ'T2

In contrast to continuous-time CNNs， Yj(k) in the state equation (2.10a) is a sampled 

state of output variant at the kth updating time t = kT and is held in the capacitor 

Cy. The feedback strength '2:/]=1 AijYj(k) from the neighbor cells to a cell c(i) remains 

a constant value for tε(kT， (k + l)T]， but the variants Vi(t) and Yi(t) in the equations 

are varying continuously with time t. 

The equations (9) and (10) describe the state a，nd output equations of SCNN in OTl 

andゆT2phases respectively. Combining them together， we get a set of equations to 

describe SCNN in a whole clock period. 

(2.11a) 

(2.11b) 

When tε(kT， kT +TI] 

かCi(t) 一S削乱剖tい
一土(卜一土句川似ωtパぷ(t)十£むAijYCi(t)+土BijUj十Ii]
Att Rzj=113cj  j=1 

j手t

c坐必
y dt 

YCi (t) 

(2.11c) 

When tε( kT + T1， (k + l)T] 

古川(t)+ L Aij Yj(k) + L Bij Uj + Ii ハ dVi(t) 
'-'X dt 

(2.11d) 

Viε{1，2γ ・.，n} 

sat(Vi(t)) Yi(t) 

k = 0，1，2，' 

In order to derive a DTCNN， extracting the state variable Vi and the output variable 

Yi at a series of updating moments t = kT， k = 0，1，2.・." and assume the updating 
interval is long enough， i.e. T ~ 2.3RxCx，もhen，after the transient response has 
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decayed to zero， dVi( t) / dt = 0 is kept at every updating moment. In this case， we can 

o btain the followi時 discrete-time equations from the equation (11). 

(2.12a) 玄AijYj(k) + L Bij Uj + Ii 

sat(vi(k + 1)) 

士山
(2.12b) 

Viε{1，2γ ・.，n} 

Yi(k + 1) 

k = 0，1，2，. 

They describe the state and the output of our discrete-time CNN. Here， we derive 

a discrete-もimeCNN which topology is distinct from the DTCNN presented by Harrer 

and Nossek， but has more tighter corresponding relation with continuous-time CNN. 

(2.13a) 

(2.13b) 

Moreover， we can wriもethem as vector equations as follows. 

Ay(k) + Bu + 1 

sat(v(k+1)) 

土v(k+1)
y(k + 1) 

A， 1~ε Rn x n 

DTCNN 

u， 1εRぺ

of our 

v， y， 

Dynamical range 

where k = 0，1，2γ・，

2.3 

In order to implement physical DTCNNヲweneed to investigate its dynamic range. In 

an continuous-time CNN) the topology of the network is unvaried， its dynamic range 

has been proved for the initial state IVi(O)1 < 1. But in our network， the topology 

is time-variant， the initial value of Vi in each updating period is obtained from the 

steady-state value of the last updating period， so that its initial value may be changed 

within its dynamical range. To get the dynamic range of synchronous-updating CNN， 

let us consider the equivalent circuit shown as Figure 2.6. 

In Figure 2.6， Ii = Ej=l Aij Yj( k) +乞j=lBij Uj・ WhileinゆT2of the kth clock 
period，φ=  0，φ=  1， Vi二 VRi，assuming T2 ~ 2.3RxCx) when t = (k + l)T， the circuit 

converges to iもssteady state. Analyzing the equivalent circuit in steady state， we can 

get the maximum value of Vi (t) in steady stateωfollows. 

Rx (Ii + Ii ) 

Rx [ L Aij Yj (k) + L Bij Uj + Ii 

、、‘，，ノ
4
'
u
 

〆
'E
目、
、
-a

，. 
U
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here， we define 

U i 

Figure 2.6: The equivalent cell circuit of SCNN 

< 

< 

Rx[L:IAijIIYj(k)1 +玄1Bij 1 1 Uj 1 + 1 Ii 1 ] 

Rx [2: 1 Aij・1+乞1Bij 1 1 Uj 1 + 1 Ii 1 ] 

υmω= Rx { max[L: 1 Aij 1 +乞1Bij 11 Uj 1 ] + 1川}

Next， in CTTl phase of the next clock period， tε( (k + 1 )T， (k + l)T + TI]， 
1，φ=  0， Vi(t) is held as vi(k + 1)， but from (2.11b)， we have 

VRi(t) = Rx [乞AijYj(t)+ L: Bijuj + Ii 

Obviously， 

りん(t)三Vmax tε( (k + l)T， (k + l)T + T1] 

24 

(2.14) 

(2.15) 

φ=  

The value of the voltage source Yi(t) depends on Vi(t)， so that during this phase it 

is also a constant. We denote it as Yi(k + 1). By charging to Cy， it is stored in Cy. In 

the followingゆT2phase， tε( (k + l)T + T1， (k -+-2)T]， 争=0 andる=1 againぅthe

dynamical character of this cell is described as 

Vi( t) 
G7=τWHEAtj仙

where tε((k + l)T + T1， (k + 2)T]. 

In order to analyze the transient response， we solve this equation， the initial voltage 

in Cx is Vi( k + 1) obtained previously， thus we get 
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 tー (k+l)T-Tl_ 1 r::'" ， _ ::... _ _， r 
叫州仙(伏k糾い山山+刊刊山1り巾)μe一 RxG:r;白:r; + 五瓦町;戸瓦5ご;[E?A山 +1咋 1玖鳥jパ川.ιu

tト一(μk+l吋)T一T町1 1 η 
vi(k+1)e RxGx +~[乞 Aijyj(k + 1) +乞BijUj + Ii] RxCx [1-e . RxCx ] 

Cz j=1 

的(k+ 1) e - Rx Gx + Rx [玄AijYj(k + 1) +主BijUj +山 1-e(ktJ71-t)tー (k+l)T-TJ

j=l j=l 

where tε( (k + l)T + T1， (k + 2)T] 

Then， we obtain the maximum value of Vi(t) during wholeゆT2phase. 

tー (k+l)T一五 九

IVi(t)I ::; IVi((k+1)T)le- 'RxCx -A-+九|乞AijYj(k+1)
j=l 
T
-
z
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In this way，もhebiggest dynamical range of our DTCNN is illustrated as 

I Vi(t) I三IVmωIfor all t 

and 

Vmω = Rx { I Ii I + max[L: I Aij I +乞IBij I I Uj I ] } (2.16) 

Here， the maximum value of Vi(t) is less than that of the continuous-time CNN， in 

addition of that， the required initial condition I Vi(O) I三1is also eliminated 

2.4 DTCNN with binary ou.tput 

From previous analysis， we proved the dynamical range of state variables in SCNN. 

Since a DTCNN is derived from a SCNN by extractingもhestates and outputs at a 

series of discrete time t = 0， T， 2T，・." in general， the values of the state variables in 
DTCNN is a set of arbitrary numbers which amplitudes are less than Ivmaxl. Then， the 

output Yi(k + 1) in DTCNN is a variable from -1 to +1， its value is determined by the 

state variable vi(k + 1) with (2.12b). But for SOllle applications， the binary output is 

required. In this section， we give two theorems to describe the sufficient condition and 

necessary condition respectively to guarantee a set of binary outputs in our DTCNN. 
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Theorem 2.1 1f the following condition is satisfied， the output of DTCNN must be 

equα1 to十1or -1. 

CHAPTER2. 

(2.17) L
 
+
 
u
 
B
 

η

ヤ山
一戸
+
 

A
 

n

乞
出
+
 

1
一九
>一A
 

Proof: From (2.12a)， we have 

土州+1)==主A川
When the output amplitude IYi(k + 1)1 is equal to 1， the amplitude of state variable 
must be greater than 1 or equal to 1， IVi(k + 1)1ど1.so that we have 

(2.18) lbd3(k)+土BijUj + 1il三土

I L Aij Yj(k) +乞Bt3U1+L|

Since 

さ|乞AijYj(k)I-II:Bijujl-11i

(2.19) 

三IAiiYi(k)卜乞IAijYj(k)1一|乞BijUjl-11il

jヲI:i

どIAiiYi(k)卜乞|Atj|-lZBtjUj|-lL| 

j戸

From (2.18) and (2.19) we can五ndthat when the equation (2.17) is met， IVi(k+1)1ど

1， then， IYi(k + 1)1 == 1， the output is a binary value 

口

In the next theorem， we give the necessary condition for a binary output in DTCNN. 

Theorem 2.2 1fthe outputYi(k+1) of DTCNN isαbinary vαlue， the followi旬 relαtion

must be satisfied. 

(2.20) L
 

U
 
B
 

n
て
ム
-F

A
 

n

乞一間同

1
一九
>一A
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When the output Yi(k + 1) of DTCNN is a binary value， we must have Proof: 

(2.21 ) |主AijYj(k)+土Bijい Iil三土

IVi(k + 1)1三1so that 

|乞AijYj(k)+玄BijUj+L

Since 

(2.22) L. +
 
u
 
B
 

n

乞
州+
 

A
 

n

ヤム一信
+
 

A
 
<一

Considering the equation (2.21)， it can be found when 1いV叫j
(ρ2.2却刈O的)mus剖tbe s 乱剖tisfi五e吋d.

口

From above two theorems， it is known when the templates for DTCNN are designed 

to meet the equation (2.17)， DTCNN can be used to realize the mapping from RnもO

Bn so that the equation (2.13) can be written as 

(2.23a) 

(2.23b) 

Ay(k)+Bu+I 

sat(v(k + 1)) 

一十(k+ 1) 
y(k + 1) 

A， BεRnxn. yεBぺu， 1εRぺwhere k == 0，1，2γ ・.， 

ofDTCNN 

v， 

analysis Stability 2.5 

In other chapters， we will give the applications of our DTCNN to image processingう

include associative memory and visual pattern recognition. In these applications，五rst，

a probe image with multiple gray level is inputted into DTCNN as its initial state at 

t == O. Then， by some times of updating， final stable state is obtained， which means 

that the su bsequent set of state are the same totally， no state change is risen by a clock 

signal. This final stable state is corresponding to an equilibrium point distributed in 

DTCNN's dynamical space. The output in the final stable state is an object image. 

In general， a pixel in the object image is a multiple gray value， buもifthe matrix A 
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and the matrix B are designed to meet the sufficient condition (2.17)， the pixel in the 

object image is only binary value + 1 and -1. 

It is known that one of the mosもeffectivetechnique for analyzing the convergence 

proper七iesof dynamic nonlinear circuits is Lyapunov's method. This method is also 

used by N.Fruehauf， L.O.Chua and E.Lueder for convergence analysis of reciprocal 

DTCNN with continuous nonlinearities[ 4]， but their result is just suitable for reciprocal 

DTCNN， not for general case. 

In this sectionう五rst，Lyapunov energy functions are defined to SCNN and DTCNN 

respectively. Then， the convergence condition is analyzed for SCNN. Since our DTCNN 

is obtained by extracting a series of updating moments from SCNN， all convergence 

analyzing results are easily extended to DTCNN. Our basic object is concentrated on 

general case， i.e.， nonuniform and nonreciprocal DTCNN， which covers a reciprocal 

DTCNN's convergence condition by N.Fruehauf， L.O.Chua and E.Lueder just as a 

special case. 

Firstうwedefine a generalized energy function for SCNN as follows: 

-izzAjUt(t)Uj(k)一EEPB玖ij川j

+ 5主主占t;E?Ud山山?穴灼削(作例tり)一Z L Ut (t) 
where tε(kT， (k+1)T]， k=0，1，2，' 

E(t) = 

(2.24) 

Yj(k) in the equation (2.24) is a constant， Yi(t) is a variable duringゆT2'but inゆTl

phase，抗(t)is kept as a constant so that E(t) is invariant in this ph乱se.At the updating 

moments of t = (k + l)T， k = 0，1，2γ ・"the value ofYj(k+l) is substituted into Yj(k)ぅ
so that E(t) may jump at those moments 

Meanwhile， a gener乱lizedenergy function for our DTCNN is defined as follows: 

n n n η 

E(k+1)= - L2二AijYi(k + 1) Yj(k) -乞乞BijYi(k + 1) Uj 
i=1 j=1 i=1 j=1 

1
i
 +
 

'
k
 uu 

rれ

η

ヤ
μ
M

1
Eよ+
 

'
k
 

q
L
・tuu 

n

乞同
l
一丸+
 

(2.25) 

Since the energy function denoted in (2.24) is consists of four sums of finite items， 

o bviously， iもisbounded，乱ndthen， we will prove that if the convergent conditions are 

met， this energy function is a uncontinuous monotone decreasing function， so that the 

differential of E(t) to time T is equal to zero when T is tending toward infinite 



CHAPTER2. DISCRETE-TIME CELLULAR lVEURAL NETWORK 29 

1~ __ dE( t) ハ
ー…一-

t→ゐ dt
Differing from the continuous-time CNN， here， the E(t) is an unco凶 nuousmonotone 

decreasing function so that this equation has two meaningsう五凶， iもdenotesthat E ( t) is 

kept as a constant d uringゆTlphase， but it is monotonely decreasing withinゆT2phase. 

Second， around an updating instantaneous， the value of E(t) may be suddenly changed， 

but its monotone decreasing property is still remained， so that七heinstantaneous value 

of E(t) under a updating must less than or equal to the previous value before this 

updating. This situation is illustrated in Figure 2.7. During every period， E( t) is 

co凶 nuousdecreasing， but at some updating mornents， for examples， at t = (k -l)T 
and t = (k + l)T， it is reduced uncontinuously 

(2.26) 

E(。

一--:Tt-

.. 一一一一一一一一 T̂-一ーー一一一一'1 ・

(k・l)T kT (k+l)T 

Figure 2.7: Uncontinωus monotone decreasing E ( t) curve 

Aもthesame time， from (2.24)， we can find 

E
一d

J
U

一

dYi(t) ~ ~ D n. dYi(t) I 1 ~ n. f4-¥ dYi(t) ~ T dYi(t) 
一吾川(

(2.27) 

where tε(kT， (k+l)T] 
so that if the convergence conditions are met， the differe凶 alof Yi(t) to time T is 

also equal to zero when T is tending toward infinite. 
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dYi(t) 
m 一一=0 (2.28) 
t→∞ dt 

It means not only d uring every phasesゆT2in early stage， after the transient response， 

the stable state and output can be obtained， but also after some times of updating， 

the state and output are always stabilized in whole updating period. 

Next， we provide the monotone decreasing conditions for DTCNN in two theorems. 

In the first theorem， a sufficient monotone decreasing condition of E( t) is proved for 

general SCNN. Then， it is extended to DTCNN in a corollary. Another sufficient 

monotone decreasing condition for E(t) is proved on the worsも-casein the second 

theorem. This condition is stricter than the condition in the first theorem， but it is 

convenient to be used. 

For analyzing the transient variance around the kth updating moment，五rst，we 

introduce a de五nition

Definition 2.1 Let εεR，ε>0αndεis small enough. To describe the time round 

the k th moment，ωe define 

t = kT-= kT--ε 

t = kT+ = kT+ε 

Similarly， for the energy function E( t)αnd the output function Yi (t)αt those mo-

ments，ωe define them as follows respectively 

E-(k) = E(t)ltニkT一 E+(k)= E(t)1同 T+

y;(k) = Yi(t)1吋 T一 yt(k)= Yi(t)1同 T+

N ext， we give a theorem abou t monotone decreasing property of the energy function 

of our SCNN with reciprocal or nonreciprocal weight matrix. 

Theorem 2.3 The genenαlized energy function of αsynchronous-updating CNN is 

monotone decreasingザtherelations (2.29)αnd (2.30)αre sαtisfied 

(1)ωen yp(k) = -1αnd yp(k + 1) = 1， then 

App三-L Aip Y't(k + 1) 
i:pp 

(2.29) 
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(2)叫 enYp(k) = 1αnd Yp(k + 1) = -1， then 

App三2::Aip Yt(k + 1) 
t手下

(2.30) 

Vpε{1，2γ ・" n} 
1f'三))inαbove equαtionsαre chαnged to ">ぺ theenergy functioηis strict monotone 
decreαsing， so that oscillation with limited cycle length does not exist in our DTCNN. 

Proof: Differing from the proof in original continuous CNNs， our proof is divided 

into two steps，自凶， it must be proved that E( t) is monotone decreasing within a 

updating periodヲi.e.tε(kT， (k + l)T] However， because of φ= 0 inゆTl'Vi(t) and 

Yi(t) = f[ Vi(t)] is a constant， E(t) is also retainedωa fixed value， in fact， it just require 
to prove E (t) monotone decreasing inゆTlphase. Second， at the moment oft = (k+1)T， 
the network is updated by the clock signal， it substitutes Yj(k + 1) instead of Yj(k) 

in energy function， we must prove that the value of E(t) will be reduced or remained 

after undergoing one time of updating. It means that the monotone decreasing of E(t) 

is kept throughout a series of updating periods until the network converges to its final 

stable points. 

(1). First， duringゆT2'the energy function can be written as: 

E(t) = -2.二乞AtjUt(t)uμ (2.31 ) 

where 

的)=本町(t)-ZEBUUt(t)Uj一吉川(t)
Then， the differentiation of E( t) with respect to time t is derived from above equa-
tions. 

dE(t) ηη dYi(t) dVi(t) _. (1-¥ I 1 ~ dYi(t) dVi(t) 
一=玄ZA-Lー・一-Uj(k)+-Z一一一:1~ V / Yi (t) 

t=1j=1t3duz(t)dt RzにrdVi(t) dt 
dYi(t) dVi(t) ι dYi(t) dVi(t) 

-乞乞B 一一・一一川一乞I一一一一ー
にlj=1 13dut(t)dt 白 tdVi(t) dt 

~ dYi(t) dVi(t) r~ A _ (1-¥ 1 
-2::一一 UJV~~V) [~Aij Yj(k) -~x Yi(t) +丈島jUj + 1i] f=r dVi (t) dt lf:i 
Vi(t)η 1  

-571FIAtjUj(k)-f(t)+pjMl 

IVil<1 
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Accordi時 tothe cell circuit equation (2.10a)， it can be derived as follows: 

d犯E(t例tの)ιd伽v叫j
一一=一〉工=Cx [ト一一→]2::; 0 (2.3幻2)dt 乞 x l d白t 一

|町1<1

This conclusion is the same as in the continuous-time CNN[l]， but the required 

constraint condition of Aij = A(ぐ?と;m，η)is elirninated here， so that the conclusion 

(2.32) is s凶 ableもoboth reciprocal and non附 iprocalsynchronous-updating CNN 

(2). As mentioned above， at the updating mornent of t = (k + l)T， Yj(k) in (2.13) 

is閃placedby YCj (k + 1) so that the energy function may be not continuous at that 

point， astep change ofthe value of E(t) may exist at t = (k+1)T. It is obvious that if 

the relation E+ ( (k + 1 )T) 三E-(( k + 1 )T) is satisfied， then， the monotone de伐cr閃eru鉛叩弓司i凶n

OぱfE(収例tの)through any two sequent updating periods can be guaranteed. In order to do 

so， we compare Yj (k + 1) with Yj (k) on three cases 

i). Vpε{1，2γ ・.，n} 
Yp(k + 1) = Yp(k) 

then 

E+(k + 1) = E--(k + 1) 

ii) ヨpε {1，2，・・・，n}
Yp(k) = -1， but Yp(k + 1) = 1 

It means the voltage on the terminal of the capacitor Cy is inverted from -1 

to +1 inゆTlphase after (k + 1 )th clock signal. We can write E-(k + 1) and 

E+ (k + 1) respectively as follows: 

E-(k + 1) =ト乞乞AijYi(t) Yμ 

where E(t) is the same as that in (2.31). 

Since Yi (t) is variable continuously at t = (k + 1 )T， based on the circui t character 
analyzed previously， it is known that ifεis chosen small enough， Yt (k + 1) = 
Yi(k + 1) and E+(k + 1) = E-(k + 1). Then， we get 

E+(k + 1) 

一一孟二~
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ート乞乞AijYi(t) yj(k + 1) + E(t) llt=(糾 l)T+
i=l j=l 

一一{[乞LAij Yi(t) Yj(k) + 2玄AipYi(t) Yμ+ 1)] + E(t) }It=(州 )T+
i=l j=l i=l 

= E一(k+1)-2乞AipYi( t) y:ρ+ 1)lt=(k+1) (2.34) 

As it is assumed 

Yp(k+ 1) = 1 

we derive 

E+ (k + 1) = E-(k + 1) -2乞AipYi(t)lt=(糾 l)T+ (2.35) 

According to (2.29) and Yt(k + 1) = Yp(k + 1) = 1ぅwehave 

and 

AppYt(k + 1)三一乞Atp-ut(t)|t=(糾 l)T+

t手?

L AipYi(t)lt=(糾加と 0

S山stit凶 ngit into (2.35)， it can be found that， in case of (2.29) being met， we 

have E+(k + 1)三E-(k+1)

If the strict monotone decre乱singcondition is satisfied， we have 

and 

AppYt(k + 1) > -L Ai10 . Yi(t)lt=(糾加
tヲとp

乞AiPYi(t)lt=(川 )T+> 0 

then， E+(k + 1) < E一(k+ 1). 

一一一二 一」… ー . 
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iii). Next， it is assumed tl川

Yp(k) == 1， but Yp(k + 1) == -1 

Similarly， we can write the energy function at the moment of t == (k + 1 )T+乱S

E+(k + 1) == E一(k+ 1) + 2:2:: Aip Yi(t)1に伏+加 (2.36) 

If the following relation is met， 

2 L Api Yi(t)lt=(川 )T+三0

then， we can get E+(k + 1)三E-(k+1)

Based on (2.30) and Yt(k + 1) == Yp(k + 1) == -1， we have 

and 

Appy;(k + 1)三一乞AipYi(t)lt=(た+l)T+
t守主p

L Aip Yi(t)lt=(糾 l)T+:S; 0 

Substituting it into (2.36)， it is proved that if the condition (2.30) is satisfied， we 

have 

E+(k + 1)三E--(k+ 1) 

Similarly， when the strict monotone decreasing condition is met， we have E+(k + 

1)く E-(k+1).

口

Since our discrete-time CNN described with (2.12) is derived with just extracting 

the values of SCNN at a series of discre七etime， t == kT， k == 0，1，2γ ・" it is believable 

that all properties of SCNN are kept in our DTCNNうtheconclusion of Theorem 2.3 is 

also suitable to our DTCNN. A corollary can be easily derived. 

Corollary 2.1 11 the conditions (2.29)αnd (2.30)αre sαtisfied， the energy lunction 01 

discrete-time CNN defined by (2.25) is also monotone decreasing 
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Theorem 2.3 gives a proof for monotone decreasing property of an energy function 

of SCNN. In the next theorem， we want to give another convergent criterion for nonre-

ciprocal SCNNs and DTCNNs， which is used easily. In order to do so， first， we present 

a definition about diagonal-column eigendolninant. 

Definition 2.2 The weight mαtrix A is said as diagonal-column eigendominant if the 

i th diagonal element Aii is g1噌ωterthan or equal to the sum of absolute vαlues of other 

elements in the i th column. i. e.， 

Aii三乞 IAji I 

j手i

Viε{1，2γ ・.，n} 

(2.37) 

For strict diαgonal-column eigendominant， the sign "?::" inαbove equαtion is replaced 

by "> ". 

For a SCNN， the ith diagonal element Aii in its weight matrix A is corresponding 

to the self-feedback coefficient of a cell c( i)， but other elements in the ith column are 

corresponding toもhefeedback coefficients from near cells within the neighbor to cell 

c( i). Therefore， the physical meaning of the diagonal-column eigendominant is that a 

self-feedback of cell c( i) is stronger than feedbacks from other near cells. 

Theorem 2.4 A SCNN generlαlized energy function definedαs (2.24) is monotone de-

creasing if it is diαgonal-column eigendominant. Thus， this SCNN must be convergent. 

Proof: Within a period tε(kT，(k + l)T)， k = 0，1，2γ ・" the proof is the same as 

that in Theorem 1. Here， we just needもoprovide a proof of the case Yt ( (k + 1 )T) -:j: 

yi((k + l)T) 

i ). Let us assume 

yp(k) = -1， Yp(k + 1) = +1 

then， the equation (2.35) is written again as follows: 

E+(k + 1) = E-(k + 1) -2乞AipYi(t)lt=(山 )T+ (2.35) 



CHAPTER 2. DISCRETE-TIME CELLULAR NEURAL NETWORK 36 

On the base of (2.37)， we can obtain 

thus 

App 

>乞IAip 1=乞IAip Yi(t) IIt=(k+l)T+ 
i手p i守t:.p

~ I乞AipYi(t) IIt=(た+l)T+三一乞AipYi ( t) I t=(た+l)T+

t手予
i=l 
tヲ匂

乞AipYi ( t) I t=(た+l)T+三O

Substituting (2.38) into (2.35)， we have 

E+(k + 1) ::; E--(k + 1) 

ii). Next， we assume 

Yp(k) = +1， but Yp(k + 1) = -1 

then， the equation (2.36) is rewritten as follows: 

(2.38) 

E+(k + 1) = E-(k + 1) + 2:LA州 (t)lt=(糾 l)T+ (2.36) 
-.i=l 

According to (2.37)， we have 

App 三 IL Aip Yi( t) It=(川 )T+
i-:pp 

>乞AipYi ( t ) I t=(糾 l)T+

t手?

Since Yp( t) I叫ん+l)T+= -1， then 

L Aip Yp(t)lt=(州 l)T+三0

一一一一一一一一二|

(2.39) 
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Substituting (2.39) into (2.36)， we get 

E+(k + 1)三E--(k+ 1) 

In the case of the strict diagonal-column eigendominar凡 therelation E+ (k + 1) < 

E一(k+ 1) is available 

口

The theorem has been proved. Similarly with Corollary 2.1， here， we can derive 

following corollary. 

Corollary 2.2 1f a nonreciprocαl discrete-time CNN satisfies the condition of the diagonal-

column eigendominant definedαs (2.3η， its eneゅyfunction is monotone decreαszng 
αnd the network is convergent. 

Theorem 2.4 is suitable to general case including nonreciprocal and reciprocal SCNN. 

Specially， if the network is reciprocal， i.e.うAij= Aji' we can obtain Corollary 2.3 as 
follows: 

Corollary 2.3 The generalized energy function O'f a SCNN with reciprocal weight co・

efficients is monotone decreasing if the next relation is sαtisfied. 

んど乞 IAij I 

jヲとt

Viε{1，2γ ・" n} 

(2.40) 

In this c乱se，similar with the column-diagonal eigendominant， the condition (2.40) 

can be also called as row-diagonal eigendominant. It means that within a weight matrix 

A， the ith diagonal element Aii is greater than or equal to the sum of absolute values 

of other elements in the ith row. In fact， the condition (2.40) is similar wi七hthat 

presented by N.Fruehauf， L.O.Ch凶 andE.Lueder in [4]. Here， we can find that this 

condition is a special result of Theorem 2.4 for the reciprocal SCNN and DTCNN just 

only. 

一一一一一 一一 7r 
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2.6 Conclusion 

Inもhischapter，五rst，we showed the cell model of the continuous-time CNN， and 

some typical types of 2-D array structures briefiy. After introducing a two phases 

synchronous-updating signal into a continuous-tirne CNN， we obtained a synchronous-

updating CNN， we called it乱sSCNN. By sampling the values of state variations Vi 

and output variations Yi at the updating moments t = kT， k = 0，1，2.・・.， we derived a 

discrete-time CNN which topology and output function are disもinctfrom the DTCNN 

presented by Harrer and Nossek. In general， the output ofもhisDTCNN is a variable 

value during (-1， +1)， so that it can be used to image processing in which the output 

is a multiple grey level image. in order to guarantee the output as a binary value to 

meet some special applications， a sufficient condition and a necessary condition are 

presented here， which provide the design requirement for the matrix A and the matrix 

B. Moreover， in order to analyze convergence condition of this DTCNN， the general-

ized energy functions for our SCNN and DTCNN are defined respectively. Here， we 

don't directly compare the value of the energy function of DTCNN at two sequent of 

updating moments， which method is used by N.Fruehauf， L.O.Chua and E.Lueder [4] 

for reciprocal DTCNN with the same output function. We analyze the energy function 

of SCNN during a clock period and around a updating moment， because the energy 

function is not continuous at those moments， which impact must be considered care-

fully. Two theorems about the convergence condition of nonreciprocal and nonuniform 

SCNN are described first. Meanwhile， since the energy function of DTCNN is sampled 

and discreted from that of SCNN， two converge:nce conditions are also available to 

nonreciprocal and nonuniform DTCNN. The result covers the reciprocal DTCNN as a 

special case， and provide the potential to apply our DTCNN more widely， for examples， 

associative memories， multiple visual pattern recognitions and others. 

ム ー 一 _.-
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Chapter 3 

A l¥征odifiedTracing Curve 
Algorithm for CNN 

3.1 Introduction 

Owing to the piecewise linear character of the non-linearities， cellular neural networks 

depend crucially their nonlinear dynamics. Proper operation often requires the exis-

tence of multiple equilibrium points or DC operaもingpoints. Therefore， it is imporもant

to have an e伍cientanalysis method for obtaining a global picture of the dynamic be-

havior， the equilibrium pattern and the basins of attraction in a given network. It is a 

problem to find equilibrium points in CNN described by the equation (2.3)， it amounts 

to solving a set of piecewise linear equations 

-Av(t) + Asat(v(t)) + 1J>u + 1 = 0 (3.1 ) 

The Newton-Raphson iteration method is a general tool to be used for nonlinear 

algebraic equations， but Newton method converges only in those cases where an ini-

tial guess is a pretty exact approximation to the actual soluもion.In order to widen 

convergence region of iteration methods， the continuation method is applied to solve 

homotopyequation. This method is designed to solve a system of n nonlinear algebraic 

equations with n + 1 variables. 

F(x) = 0， F: D c Rn+l→ R， xε Rn+l (3.2) 

Some algorithm[l -4] have been proposed to solve equation (3.2). The predictor-

cor陀ctortracing curve algorithm in Ref. [1] may be one of the most effective algorithms 

between them， where the implicit backward-differentiation formula was used， so called 

40 
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the BDF algorithm. In this section，五rst，we present an modi五edBDF algorithm. Its 

main feature is bellow: 

1. At the jth step of curve tracing algorithm， a guess value xP(Sj) is predicted， where 

もhekth order Hermiもepolynomial[5] is used whose coefficients are determined 

by (k + 1) /2 known functional values and their differen七iatio瓜 TheHermitor 
formula is used to extrapolate and prod uce the predictor xP ( S j ). 

2. After七hexP( Sj) is obtained， the Brown iteration method[8] is used to solve aug-

mented equations. With this method， the total numbers of subfunction evalu-

ations are only half of that in classical Newton-Raphson method， so that the 

evaluation times of nonlinear functions are reduced efficiently. 

3. We could get the curvature and the norm after xP(Sj) is obtained. Then the next 

step size could be determined based on the norm. At the neighborhood of the 

sharp turning points on the solution curve， the step could be reduced in time so 

that some iterations are avoided which may result in failure. At the smooth part 

of the solution curve， we can get more large step size. In this way， our algorithm 

get more better stability and efficiency. 

3.2 Predictor algorithm 

At first， we introduce parameter S and describe variables x in equation (3.2) as function 

Xi(S)， i = 1，乞...， n + 1. If Xi(S) is continuously dぼere凶 able，we can get 

F(x) = 0 

(ds? = (dXl? + (dX2? +・・・+(dXn+l)2 

w here S is an arc-lengもhof the solution curve when it stretches from a starting point 

along a direction. It could be described as: 

G(x) = 0， G: D c Rn+l→ R71+l?xε Rn+l (3.3) 

where S is an implicit parameter. We can trace the solution curve from S = 0 
along the positive direction and get half of the s:olution curve. Another half of the 

solution curve can be obtained when it be traced along negative direction. Of course， 
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if it is a close curveヲwecan trace the total curve along either position and direction. 

Everyもracingstep consists of two stages which are called as predictor and corrector 

respecもively.

With the algorithm suggested in Ref. [1]， when the curve is traced from S == Sjー1

to S == S j， the kth order Lagrange polynomial is used to predict an initial point for 

the corrector iteration. Obviously， the predictor is given more precisely， the iteration 

in the corrector step converge quickly. Thus， we propose a technique for finding the 

precise predictor based on Hermite extrapolation. 

According to remainder theory of Lagrange polynomial， once k + 1 points Sj-1， Sj-2， 

・，Sjーた-1 C (α，b) are selected to formulate a Lagrange polynomial Lk(S) which 

approximates Xi ( s) in range (ゆ)， the cutoff eηor R L k ( s) == X i ( s) -L k ( s) is 

where 

We can set 

zjk+1)(と)
R以日、+1(s) 

(k + 1) 

とε(α，b) 

W k+1(S) == (s -Sj-1)((s -Sj-2)ーか-Sj-k-1) 

sup IX~k+勺)1 == Mk+1 
α<s<b 

(3.4) 

Then， the upper bounded the remainder of the kth order Langrange polynomial is 

sup|RLK(s)|=MM[|WM(s)| 
α三:~bl~~1.J k\~/1 (k+1)l (3.5) 

This value relates to IWk+1(S)1 when Mk+1 has been determined. Because we use 

this Langrar伊 polynomialto extrapolate Xi(Si) at S == Sj， IWk+1(S)1 generally is 

larger. In order to reduce the error of the predictor， (k + 1)/2 known function values 

Xi(Sj-1)， Xi(Sjーふ-・・，Xi(Sj一平)and their differentials Xi(Sj-1)， Xi(Sj-2)γ・.， Xi(Sj一平)
are selected， where Sj-1， Sj-2γ・.，Sj一平 locatein side of the range (α，b) nearもhepoint 

S j， and formulate a kth order Hermite polynomial H k ( s) to approximate Xi ( S ). Thenう

the remainder is given by 

zjk+l)(と)T:r r2 
Rhk(S) == Xi(S) - Hk(S) ==一一一一院t+1)J2( s) (k + 1) 1 .. (_1c+l)J (3.6) 

ム 一 一一一 二プ|
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where 

とε(8j一(た+1)/2，8 j-1) 

W(k+1)/2(8) == (8 - 8j-1)(8 -8j-2)・一 (8- 8j一(た+1)/2)

Because 

( 8j一(k+1)/2，8j-1)ε(8j-k-1，8j_1) 

there exists 

sup IX~k+内8)1三 sup IX~k+円8)1三Mk+1
Sjー(k+1)/2:S;S:S;Sj-l Sj-k-1 :S;S:S;Sj-1 

moreover， because 

(8 -8j_1) < (8 -8j-2) < ・・・< (8 --8j-k) < (8 -8j-k-1) 

so that 

wa+収(8 ) < Wk+ 1 ( 8 ) 
and 

IRhk (8)1三IRLk(S)1

Thus， we can derive 

Theorem 3.1 1f we 8elect (k+ 1) /2 knoωn function value8 Xi ( 8 jー1)，Xi(8j-2)，・・・ ，Xi(8j_与ょ)

and their differential8ふ(8j_1)，ふ(8j-2)γ・.，Xi(8j一平)to formulate a kth order Her-

mite polynomial H k ( 8) forαpproximati旬以8)，αndωhere 8j-1， 8j-2，・ ，8j一平 locate

in 8ide of the range (α， b) near the point 8j， it cαn be proved 

IRhk(8)1 ::; IRLk(S)1 (3.7) 

Although this conclusion comes froms interpolations， it can be applied to the extrap-

olations for smallムs.80， we can get conclusion that the precision of kth order Hermite 
polynomial which is used to extrapolate for getting the predictor xf( 8i) is higher than 

the precision of the kth order Lagrange polynomial. 

The coefficients of the predictor formula for イ(8j)could be obtained from the equa-
tion bellow: 

与 一 一一一 て7]
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ふ(j-1)
l ・

ふ(j-2). . 

α5 
α? 

(3.8) 
ふ(j-(k+1)/2
E ・

zjj-l) 

zjj-2) 

Zy-(た+1)/2

k s?二i
ks;二;

ksjごい)/2

25j-1 

25j-2 

CHAPTER 3. 

1 

1 

。。
25j一(k+1)/2

5~ j-1 
5~ j-2 

1 

5j-1 

5j-2 

ハU
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2
 
，，，
F
 

、、l
J

司
l
ム+
 

，K
 
，，a，、

ι凡
・

q
J

cu 37-(た+1)/2 af 5j-(k+1)/2 1 

We can express it as the matrix: 

(3.9) p~p ー (.;.，.P....，.P¥l 
Skak = ¥XicXicr 

thus， we have 

(1s s2...d)-4 

((1 5 52 ... 5k)(S~)-1(bjx:巧)T

Xf(5) 

It can be rearranged as 

(3.10) 

どん(5)[(い)(2afx~l) - X~l)) + X~ l)] 
l=j-(た+1)/2

ど {ht(5) . [1 十時t-8)]XX~l)+ ん (5)(5 -St)X~勺
l=jー(た+1)/2

三加t(S)X~l) + p2z(似 1)] 
l=j-(た+1)/2

X~(S) 

I1 [(5 -8Z)/(5t -si)f 
i=j-(た+1)/2
t手j

ht(5) = 

where 

ε 二?
t=J一(k+1)/2dZ一δ
ifj 

与 一 一一 コ|

αl二



45 A MODIFIED TRACING CURVE ALGORITHM FOR CNN 

algorithm Corrector 

CHAPTER 3. 

3.3 

We use xP( S j) as an initial point to iterate and solve equations bellow: 

(3.11a) 

、、B
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ょっけ
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¥
 

。
1 

F(x(Sj)) 
n+1 

乞ふ(勺

Ifふ(Sj) can not be obtain by differe凶 atingF(x(sj)) respecもtoムwecan construct 

the Hermite interpolation polynomial 

α8+α;+α;s2+・・・ +α;sk

and make differentiation by S. In this case， we have the following equation. 

バ(S)
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(3.12) 
αE 

This equation can be written as follows 

(3.13) s~ai ー l文~X~ì7凡た - ¥'̂k'̂k) 

We have 

(3.14) 

(1 S S2 ... Sk). a% 

(1 S S2 ... Sk)(S%)-l(文3x;)T

c 1 j ( S ) X ~j) + c 1 j -1 ( S ) X ~j -1) +・・・ +c1j一(k+収 (S)x~j一(た+収)+C2j-1(s)djー
1)

+c2jーが)dj-2)+ ・ + c2jー(た+収+1(s )x~jー(糾明+1)
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In this caseうthecorrector formula is given by 

ハU一一
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円

以

L
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(3.15a) 

(3.15b) 

where 

j-(k+1)/2 j-(た+1)/2

Qi= 乞 tllzjlJ+ 乞 t2ld)
l=j-1 1==j-1 

Brown method[8] is applied to solve this set of equation as (11) or (15). First， 

every subfunction is expressed as taylor series，もhen，it is linearized and the variables 

is eliminated one by one until the linearized system of equations is transformed into 

a triangular system of equation. For per iteration step of Brown method， in every 

iteration step of (3.2) which consists of n + 1 functions， (n + l)(n + 4)/2 numbers of 

s 山functions should be evaluated， but with New川附to∞〉

umbers 0ぱfsubfuncωtiぬons凶sevaluations is needed. When subfunction calculations are more 

complex， Brown method can reduce cost of calculation. Moreover，もheevaluationもimes

of subfunction gl(X) is (n + 2) in per iteration， the evaluation g2(X) is (n + 1) which is 

less than that of gl (x)， the eval uation times of another functions are red uced grad ually 

in proper order. 80， we can rearrange the linear equation in simultaneous equations 

(3.3) as the first equation， but nonlinear equations are rearranged as the latter， the 

nonlinear equation which calculation is most complex is rearranged as the last. In this 

way， actual calculation for nonlinear functions is reduced once more. This method is 

suitable especially for analysis of a nonlinear network in which only a few elements are 

nonlinear but most of elements are linear. 

3.4 Choice of the step sizes 

In curve tracing algorithm， one of the crucial problems is the choice of the step sizes. 

In Ref. [1]， the next step size is predicted based on previous step sizes， if the predicted 

step size is not suitable so that the difference of the first iもerationcorrector xC(l) and 

the predictor xP， Ixc(l) - xPI is over the upper linut dmαx， then， this step size should 
be reduced and the first corrector should be carried again. In our algorithm， the 

ι一一一一一一一て二二二二三一五
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curvature of the solution curve is used as a parameter to control next step size. In 

the neighborhood of a sharp turning point on a solution curve， its curvature must get 

more larger， then we can choose a small step size to prevent the iteration failure. In 

smooth parts of the solution curve， their curvature shou1d get 1ess， so we can obtain 

more 1arger step size. In this way， we can obtain a robust and efficient curve tracing 

a1gorithm which gives more satisfactory resu1ts n practica1 numerica1 calcu1ation. 

After the jth curve tracing step， we define 

dふ(8j)/ d8 二九(8j-l)/(8j- 8j-l) (3.16) 

and 

n+l 

σ(i) =玄 Idふ(8j)/d81 (3.17) 
i=1 

σ(i) describes the sum of the curvature variations of the solution curves Xi( 8) i = 
1，2，..， n+1 at the neighborhood of 8 = 8j. Considering the stability ofthe calcu1ation， 
we further introduce averages of the curvatures and step sizes as follows. 

AV(j) (σ(j) +σ(j-l) + .. +σ(j一(k+l)j2))ーと
I k + 1 

(hj + hj-1 + . . . + hj_…)出
(3.18a) 

(3.18b) -
9
J
 
'n 

Based onσ(j)ぅAV(j)and hj， we determine the hj+1 

r slhj 
hj+1 = { 
l s2hj 

σ(j) < (1 -αI)AV(i) 
(1 -αI)AV(i) <σ(j) < (1 +α2)AV(i) 
(1 +α2)AV.(i) <σ(j) 

(3.18c) 

The value of the αi and si are relating to the solved equations， they can be modulated 

in calcu1ating procedure based on the calculated resu1ts. 

3.5 Computational AIgorith1m 

At the first， we set the parameters as follows. 

k: the order of BDF， because (k + 1)/2 points should be used in Hermite polyno-

mia1， the number of k + 1 must be an even. 

一一一一一一一て|
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H max: maximal length of curve tracing step. 

Hmin: minimallength of curve tracing step. 

dmax: maximal differer 

as 

dmω > Ix
c(l)(Sj) -xP(Sj)1 

α1，α2，グ1， s2: a group of parameter to be used to control next curve tracing step 

slze. 

ε 1， り: when IG(x)川1<ε臼1or 1医Xどc(伏k糾州+1刊lリ)一 Xどc(φ(伏k川)

successful. 

Nmω : maximal number of corrector times. 

Calculation procedure: 

[step 1] Input initial parameters: xOぅ Soand lfo so that 

G(XO) == 0， Hmin < Ho < Hmαz 

[step 2] Set j == 1 

[step 3] When j二 1，イ =z??t=1?2γ ・.，n --1， n， X~+l == X~+l + Ho， go to step 
6. 

[step 4] When j i-1， the coe白cientsof kth order Hermite polynomial， p1i( s) and 
p2i(s)， i == 1，2，'" ，j -(k + 1)/2 are produced acco凶時tothe formula (3.10). 

[step 5] Find 

イ(S) == L [P1z(s)x~l) + p2z(s)x~l) ] 
l=j-(た+1)/2

i==1，2γ.. ，ft + 1 

[step 6] If玄 canbe derived directely， go to the next step; otherwise， find c1z( s) 

and C21 ( S )， l == j -1， j -2γ"， j == (k + 1)/2， according to the formula (3.13) 
[step 7] take xP(Sj) as an initial point， Brown method is applied to solve G(x) == 0 

once so that xc(l)(Sj) is obtained. 

[step 8] Find DB  == Ixc(l)(Sj) -xP(sj)l， if D13 < dmαx， go to step 10， else， go to 
next step. 
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[step 9] 

S~ 
3 

DB 
(Sj-sjー1)・ ζ;;+Sj-l

DB 
( xf ( S j) - X i ( S j -1 ) )・広二+Xi(Sj-1) 

i = 1，2γ ・・ ，n+1 

イ(sj)
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Carry the kth iteration for the equation G( x) = 0 
If IG(x(的(Sj))1<ε1 or IX(k一円Sj)-X伏)(Sj)1< 10ぺgoto next step; else， 

go to step 10. 

[step 13] Find σ(j) 
η+1 ，Jふσ(j)=5137| 

[step 14] Find AV(j) andんj，

AV(j) 
') j-(た+1)/2

一二ーや庁(l) 

k+1 乞j -

今 3ー(た+1)/2

元τE(Sl-sl-1)-7
J
 

ム川

[step 15] Determine hj+1 according to the formula (18). 

[step 16] If a homotopy equation is solved， when x川=入=1， one solution is 

found， if all solutions are found， the curveもracingprocedure terminates; else， go to 

step 3 to carry on. 

ゅ ι一一一一一一てこ|
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3.6 Illustration examples 

Three examples are demonstrated here. With the first example to derive multiple 

solutions for a set of equations， we show the effEぅctiveof this algorithm. Then， we 

analyze the DC operating points for a 6-orders Hopfield network and obtain its multiple 

solutions successfully. Finally， a example is shown to apply our modified curve tracing 

algorithm to CNN， some results are gotten. 

Exαmple 1: 

In this example， a system of 10 equations should be solved. 

cos (k E Xi) 
gk(X) = Xk -e i~l = 0 k = 1， 2， ..， 10 

After introducing an additional parameter， we can set up the homotopy equations: 

cos (k E Xi) 
gk(X，入)= Xk一入e i=l o k 1， 2， ・・，10

The solution curve is shown in Figure 3.1. 

1.2入

入=1
1.0 

0.8 

0.6 

0.4 

0.2 

ハunu
 

S 

20. 40. 60. 80. 100. 

Figure 3.1: Solution curve with our algorithm 
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T乱ble3.1 describes some points near the most sharp turning point on the solution 

curve. The minimum observed step size is 0.009014 which is at s = 58.43885. The 

maximum step size is 0.44303 at s = 61.84822. 

NO.of No.of 
NO.of 

step 
S step size 

iteration 
modulated 入 εjil|dふ/dsl
step size 

329 56.7222 1 。 .42454 .8196 1.252 

331 57.2869 1 。 .26069 .7620 1.665 

333 58.0191 l 。 .40250 .6596 1.355 

334 58.3170 1 。 .29788 .6170 .9956 

335 58.3610 1 .04406 .6117 .4824 

336 58.4389 10 .07783 .6152 61.05 
337 58.4479 2 。 .00904 .6167 .9227 
339 58.5453 2 。 .06810 .6340 1.382 
342 58.7531 3 。 .09353 .6690 1.258 
346 59.1476 1 。 .10032 .7324 1.545 
351 59.6430 1 。 .13363 .8030 1.600 
360 61.8482 1 。 .44303 .8635 1.010 

Table 3.1: Some calculated data for Example 1 

In this example， the amount of function evaluations is 966， but in Ref. [7]， this number 

is 5936， and in Ref. [1]， this number is 1787.日川hermore，considering with the Brown 

method the total number of nonlinear functions evaluations is only about half of that in 

Newton-Raphson method. Thus， we found that the curve tracing algoriもhmis largely 

improved. 

Example 2: 

A Hopfield network with 6 cells is described as follows 

山
川
一

d

l
一九

P
し pjZt-2+L 

gi +乞Wij
i=l 

Xi 05*(1+tanh?) 

where， the parameters are selected as 
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。l -2 -2 -2 -2 3.5 8 

1 。-2 -2 -2 -2 3.5 8 

w=  I -: -2 
。-2 -2 -2 

1= 
5. 11 

-2 -2 -2 。-2 -2 5. 
g= 
11 

-2 -2 -2 -2 。 3.5 8 

-2 -2 -2 -2 1 。 3.5 8 

Assume α= 0.1， beginni時 froma initial point (u，入)= (0.1，0.1， -0.1，0.1， -0.1， -0.1う0.0)，

the solution curve is traced in 322 step. In this case， 9 solutions are found together. It 

is shown in Figure 3.2. 

入

9 solutions are found 

入=1 

a =0.1 
-2.0 

S 

n
u
 

20. 40. 60. 80. 

Figure 3.2: Solution curve for 6-cells Hopfield net. in a=O.l 

Beginning from different initial points， others equilibrium points can also be searched. 

Exαmple 3: 

In this example， we apply the algorithm to the connected component detector CNN[9] 

with n=5. The system equations are described as follows 

c空=-Av(t) + Ay(t) + Bu + 1 
dt 
y(t) = sαt(v(t)) 

The matrix A， B and 1 are composed by the templates 

一!プ ，，_'..'.."'" T
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The external input u is euqal to O. This CNN detects the number of connected bl乱ck

components on a white background( or vice versa). The algorithm is applied to obtain 

total 20 solutions from different start point tracing the solution curves. Between them， 

only four solutions shown in Figure 3.3 are stable and correspond to real convergent 

points in CNN. The remainder are corresponding to unstable equilibrium points， since 

もhereexists an component at least which absolute value is less than 1，もheyare non-

meωurable in real networks. 

口

Figure 3.3: Four convergent states :for CCD with CNN 

3.7 Conclusion 

In this chapter， we present a modified BDF curve tracing meもhod.The result shows 

this algorithm could be used efficiently to trace those solution curve with some sharp 

turning points. Specially， we want to point out that the Brown method is a kind of 

the Gauss-Seidel algorithm to be used for nonlinear algebraic functions. It is known 

that the convergence ratio is second order near to the solution. Furthermore，乱number
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of the function evaluations is (N2 + 3N)j2 when the function consists of N functions 
Observe that the Newton method takes N2 evaluations of the partial derivatives and 

N evaluations of functions. Thus， the Brown method is efficiently applied to trace 

solution curve， such that the approximate solution is obtained by Hermite polynomial. 

The algorithm presented here can be useful in the analysis of neural networks， e.g. 

during the design of templates for cellular neural networks. It can be applied to large 

networks provided that the extreme sparity and the structure of the coefficients are 

exploited. The method can be applied for some types of neurons with smooth non-

linear output functions or piecewise linear output functions. In general， there does not 

seem to be much hope for an efficient way to find all equilibrium points in a given 

neural network unless appropriate guidelines are followed during the synthesis process. 
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Chapter 4 

Associative Memory with DTCNN 

4.1 Introduction 

The artificial realization for the associative memory is one of the most impor七antprob-

lems on the neural network applications. In severall books[lぅ2]and papers[3-8]， the abil-

ity of neural networks to implement associative melllories has been discussed. First， the 

information of several prototypes are stored into a neural network and then， a signal is 

inputted to the network where some of information from a prototype is lossed because 

of the distortions and noises during the signal transmission and processing. Then， all 

or most of original information can be recovered with the associative memory. The 

researches on the associative memory can be directly applied to patもernrecognitions 

and classifications. 

Depending on recalling approaches of stored information， associative memories can 

be classified into two groups. The approach in the first group can be performed in 

the feedforward mode， where a signal is only frorn input toward output. The typical 

example is a linear associative memory presented by Kohenen[l]. The second group 

of associative memories performs the recalling cornputation with feedback operation， 

these networks are called recurrent networks. A typical example of recurrent associative 

memory is the Hopfield network. 

Hopfield presented continuous time and discrete time systems that are capable of 

implementing associative memory in 1982 and 1984l[5， 6]， respectively. Recently， several 

other investigators addressed the analysis of var:ious types of continuous time and 

discrete time neural networks[7ぅ8ぅ9]

For a two-dimensional cellular associative memo:ry with N x M cells， one neural cell 

has a output from -1 tp + 1， which corresponds to one bit in the two-dimensional 

56 
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prototype with multi-gray degree， so that the total state of this cellular associative 

memory describes a N x M bits two-dimension叫 prototype. Since the associative 

recursion algorithm is carried out with the synchronize refreshing approach， the state 

of the ith cell at time tm can be transferred to the input of the jth cell through the 

connection weight Aij， which affects the next state. 

In order to realize associative memory，自rst，we must store the information of some 

prototypes into the networks through a learning process. During a pattern storing 

Sもage，the weights Akl (k == 1，2γ ・1η;l== 1，2う・.. ， n) are gradually set to suitable 

values with a learning rule so that the weight matrix A includes the information of 

all prototypes. Then， in a stage of the prototype recalling， a probe pattern which 

just remains a part of information of an original prototype pattern is input to the 

cellular associative memory as the initial state. Furthermore， due to the monotone-

decreasing property of the energy function， if the stationary condition is satisfied for 

the stored proto七ypes，after some recursion iterations， we can find out the complete 

stored prototype which has minimal Hamming dis'tance to the input pattern within all 

stored prototypes. In this way， iもisenable to realize the associative memory with a 

cellular neural network. 

There some types of learning rules for associative memories[9]. Differing fromもhe

supervised learning mode and the unsupervised learning mode， most of artificial neural 

memories are trained under a batch learning mode. It means that the complete design 

information is available a priori， so that the network is first designed by recording 

desired equilibria points， after then， the weights of such network remain fixed during 

the associative memory process. Experimental data on biological systems have led 

Hebb's learning mechanism[20] whereby the synaptic coupling between two neurons is 

enhanced if both neurons are active at the same time. Based on this idea， the outer 

product method for computing the coupling coe白cientshas been proposed by Cooper 

et al[21]. Outer product learning rule is used for celllular associaもivememories by S. Tan 

et al[16] suchもhatthe application area of CNN is extended to associative memories， 

which is one of the most important function of the brains. But associative memories 

with the outer product method have some fatal weaknesses to limit their applications. 

The associative memories designed by the outer product method can noもguarantee

every stored prototypes as equilibrium points in general， so that the stored information 

can not always be recovered. In the section 4.2，自rst，we describeもheouter product 

learning approach to set up suitable values for the weights of associative memory with 
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discrete-time cellular neural network， these values are related to the object patterns 

information. This procedure is called as storing object patterns. After then， we focus 

on the stability analysis and presen七twotheorems to ensure stored prototypes by the 

outer product learning algorithm as equilibrium points of cellular associative memories. 

Some application examples are also given in this section. In another aspect， experience 

and theoretical analysis show that Hopfield neもworkwi七hthe outer product method 

can effectively store only up to O.15n arbiもraryvectors as equilibrium points， where n 

denotes the order of the network[18]. Moreover， it may be possible that the memory 

capacity and/or ability of an artificial associative memory decreases as the number of 

interconnection decreasing. We want to find another learning method suitable for the 

cellular associative memory neもworks.In the section 4.3， we present a middle-mapping 

learning algorithm for the cellular a ssociative memory. Its basic principle is similar 

to the project learning rule presented by L.Personnaz et al[19] where the projection 

learning rule was considered to be used for the system presented by McCulloch and 

PiもtS[23]，which operates in a synchronous mode. Since in the interconnection weight 

matrix A obtained with the projection learning rule， the diagonal element Aii is equal 

and/or approximate to 1， never equal to zero[19]， so it is difficult to apply this method 

directly to the Hopfield network. But in our memory， this kind of problems does not 

exist. It can guarantee to store a given vector as an equilibrium point so that every 

stored prototype is retrievable. 

4.2 Outer product learning a.lgorithm 

Outer product learning rule is used for discrete-tilme cellular associative memories by 

S.Tan et al[16] in 1990ぅbutthe convergent and stability condiもionsare not analyzed 

in their paper. Moreover， in general， outer product learning rule can not guarantee 

that networks always store the desired prototypes as equilibrium points of the network. 

How to solve this problem and， what is the stationary condition of a cellular associative 

memory， the analyses are also not given. In this section， first， we describe the outer 

product learning approach to set up suitable v乱luesfor the weights of associative mem-

ory with discrete-time cellular neural network， these values are related to the object 

patterns information. This procedure is called as storing object patterns. After then， 

we focus on the s七abilityanalysis and present two theorems to ensure stored prototypes 

by the outer product learning algorithm as equilibrium points of cellular associative 
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memories. Some application examples are also given in this section. 

4.2.1 Storing object patterns 

In order to realize associative memory，五rstwe must store all the object patterns 

information into the associative memory network. This storing process is also called 

as the ne七worklearning process. According to the Hebb theory[20]， the weight matrix 

contains the information of the stored patterns， 80 we try to find out a technique to 

set up the weight matrix that will produce a stationary state of that network for each 

object pattern. Since the energy function of the cellular associative memory network is 

the monotone decreasing function， the stationary state of the network lies in a minimal 

point of the energy function. Through storing a pattern， we minimize the value of the 

energy function for the particular pattern so that it occupies a minimal point in the 

energy landscape. However， we also want to leave any previously stored patterns in 

their hollows at the same time， so that adding new patterns does not destroy any of 

the previous information. 

Let us show this learning process in terms o:f the object patterns and the cor-

responding energy function. First， assume that there are S stored object patterns 

O(i) C Rぺn=NxM，i=1，2γ・.， S， which elements are either + 1 or -l. 
To simplify the analysis， we let B = 0 and 1 = 0 in the discrete-time cellular asso-
ciative memory defined wiもh(2.12)， then， the state equation乱ndthe energy function 

can be described as follows: 

土bU叫州t
U仏似tベ(伏k+1り) 

2二A:ijyj(k) 
j=l 

sat(v欣+1)) 

( 4.1a) 

(4.1 b) 

Then， the energy function of discrete-time CNN In (2.25) can be described as follows: 

E(k + 1) -zpd(k+1)約(k)十本芸山+1) 
E1(k + 1) + E2(k + 1) ( 4.2) 

Because Aij contains the patterns information rnapped into the neighborhood Nr (i) 

from all the object patterns， we can split E1 into two parts. One representsもheeffects 

一一一一一 一I士二二二二二二
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of all the patterns excepもthelth one and denotes it by A~j ， and the second is the 

contribution made by the lth pattern alone， l ε{lぅ2??S}?ぬownωAj;)Besides?we

ignore the description for the iteration number， because we just consider final stationary 

state in which there exists y(た+1)= y(k). Thus， we can rewrite E1 in two parts 

E1 -izpMj一izF14;)仰j
二 Eothers十El ( 4.3) 

where El is the energy due to the pattern l， while Eothers is due to the conもributions

from all the other patterns. 

8toring lth pattern corresponds to making the energy function as small as possible 

for this pattern. The first term corresponds to the other patterns， so we can not change 

this term now. But we can reduce the contribution made by the second term El. In 

other words， to store pattern l， i.e. y = y(l)， we want to minimize the contribution to 

the energy function from the lth energy term， and so make 

El=-jε土AVidl)必l) ( 4.4) 

as small as possible. 

Due to the minus sign in the equation above， this correspondsもomaking 

L乞Aj;)ujl)ujl)

as large as possible. 

N ow， since the elements in the l th sample y(l) are either ー1or + 1， hence y~l)2 is 
always positive. 80 if we make an en句 y加 m叩 aly?)2yY)2， it will always be positive 

and the sum will arrive to the largest value. 

Thus， in this case， we have 

乞乞Aj;)ujl)ujl)=乞Zujl)2ujl)2

It is equal to make the weight as follows: 

AC)ニ ujl)ujl) (4.5) 

「h一一一 一 =二二二二



CHAPTER 4. ASSOCIATIVE MEMORY WITl1 DTCNN 61 

Therefore， we obtain an important result:制 tingthe values of the weight A~? = 
dl)ujl)for開 ryi and j will minimize the en句 yfunction for the pattern l. In order 

to calculate the weight values for all the patternsヲwesum this equation over all the 

patterns as follows: 

s s 
Aんんt行j=εAA4;:;) 二乞Ly~l必djflりY) ( 4.6) 

Since the energy function shown in (4.2) can be rewritten as 

E=治会4ijYiYj+主主Y;
=-;ε[ L Ai川 1・+(Att-4)ufl (4.7) 
“ i=1 c(j)εNr(i) ..." 
c(j):f:c( i) 

we make 80me adj U8もingfor Aij 80 as to minimizeもheenergy function once again for 

the stored object patterns. In this way， the weight between c( i) and its neighborhood 

cell c(j) is given by 

s 
Aij 二乞 ujl)ujl)

Aii = 

c(j)εNr(i) 
c(j):f:c( i) 

1 .J_ て......~ ，(l)2 
E+〉 Ui

Let us summary above de8cription as follows: 

Lemma 4.1 Applying outer product learning rule toαdiscrete-time cellular associa-

tive memory， in the cαse 01 B = 0 and 1 = 0， we cαn derive theωeight coefficients 

connecting c( i)αnd its neighboring cell c(l) as 

S 

Aij E二 ujl)ujl) (4.8) 

c(j)εNr(i) 
c(j):f:c( i) 

1 S 

Aii 丈+Eujl)2 ( 4.9) 
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Based on Theorem 2.4， it is known that a DTCNN is convergent if it is diagonal-

column eigendominant. Considering the connection coe伍cientsdescribed in Lemma 

4.1， we can get a theorem as follows. 

Theorem 4.1 1f the number of cells during the neighborhood Nr(i) is equal to p， and 

the Rx is selected so thαt the condition 

まと (p-2)8 (4.10) 

is met， the discrete-time cellularαssociative memoryωith outer product learning 

algorithm is conりergent，its generalized energy function is monotone decreasing. 

Proof: Fr、omDefinition 2.2， the weight matrix A is said as diagonal-column eigen-

dominant if the ith diagonal element Aii is greater than or equal to the sum of absolute 

values of other elements in the ith column. i.e. 

Aiiど乞 IAji I 

j手t

(4.11 ) 

Viε{1，2，・ 1η}

Since the matrix A is a sparse matrix， besides七heelements Aij for c(j)εNr( i)， 
other elements Aij must equal zero. Moreover， aceording to Lemma 4.1， we have 

cu p
 

<一A
 
n
Z
ロ

But 

玄 y~l) 2 = S 

so that whenもherelation (4.10) is met， the weight matrix A has dia伊 nal-column

eigendominant property as denoもedin (4.11)， the energy function is monotone decreas-

ing and the cellular neural network designed by outer product learning algorithm is 

convergent. 

口
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4.2.2 Stationary character analysis 

There are some different ways to characterize the performance of an associative memory 

network， but finding the stationary condition of the stored patterns is one of the most 

important problems. Because， if and only if every stored object pattern corresponds to 

a fixed point in the associative recursive algorithul， then these object patterns will be 

retrieval. In this section， we discuss the stationary property of the cellular associative 

memory， and present a stationary condition. 

First， we give a definition of the stationary state ofぬecellular memory network. 

Definition 4.1 The stαte of an associative memory netωoγk y will be called stationary 

point， if and only if， for the recursive operation from an initial state y， the following 

stαte is still kept in y. i. e. 

y(k + 1) = y(k) (4.12) 

For a discrete-time cellular associative memory netωork with B = 0 and 1 = 0， this 
condition cαη be denoted bellow 

Yi(k)gi[y(k)] > 1 (4.13) 

Viε{1，2γ ・" n} 
ωhere， gi[.] is the transfer operator of the cell c( i) obtained from the state equαtion 

μ.1) 

This st剖ionarycondition is suitable for a discrete-time cellular associative memory 

networks with B = 0乱nd1 = O. But at the sarne time， it could be found from the 
structure of cellular neural network， that Vi二 gi[vy]has direct relation only with the 

output value約 ofthe cells c(j)εNr( i). It implies that， when each cell's equilibrium 

condition is judged individually， just a part of the stored object pattern is concerned. 

Thus， we define the local pattern as bellow: 

Definition 4.2 Assume N x M bits two・dimensionpattern 0 are stored in a tω0-

dimension cellulαγαssoczαtive memory network constituted by N x M cell units. Let N x 

M=ηand ωrite 0 as a 1-di附 nsionalve仰 7、ythusy悦 get0 = {Ok， k = 1， 2γ ・1n}-
In the neighborhood of the cell c( i)， the number cells covered in this neighbo仇oodis p， 

a part of the object pαttern is mapped and stored，ωe cαII this pαrt of the object pattern 



CHAPTER 4. ASSOCIATIVE MEMORY WITI-I DTCNN 64 

as a sub-prototype fi， fiモRP.The context in fi is a part of the object patteγ札 o.For 

different neighborhood， the contents of fi are also different. The fi correspondi札9with 

the Nr( i) is 

fi = {ん =Oj; c(j)εNr( i)}， fiモRP

Similαrly，ωe cαη defineαstate sub-vector V i andαoutput sub-vector Yi to correspond 
to the neighbo仇oodNr(i)αs 

Vi {Vj = Vj; c(j)εNr(i)}， 

{あ=め;c(j)εNr(i)}， 

Viε RP 

Yi Yi εRP 

From this definition， we prove a condition of the stationary state on the neighborhood 

Nr( i) of the cellular associative memory network. Obviously， if every neighborhood of 

the cellular associative memory neもworksatisfies this stationary condition‘the network 

is stationary. 

Theorem 4.2 Suppose αcellulαγαssociative mernory netωork has M x N = n cells. 

Assume the number of cells in a neighborhood is p = (2r + 1)2， every cell is directly 
connected 切thneαr cells in its neighborhood， andωithinαneighborhood Nr( i)， S sub-
prototypes fP)， f

i
(2) ， . • • ，ザ)GnstOTedyr)ε R(2r+l)X(2r+l)，and the Hamming distance 

betωeenαrbitrary tωo sub-prototypes fi(k)αnd f?) is d(fi(k)ぜl)).Then， ifαnd only if the 
condition μ14) is sαtisfied， the local object pαtterns f?) stored in Nr( i)ωII correspond 
to the stαtionαry states obtαined by the αssociative memory recursiveα19orithm. 
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(4.14) 

Proof: For B = 0 and 1 = 0 in (4.1a)， we have 

乞ん川)-h(k+1)=o
c(j)εNr(i) "'''X 

(4.15) 

Viε{1，2，・・.，n} 
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First， for simplicity， we denote 仏(k)and f}i(k十 1)as Vi and Yi， respectively. Then 

while Yi ==心 fromLemma 4.1， the network state 仏==gi[fi] is given by 

gi[fi] == Rx L: Aijfj 
c(j)εNr(i) 

== Rx[Aiifi + 乞 Aijfj]
c(j)εNr(i) 
j ヲ#正肖t 

二引附λ

jヲ#戸t肖i，j
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《
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s 
=λ+Rx[L: L y;/)必川

1=1 c(j)εNr(i) 
S 

=λ +Rx乞(タ7(l) 名)y;l) (4.16) 
1=1 

where，ポl)is the output corresponding with the lth local obj則 patternstored in 
the neighborhood Nr， and T denotes the transpose. 

According to (4.4)， if fP) is a recoverable sub-prototype and corresponds to a mini-

mum point of the energy function， it must have 

万l)×gt(fjl))
s 

fi(l)2 + Rx 玄(Y~(I) . fi)fP) 

> 1 ( 4.17) 

Since the五rstterm in right side above叩 ationがl)2== 1， above relation is ω 印
sponding to 

s 
乞(が (1) • fi)万l)と0

Because the number of cells in a neighborhood jVr( i) is p， we have 

(4.18) 

か~(1) • fi) fP) 
s 

p+乞(y~(I) . fi)fP) 
た手l
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p+ か-吋7(l) 幻]i)~k)fP) (4川

k手l

so that fF) is 乱問overablesub-prototype if and only if the relation (4.14) is制 isfied

口

o bviously， forωcn sub-prototypeぜl)，the Harnming distance between it and other 
sub-prototypes stored in the same neighborhood，σ(y ~(/) . fi) is diffrent. Beside it， the 
stored sub-prototype number S in a neighborhood is also different from each other. If 

and only if the relation (4.14) is satisfied for each sub-prototype stored in every neigh-

borhood Nr(i)， i == 1，2，・・・川， the sもoredobject patterns correspond to the stationary 

points of the network， and every of them will be recallable. 

From above theoremうwecan derive another sufHcient condition as follows. First， we 

introduce a definition. 

Definition 4.3 For eαch sω-prototype f?) described inμ14)}ωe can define tω col-
lections Cl and C2・

Cl 

C2 

{fi(k); fi(k) fP) > O} 

{fjk〕;fjk)fjl)くO}

( 4.20a) 

(4.20b) 

kε{1，2γ ・" S} 

Then， we can get a sufficient condition on the stationary property of the cellular 

associative memory as follows. 

Theorem 4.3 For S1仰 T仰 typeぐl)yωea別 methat the number of伽附ltSin Cl is 
m and the number of elements in C2 is s -m. 1f the following relation is sαtisfied} fF) 

is corresponding to αstationary points of the netωorkαnd it is recoverableαβer some 

times of associative operation 

m [p -2~以 σ(97(k). ぐl))]-(s-m)民 -2 照lnσ(y~(k) . f?))]三o (4.21) 
YiηεCl Yi-'ξC2 

「Iムー一一一一一一ー 二二二二二二
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Proof: From (4.18)， we know if and only if 

か7(l) 川 l)三0

the fP) is recoverable. But 

三(y~(I) . fi)!P) 
た=1

== L [P -2σ(y~(k) ぜl))] _ L ~D -2σ(y ~(k) • fP))] 
:-，(k) Yi εC} t，(k) YiεC2 
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> m [p -2 :g;J.，axσ(y~(k) ぜl))] _ (8 --m)[p -2 maxσ(97(k) ぜl))](4.22) 
Y;
っ ξC} Yγ'EC2 

so tha七if(4.21) is satified， the fP) is corresponding to a stationary points of the 

network and it is recoverable after some times of associative operation. 

口

4.2.3 Illustration example 

In this section， a specific example of using a cellular neural network as the associative 
memory lS glven. 

Exαmple 1: 

The network consists of 5 x 5 neural cells. Every cell has the neighborhood with 

r == 1 and the parameters as bellow: 

Rx == 0.02 kn， B == 0 (kn)-lヲ αηd 1 == 0 mA 

Since， for a cell lying in the boundary of the grid， there are not enough neighboring 

cells arounded it to construct a complete neighborhood， it may give bad influence on 

the associative operation of our memory network. To solve this problem， a ring of 

dummy cells are added to the border of the grid. The initial states of the dumlny cells 

are all Yi == -1. After then， their states are changed as the same as the inner cells. 

The number of the dummy cells of a cellular associative memory grid with available 

N x M cells is 2(N +M  +2). When N and M are large enough， 2(N +M  +2)j(N x M) 

becomes smaller， the dummy cells just take a very small part of total number of all 

cells. But they play important rule to the ability of the memory. 
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Figure 4.1: Stored sample patterns 

First， the sample patterns shown in Fig.4.1 are stored into this cellular associaもlve

memory network. 

Obviously， here the numbers of stored prototypes is equl to 4 and p = 9， the con-

vergent condition (4.10) mentioned in Theorem 4.1 is satisfied so that the network is 

convergent in this case. 

Using (4.8) and (4.9)， the weighもんjbetween connected cells within a neighborhood 

of the network is determined from the stored patterns information. The numerical 

values of the elments in A weight matrix are shown as Figure 4.2. 
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54. 4. 0.0 0.0 0.0 -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4. 54. 4. 0.0 0.0 -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 4. 54. 4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 4. 54. 4. 0.0 0.0 0.0 0.0 -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 4. 54. 0.0 0.0 0.0 0.0 ・4.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

-4. -4. 0.0 0.0 0.0 54. 0.0 0.0 0.0 0.0 ・2. ・2.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 54. -4. 0.0 0.0 ・2.-2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 -4. 54. -4. 0.0 0.0 2. 0.0 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4. 54. 0.0 0.0 0.0 0.0 ・2. -2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 -4. -4. 0.0 0.0 0.0 0.0 54. 0.0 0.0 0.0 ・2. -2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 ・2 ・2. 0.0 0.0 0.0 54. 4. 0.0 0.0 0.0 ・2.-2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 ・2 ・2. 2. 0.0 0.0 4. 54. 2. 0.0 0.0 ・2 ・2. 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. 54. 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. ・2 ・2. 0.0 0.0 2. 54. 4. 0.0 0.0 2. ・2.-2. 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ・2 ・2. 0.0 0.0 0.0 4. 54. 0.0 0.0 0.0 -2. ・2.0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ・2 ・2.0.0 0.0 0.0 54. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2. -2. 0.0 0.0 0.0 0.0 54. -4. 0.0 0.0 0.0 0.0 -4. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. 0.0 2. 0.0 0.0 -4. 54. -4. 0.0 0.0 0.0 4. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ・2. -2. 0.0 0.0 -4. 54. 0.0 0.0 0.0 -4. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ・2 ・2. 0.0 0.0 0.0 0.0 54. 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54. 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54. 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4. 4. -4. 0.0 0.0 0.0 54. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54. 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54. 

Figure 4.2: The A matrix for Example 1 (I<D)-l 
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Moreover， based on the calculating for every neighborhood， the stationary condition 

(4.14) is also met for each stored sub-prototype so that they are recallable. 1叩凶ting

four probe patterns shown as left side in Figure 4l.3 which has distortion pixels from 

48% to 68%， after some times associative memory recursion we can get the correct 

answer as shown in right side of Figure 4.3. 
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(a) After 31 iterations， stored prototype is recalled from the probe 

(b) After 44 iterations， stored prototype is recalled from the probe 

(c) After 35 iterations， stored p附 otypeis recalled from the pro be 
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(d) After 31 iterations， stored prototype is recalled from the probe 

Figure 4.3: Associative memory with outer product learning rule 

Exαmple 2: 

Inもhenext example， the network's size and the radius of a neighborhood are the 

same as above. But the resistance Rx is modified as 

Rx = 0.01 Kf2: 

8 sample patterns are stored into the cellular associative memory network， which are 

Chinese characters十、大、上、日、田、下、中、 and王displayedin Figure 4.2.3. 

In this example， the convergent condition (4.10) is also satis五ed，the generalized 

energy function is monotone decreasing and the network is convergent. Me乱nwhile，we 

get the matrix A by outer product learning algorithm from stored all prototypes. the 

matrix A is shown in Figure 4.5. 

From calculating， iもisfound that most of sub-proto七ypesin all stored proもotypes

satisfy the stationary condition (4.14) and are recallable sub-prototypes. Some results 

are plotted in Figure 4.6. 

But in the proto七ype大， one sub-prototype stored in the neighborhood of the cell 

lying in the 3th row and the 3th column does not rneet the stationary condition (4.14) 

and it is not recallable in this case. A probe shown in the left side of Figure 4.7 is 

inputted into the network as a initial output state， after 20 times iteration operations， 

the result is obtained as the right of the same figure. The stored sub-prototype in 

Nr(3，3) is destroyed but sub-prototypes stored in other cells are recalled successfully. 
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(to be continued ) 
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Figure 4.4: Stored sample patterns in Example 2 

58. 8. 0.0 0.0 0.0 0.0 -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8. 58. 0.0 0.0 0.0 0.0 -4. -2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 58. 0.0 0.0 0.0 -4. 6. -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 58. 8. 0.0 0.0・2. -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 8. 58. 0.0 0.0 0.0 -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 58. 4. 0.0 0.0 0.0 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

-4. -4. -4. 0.0 0.0 4. 58. -2. 0.0 0.0 -2. -4. -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 -2. 6. -2. 0.0 0.0 -2. 58. ・2. 0.0 0.0 -2. 6. 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 -4. -4. -4. 0.0 0.0 -2. 58. 4. 0.0 0.0 -4. -8. -2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4. 58. 0.0 0.0 0.0 -4. 2. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 2. -2. 0.0 0.0 0.0 58. 6. 0.0 0.0 0.0 4. ・2.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 -4. -2. 0.0 0.0 6. 58. 0.0 0.0 0.0 2. -4. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 -4. 6. -4. 0.0 0.0 0.0 58. 4. 0.0 0.0 -4. 4. -4. 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. ・8.-4. 0.0 0.0 4. 58. 2. 0.0 0.0 4. ・8. -2. 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0・2.2. 0.0 0.0 0.0 2. 58. 0.0 0.0 0.0 ・2. 4. 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4. 2. 0.0 0.0 0.0 58. 2. 0.0 0.0 0.0 0.0 2. 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2. -4. -4. 0.0 0.0 2. 58. -4. 0.0 0.0 -2. -4. -6. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4. 4. 0.0 0.0 -4. 58. -4. 0.0 0.0 0.0 6. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4. -8. -2. 0.0 0.0 -4. 58. 2. 0.0 0.0 -6. -4. -2. 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0・2. 4. 0.0 0.0 0.0 2. 58. 0.0 0.0 0.0 2. 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2. 0.0 0.0 0.0 58. 6. 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. -4. 0.0 0.0 0.0 6. 58. 2. 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -6. 6. ・6. 0.0 0.0 2. 58. 2. 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4. 2. 0.0 0.0 2. 58. 6. 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2. 0.0 0.0 0.0 0.0 6. 58. 

Figure 4.5: The A matrix for Example 2 (Kn)-l 

73 
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(a) After 9 iterations， stored prototype :is recalled from the probe 

(b) After 18 ite附 io瓜 storedproto七ypeis recalled from the pro be 

(c) After 19 iterations， stored prototype is recalled from the probe 
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(d) After 44 iterations， stored p川 otypeis recalled from the probe 

(e) After 22 iterations， stored prototype is recalled from the probe 

Figure 4.6: Associative memory with outer product learning rule 

4.3 Middle mapping methodl 

In above section， we have analyzed the stationary property of a cellular associative 

memory with the outer product method， and presented a su血cientand necessary con-

ditions乱boutもhisproblem. If the stored prototypes satisfy thie condition， then all of 

them are corresponding to stationary points of the neもworksrespectively. We want to 

solve this problem to some extent. But on the other hand， the memory capacity of a 

network with the outer product method is rather small. When this method is used in 

a full interconnection network， from the experimental results and theoretical analyzes 

just O.15n patterns can be effectively stored and recovered， where n is the nUlnber of 

the neuron units in the network[18]. When this method is applied for a cellular乱ssocia-
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After 20 iterations， a part of prototype is recalled from the probe 

Figure 4.7: One sub-prototype does not satisfy the stationary condition and can not 
be recurred in this case 

tive menlory， the available capacity may be decreased further because of the reducing 

of interconnection. Therefore， it is natural to attempt to find a more suitable learning 

method to improve the properties of cellular assoeiative memories. 

In thie section， we present a middle-mapping learning algorithm for the cellular a 

ssociative memory. Its basic principle is similar to the project learning rule presented 

by L.Personnaz et al[19] where the projection learning rule was considered to be used 

for the system presented by McCulloch and Pitts[23]， which operates in a synchronous 

mode. Since in the interconnection weight matrix A obtained with the projection 

learning rule， the diagonal element Aii is equal andj or approximate to 1， never equal 

もozero[19]， so it is difficult to apply this method directly to the Hopfield network. But 

in our memory， this kind of problems does not exist. The main results of our memory 

are follows: 

1. It can be guaranteed to store a given vector as an equilibrium point so that every 

stored prototype is retrievalコle.

2. It does not result in symmetric interconnection structure， i.e.， Aij =1 Aji in gen-
eral， so that it is easy for the practical circuit implementations. 

4.3.1 Middle-mapping learning alg:orithm 

N ow， let us show how the middle-mapping learning method is availably used in a 

cellular neural network to improve its properties so that it is possible to guarantee the 
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stationary of the stored prototypes and make it easily to be implemented by circuits. 

Assume that there are 5 stored prototypes O(i) C RNxM
う
i= 1，2，・・・，5for a 2-

dimensional cellular associative memory with N x M cells， each element is either + 1 

or -1. 

Depending on Definition 4.1， in the case of 13 = 0 and 1 = 0， the state of an 

associative memory network y will be called equilibrium point， if the following relation 

is met. 

似た)gi[y(k)]三l (4.23) 

Viε{1，2，・ .，n} 

where， gi[・]is the transfer operator of the cell c( i) obtained from the state equation 

( 4.1) 

Depending on this description， the equilibrium condition about the kもhsub-proto七ype

fi(k) stored in neighborhood Nr(i) could be provided by 

fi( k) . 9 i [ f
i
( k ) ]三 1 ( 4.24) 

k == 1，2γ・.，5

For each cell c( i) in DTCNN， there exists direct connections only with the cell c(j) in 

its neighborhood Nr( i)， but for other cells outside the neighborhood Nr( i)うtheelement 

Aij must be equal to 0 so that we can rewrite the equation (4.1) as fo11 ows， 

土わU叫仙t
U払似tベ(伏k+1り) 

YCi (k) 

L Aij YCj(k) 
C(j)εNc(i) 

sαt(vi(k + 1)) 

Yi(k) 

( 4.25a) 

(4.25b) 

( 4.25c) 

Then， based onもhedefinition 4.2 we getもheoutput sub-vector Yi to correspond to 
the neighborhood Nr(i) as Yi. Whenタグ)(刈=ぜた)， next relation could be obtained 
from the equation mentioned above. 
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gi[ fi(k) gi[夕刊(m)]
v;k)(m + 1) 

2JAtdjk) 
c(j)εNr(i) 
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( 4.26) 

Although Aij is two-dimensional vector， in orde:r to describe above relation as a form 

of the product of two vectors， we can rearrange it into 1-D vector as follows: 

Definition 4.4 For a cell c( i)，ωe extract all ele~nents Aij for every c(j)εNr(i) from 
the ith roωcomponents in mαtrix A and obtαin a vector Ai εRP. 

Ai = {Aij = Aωc(j)εNr( i)} ( 4.27) 

Then， the equation (4.26) can be equivale凶 ywritten by 

gtiff)]=Rz(At ぐた)) ( 4.28) 

FTom this equation and the equation (4.24)， we can obtain the next relation 

fi(k) . Rx(ぐた). Ai)どl ( 4.29) 

o bviously， if we assume 

Rx ( f
i
( k) . Ai) =入fi(k)αnd入三 1

then the above relation can be satisfied. 

It means 

(ぜた)ム)=計) ( 4.30) 

For simplicity， we let入=Rx， then， we can find that， if the next relation exists 

(fi(k) .λi) = fi(k) (4.31 ) 

the kもhsub-prototype will meet the equilibrium condition (4.24). 

We can extend (4.31) to all sub-prototypes fi(k) ， k二 1，2，・.. ， S stored in the neighbor-

hood Nr (i)， such that they satisfy the equilibrium condition. Then a vector equation 

could be provided: 
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where 

F.Ai=F 

F=lft2)??ぜS)]T

F=[万1)?万2)??f)lT
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( 4.32) 

The form of the equation (4.32) is similar to the formula of the projection learning 

rule[19] ， where the connection weight matrix is the orthogonal projection matrix into 

the Sl伽 pacespanned by the prototype vector families. In our formula (4.32)， Aij is 

a (2r + 1 )2-1e附 hvector which maps a prototypeタグ)into its middle element y~k) 
Therefore， formula (4.32) could be termed as middle-mapping learning rule or pseudo-

projection learning algorithm. 

Let p = (2γ+ 1)2， then Ai εRP， YεRhYε RSxP. Formula (4.32) is a S x p 
system of linear non-honlogeneous equations. Based on the theory of linear algebra， if 

the rank of the coefficient matrix Y is equal to the rank of augmented matrix (YIY)， 

i.e. rαnk(Y) =γαηk(YIY)， then， the equation (4.32) must have solutions. When 
p>rαnk(Y) = rαnk(YIY)， there are solutions more than one， the number of sωolu比tion
depends on the value of p一 γαηk(Y)ト. 

Obviously， we can find that from formula (4.28)う atthe least， it has a solution 

Ai = (0， 0， . . . ， 0， 1ぅOγ ・.，0)， i.e. the self.必edbackcoe伍cientof a cell is equal to 1， 
Aii = 1， while others are zero. 
Note that in Hopfield network， the self-feedback eoefficient of a cell is limited to equal 

zero， it causes that we can not directly apply the middle-mapping learning method to 

Hopfield associative memory， although this method hωsome advantages than the outer 

product method. In our cellular associative memory， the self-feedback coefficient of a 

cell is not equal to zero， the number is greater than 1/ Rx， so that if the value of Rx is 
selected big enough， the condition (6) can be satisfied easily 

On the basis of generalized matrix inverse， we can obtain 

Ai = F+. F ( 4.33) 

where F+ is the Moore-Penrose pseudoinverse[22] of F. If and only if yy+y = y， 

then， the system of equations (4.32) has 叫凶0瓜 Evenif there are no solution 

on (4.32)ぅtheAij denoted in (4.33) is still a solution of the least squares problem 

minllY Aij - YII 
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4.3.2 Iteration learning algorithm 

In the preceding section， we present a middle mapping learning algorithm for cellular 

associative memory networks. It is well known that， in general case， the couping weight 

matrix shown as (4.33) can be directly calculated by pseudo-inverse. But on the other 

hand， the interconnection vector Ai can be obtained conveniently， without solving 

high-order matrix inversion， but using an iterative algorithm[22，241. After some times 

iterations， the exact solutions of system (4.33) is yielded， the number of iterations is 

equal to the number of sub-prototype vectors. This kind of computation is typical of 

a learning process: once the synaptic matrix has been computed from a given set of 

prototype vectors， the addition of one extra item of knowledge does not require that the 

whole computation is performed again. One just has to carry out one iteration， starting 

from the previous matrix， so that the computational efficiency can be improved. 

In七hissection， we describe an iterative learning algorithm which can be incorporated 

into our middle mapping algorithm to extend its computation ability. First， we give 
some definition and theorems. 

Definition 4.5 Let Cl， C2， 

introduce a n x m matrix 

Cm be column vectors in an n・dimensionαlspace，αnd 

Cm = (cllc21・・・ Icm)

ωhere the j th column is Cj. 

ln terms of Cm-1 and cm，αbove matrix can beωritten as 

Cm二 (Cm-1Icm) m = 2，3，'" 

Theorem 4.4 lf Cm+1 = (Cmlcm+dε Rnx(m+l)ωhere Cm εRnxm is the submαtrix 

of Cm+1 consisting of the βrst m columns， and Cm+lεRn is the (m + l)th column of 

Cm+1， then 
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ωhere 
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( c主TC本Cm+l
m I 1+IIC~cm+1112 
kん1= ) 

if(I一CmCよ)Cm+1二 O
( 4.35) 

I (I一CmC志)Cm+l
~ 11 (1一CmC~)Cm+1112

otherwise 

Proof: The detail of the proof can be found in H，ef.22. ロ
In that theorem， (1一CmC，よ)Cm+1= 0 if and only if Cm+1 is in the space spanned by 

C1， C2，・・.，Cm. Hence， km+1 is defined by the白川 partof (4.35) if and only if Cm+1 is 
not a linear cOlllbination of C1， C2， . . . ， Cm. 

Theorem 4.5 For the pseudo-inverse CよofCm)ωehave 

(C~)+ = (C二)T

Proof: The proof can also be found in Ref.22. 

After then， we define 

Fm ニ lfd2)?1f)lT

Fm = [万1)?万ペ・.， fi(m)]T 

and describe Ai derived from m sub-pro七otypesω Â~m). Here， fi(k) is a column vector， 
ぐた)ε RP，and Fm εRmxp， Fm  ξRm and Ajm)ε RP. In this wayぅtheequation (4.33) 

can be expressed as 

Â~m) = F~Fm (4.36) 

It is used to store m sub-prototype vectors {ぜ1)t2)?・?ぜm)}ωs七ableequilibrium 
points of a cellular associative memory network. Now suppose we desire七ostore 

an additional ω-prototype fi(m+1) into the 附 work.According to Theorem 4.4 and 

Theorem 4.5， we have 

Ajm+1) 

( f;(~~)T r (ρ1) ) 
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where 

[W-4+r+1)KL1)1TJん
'j;T " v ， ~ . I l f(m+1) 
向m+1 J ¥ J: 

(F~ -km+1fi(m+1)T F~)Fm + km+1万m+1)
Ajm)+ムAjm+1)

ムAjm+1)=km+1(fjm+1)-f+l)TFLFm)

( F土 F~+f(m+l)
・"砂 H (， t 

|1+||FZ+fjm+リ112
if (1 -F~F~ +)fi(m+1) = 0 

km+1 = < 
I (I-F本 F~+)f

i
(m+l) 

l II(I-F志Fζ+)ぐm+l)112 otherwise 

82 

( 4.37) 

1n this way， we can learn an additional sub-prototypeぜm+1)without affecting the 
su b-prototype vectors {ぐ1)f)?・.，fi(m)} already learned by the network 
With the equation (4.37)， an iterative learning algorithm can be performed to store 

all S sub-proもotypesas the equilibrium points of the memory ne七works. It can be 

summarized as follows: 

Procedure : Iterative Middle Mapping Learning Algorithm 

Begin 

for i: = 1 to M do begin 
for j:=l to N do begin 

Yf:ニバ)T/(対l)Td));
A?):=YTY1; 

for m : = 1 to S -1 do begin 
if (1 -YよYZ+)yim+1)=0

then km+l:=YLYZ+yim+り(1+ IIY~+ yum+1) 112) 
else kmη1+1 := (ロI一 Y = Y Z +勺)Y~m+刊叫1り川)
ムA「「「+刊叫1リ).戸=km+1(必m叫川+刊叫1り)一y「「+礼げ)TY2y凡m心); 
Ar):=AT)+ムAjf+1)

end 

end 

end 

End 
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4.3.3 Illustration example 

To illustrate the associative memory ability of the cellular neural network with the 

middle-mapping learning algorithm， three examples are given bellow. 

Example 1: 

Let the network consist of a two-dimensional grid with 5 x 5 neural inner cells and 

add a ring of dummy cells. The radius of one neighborhood is r二 1，so， the number 

of cells in a neighborhood is equal to (2γ+ 1)2 == 9. The parameters used in our 

examples are selected as 

Rx == 100 kn， B == 0 (kn)-l， αnd 1 == 0 mA  

First， 4 prototypes shown as Figure 4.8 are stored into the cellular ωsociative mem-

ory with our learning algorithm. 

Figure 4.8: Stored 4 prototypes for Example 1 
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The unsymmetric weight matrix is obtained， which includes the information about 

the stored prototypes. Figure 4.9 illustrates this weight matrix. 
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Figure 4.9: The feedback coe伍cientsmatrix A ( (kO)-l ) 

Then， a probe shown in Figure 4.10(a) is inpl凡 wherem denotes the number of 

current operation of this memory， while m = 0 is corresponding with initial state. 
After three iterations， the state of lllemory network is converged to a nearest prototype 

shown as Figure 4.10(d). The grey pixel in (b) and (c) of Figure 4.10 is corresponded 

to Yi = 0 which are unstable equilibrium points[10]. In real circuits， they are no 

measurable. Since differential operation is not needed in our algorithm， the computing 

simulation is very simple and fast. 

When all 4 probes shown in the left of Figure 4.11 are input al七ernatively，they 

have distortion abouも32%rv 40%. After 3 rv 9 tunes of the associative iterations， we 

can obtain the correct memory results shown in the right of Figure 4.11 in which the 

complement contents are recovered. 
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K=O 

(a) 

K=2 

( c ) 

K=l 

(b ) 

K=3 

(d) 
Figure 4.10: The retrieval process for one probe 
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(a) After 9 times iterations， prototype is recalled 

(b) After 3 times iterations， p附 otypeis recalled 

( To be Co凶 nued)
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(c) After 5もimesiterations， prototype is recalled 

(d) After 4 times iterations， prototype is recalled 

Figure 4.11: 4 probes and associative memory results 
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Example 2: 

In this example，五rst，4 prototypes shown in Figure 4.12 are stored and the inter-

connection weigh matrix is produced. 

Figure 4.12: 4 pro七otypesare stored 

Then， 4 probes shown in the left of Figure 4.13 are input respectively， whose dis-

tortions are 28% ~ 36%. After some times of the updating， the complement stored 

patterns are retrieved which are shown in the right of Figure 4.13. 
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Figure 4.13: The probes and retrieval results 
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Next， 8 prototypes shown in Figure 4.14乱restored. 

( To be continued ) 
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Figure 4.14: 8 prototypes are stored 

Then， probes shown in the left of Figure 4.15 are selected respectivelyおもheinitial 

states of the network. After some times of iterations， we can obtain desired associative 

results as the right of Figure 4.15， but the disもortionsof the probes is reduced into 
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12% ("..J 24%. It illustrates that the convergent ability gets smaller in this case. 
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( To be continued ) 
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Figure 4.15: Input probes and the associative results 
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Example 3:・

Next， the ability of cellular乱ssociativememory with middle-mapping algorithm to 

recover prototypes from a probe signal mixed with Gaussian white noises is displayed. 

In this case， the network consists of 9 x 9 neural cells， the radius of one neighbor is 

still l. First， 26 upper-case English letters shown in Figure 4.16(乱)乱restored into the 

cellular network. Then， a probe pattern is generated by adding Gaussian white noise 

to each pixel in the probe pattern. Hence， zerO-Inean Gaussian white noise is used but 

its mean square deviation are 0.2， 0.3 and 0.4 as shown in Figure 4.16(b)う (c)and (d) 

respectively. These probes are used as initial values of the state variables v x and input 

to the cellular network. Each of the 26 stored pattern is used as an initial condition 

twice. The average results of all calculations are illustrated in Table 4.1. 

• •• 

( a) Stored prototypes 

• •• 

(b) Probes with noise of σ= 0.2 

( To be continued ) 

From七hesecalculation results， iもcanbe found thatうthereare some spurious states 

in a cellular associative memory， while the mean square deviation of noise mixed in 
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••• 

(c) Probes with noise of σ= 0.3 

• •• 

(d) Probes with noise ofσ= 0.4 

Figure 4.16: Stored prototypes and initial probes with Gaussian noises 

zero-mean Gaus-
Rate of three type of resulもS

sian white noise with 
converge to converge to not convergent mean square devia-
the prototype spunous 

tionσ 
s1Gates 

σ 0.2 100.0 0.0 0.0 

σ 0.3 98.1 1.9 0.0 

σ= 0.4 71.2 28.8 0.0 

Table 4.1: The simulation results for 26 English characters storing in a cellular asso-

ciative memory by the middle mapping algorithm 
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probes is larger， it may be possibly to converge to some spurious states. 

4.4 Conclusion 

In this chapter，五rstぅwedescribe the outer product learning approach to set up the 

weights with suitable values which is related to the object patterns information， it is 

called as storing object patterns into a cellular associative memory. Meanwhile， some 

analyses about the stationary property of the cellular associative memory with outer 

product learning rule are taken. A condition is presented which ensure the stored 

patterns as the stable states of a cellular associative memory. After then， a middle-

mapping learning algorithm for cellular associative memory is presented， which makes 

full use of the properties of the cellular neural network so that every stored prototype 

can be guaranteed as an equilibrium point of our memory. At the same time， it 

has ability of iterative learning. This kind of computation is typical of a learning 

process: once the synaptic matrix has been com，puted from a given set of prototype 

vectors， the addition of one extra item of knowledge does not require that the whole 

computation is performed again. One just has to carry out one iteration， starting from 

the previous matrix， so that the computational e缶ciencycan be improved. Besides， 

its implementation with circuits is more feasible because the weight matrix is not 

symmetric. 

Since the synchronous updating rule is used in both of them，もheirassociative speed 

very fast compared to the Hopfield associative memory. 

From the simulating results， we can find that， when the number of the stored pro-

totypes is increased or the distortion in a probe is sもrong，the associative ability is 

decreased and the probability of converging to spurious states is increased. It is similar 

with the situation in the other types of associative memory networks. But in a cellular 

associative memory， it is believable thaもwecan extend the size of a neighborhood of 

our cellular associative memory to improve its associative ability. Unfortunately， the 

realization of circuits is get more difficult at the same time and the manufacture cost 

is risen. U sing space-varying meもhod[14]to select suiもableneighborhood size meeting 

the specific requirement may solve this problem. This is a future problem. More detail 

researchs will be taken in the near future. 
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Chapter 5 

A pplications in Ima.ge Processing 

5.1 Introduction 

In previous chapter， we apply our discrete-time cellular neural network to associative 

memo1'Y， which is a p1'oblem to find the connecもionweights so that a given set of 

prototypes 01， 02， ...， 05 are the stable fixed points bedded in our discrete-time 

associative memory network with prescribed size of basins of attraction. That is a 

fixed-point prog1'amming problem. 

Differing from it， in this chapter， we will apply our DTCNN to image processing with 

another view point. It is to consider DTCNN as a spatial operator. With appropriate 

choice of the connecting weights， the neもworkcan operate as a differentiator， an inte-

grator 01' even more complexer operator， which include the cooperative operation， the 

competitive operation and the mixed operation. Although many similar tasks can be 

performed by cu1'1'ent digital image processing techniques， DTCNN will operate faster 

than the former， generally， since it is a parallel operator. 

We list the state equation of our DTCNN as follows: 

vi(k + 1) Rx[乞Aij削 (Vj(k))+乞BijUj + Ii ] 

k = 0，1，2，・ ，Viε{1?2?.?η} 

(5.1 ) 

This equation can be interpreted as a two-dirnensional operator to map an image， 

described by v( k) into another one， represented by v( k + 1). Obviously， this operator 
is nonlinea1' since sat( v( k)) in (5.1) is a nonlinear function. In general， some times 

recursive operations are required to get a desired result after an initial probe is inputted 
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to the network. The operator for mapping an image does not achieve at once， but takes 

some times of iterations so it is a space-time operator really. 

Based on experiences and theorem analyses， it is known that， the more elements 

a template has， the complexer operation it can perform. But VLSI realization and 

template design or learning approach of the network will become difficult for larger 

neighborhood. From the practical point of view， the neighborhood is always chosen 

to be as small as possible. The typical radius for a neighborhood is 1 or 2， which is 

corresponding to 3 x 3 neighborhood or 5 x 5 neighborhood， respectively. 

Since each cell just connects directly its near cells in a discrete-time cellular neural 

network， the A matrix in Equation (5.1) is a sparse matrix， Aij == 0， V匂 ~Nr(i). 

Hence， for one updating， it can only make use of the local image informatioll. When 

the global character of an image is required， our DTCNN can be updated n times to 

obtain the global information from the image. It is well-known propagation property， 

which means that the pixel value of the output object image can be indirectly affected 

by a large neighbor region of the input image after n times updatings. This property 

can be illustrated by replacing vi(k) in (5.1) iteratively down to vi(k -1). Then we get 

vi(k + 1) Rx L Aijsat[ Rx玄Aj/sat(vI(k-1)) +ん]+Ii (5.2) 
j=l 1=1 

Viε{1，2γ ・.，n} 

It is easyもosee that the state value vi(k + 1) is not only affected by the value 

Vj though the no-zero weight coefficients Aij Yc(j)εNr( i) directly， but also affected 

indirectly by the value VI in previous updating moment because of the no-zero weight 

coefficients Ajl Vc(l)εNr(j) and Yc(j)εNr(i). ln this way， the radius of receiving 

information region for the cell c(いωtの)is wi凶dedto two times of the original radius of the 
ne1氾gh凶boαr、t加t

coincides with the input image札， we have 

vi(k) L gt(Vj(O)) 
c(j)εNkr(i) 

Viε {1，2，・・ ，n} 

(5.3) 

where gfj is a nonlinear function， related with connection coefficients of the cells be-

tween c( i) and c(j). Here， we can find that the neighborhood Nkr( i) is k times larger 

ζ一 一ーで三 | 
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than Nr('i). Of course， when the updating times k is large enough， the neighborhood 

Nkr( i) will eventually cover the entire image. Therefo民 thepropagation property of 

DTCNN makes it possible to make use of some global features of the input image. On 

the other hand， the local properties are still preserved with the closer neighbors having 

more effects than those farther away. 

5.2 Feature extraction 

Feature extraction is an important problem in image processing. In this section， we 

illustrate the ability to realize the edge extraction of hand-writing Chinese characters 

and pictures with our DTCNN. By the edge extraction， we get and remain the main 

information coved in original messages， but the data volume and sもoredspace size have 

been reduced. On the other hand， it is available in the recognition of hand-writing 

Chinese characters. 

First， a 48x64 image composed by a diamond shape element and four square shape 

elements is illustrated in Figure 5.1. 

The circuit parameter Rx == 100 kn and 1-neighborhood are used， the template TA 
TB and T1 are chosen in which both the feedback and control operators are non zero[l]. 

TA == TB 二 T1 == -1.50 

Table 5.1: The Template for the edge extraction 

Using the input image in Figure 5.1 both as the input signal and the initial state of 

DTCNN， after 3 times iterative updatings， the result is obtained as shown in Figure 

5.2， which is just that we want to get. 

It is known that the same tasks have been performed by the continuous-time CNN 

[1]， there a continuous-time CNN is used for extracting the edges of a 16x16 diamond 

image or a 16x16 square image， but the differential operations are carried， in addition 

of that， the iterations number is abouも57.For out DTCNN， the complicated and time 

consumed differential operation is avoided， the iteration number is 3， it is only about 

5% of the continuous-time CNN. Therefore， it is found that， when we realize a CNN 
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Figure 5.1: An image composed by one diamond and four squares 

Figure 5.2: The extracted edge from the input image in Fig. 5.1 
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by a software simulation programs， in some cases of image processing， DTCNN is more 

powerful and advantageous than the continuous-time CNN. 

After then， a picture of hand-writing Chinese eharacters shown in Figure 5.3 is chosen 

as both as the input signal and the initial state of DTCNN. 

CHAPTER 5. 

1427 -1509 ) Figure 5.3: A picture of Chinese characters ( Zhou SHEN 

Using the same circuit parameters and the templates TA TB and T1 mentioned above， 

after 3 times iterative updatings， the precise result is shown in Figure 5.4. 
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Figure 5.4: The extracted edge from the input image in Fig. 5.3 

Moreover， using the same circuit parameters and the same template in Table 5.2， 

but using the Chinese picture in Figure 5.5 as the input signal and the initial state， 
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just taking 3 times updates，仕ledesired result is derived successfully and， is shown as 

Figure 5.6. 

5.3 Noise removal 

Beside of feature detection， the noise removal is also one ofもhemost important problems 

in image processing. Since a input image coming from the real world are usually 

superimposed by some noises. For a example， a artificial satellite takes a photograph 

and send it back to the earth. When this photograph is received by the ground station， 

in general， its detail part can not be directly recogl1ized， because there exist a lot of hot 

noises and other interference sources when taking the photograph and transmitting it 

through long distance. For another example， after long time storing and displaying， a 

famous art picture will be smeared because of air and steam effects. In order to recove 

the original information from a picture mixed by some noises， the image processing of 

the noise removal is required. In fact， the noise removal technique by digital filterぅor

digital image processing with digital computers， was been developed some years ago 

and has been widely applied u凶ilnow. But our DTCNN will be more powerfulもothe 

noise removal image processing， because it is a parallel array with faster calculating 

speed and， can realize real time processing. In this section， we concentrate on the noise 

removal for an artificial satellite photocopy and a Chinese picture by DTCNN. 

The input image with 180x260 pixels shown in Figure 5.7 is a "Sikoku" monochromi-

cal photograph which is scanned from a color photocopy taken by the artificial satellite 

"Landsat" and to been processed perfectly， and then adding σ= 0.8 and m = 0 Gaus-

sian white noise. After then， the noise removal template[l] list in Table 5.3 is used， 

other circuit parameters are the same as the prior section. Using this image as the in-

put signal and the initial state of a discrete-time cellular neural network with 180x260 

cells and making 6 times iterative operations， the result is derived as Figure 5.8. The 

big block region can be found on the upper part and the right part in the result image， 

which are corresponding the plain lying in "Kagawa" prefecture and round "Yoshino" 

river， respectively. 

In the next example of noise removal， the same circuit parameters and the noise 

removal template are chosen， but the input image is a Chinese picture "Yellow Moun-

tain" with 380x200 pixels and adding σ= 0.7mニoGuassian white noise shown as in 
Figure 5.9. After 6 times iterative operations， the result can be gotten as Figure 5.10. 
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I五

Figure 5.5: A Chinese picture "Listening Bamboo" ( Zhen 
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Figure 5.6: The extracted edge from the input image in Fig. 5.5 
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Figure 5.7: A photocopy by the satellite "Landsat" with σ=  0.8 7n = 0 Gaussian 
white noise 

TA = T] = 0.00 

Table 5.2: The Template for the noise removal 

弘 三二一|
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Figure 5.8: Result image from Fig. 5.7 after noise removing 
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Figure 5.9: A Chinese picture "Yellow Mountair川 ZhouSHEN 1427 -1509 ) with 
σ= 0.7 and m = 0 Gaussian white noise 
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Figure 5.10: Result image from Fig. 5.9 after noise removing 
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Finally， using the same circuit parameters and the templates， we make noise removal 

processing to a 16x16 character image with σ= 0.2 m = 0 Guassian white noise shown 

as in Figure 5.11(a). After 3 times i比te臼r凶~atiぬon瓜 the precise result is obtained as in Figure 

5.11(b). 

(a) A 16x16 probe image with σ= 0.2 (b) Result image after noise removing 
組 dm = 0 Gaussian white noise 

Figure 5.11: The noise removing for a 16x16 Chinese character with σ= 0.2 and m = 0 

Gaussian white noise 

In this section， we give three examples to apply our DTCNN for noise removal image 

processing. Although the some examples of noise removal for Chinese characters with 

16x16 pixels are illustrated in Ref. [1]， but their processing is available just for σ三0.4

In the case ofσ 2:: 0.6， the result is a full block picture. In addition of it， for getting 

desired results when σく 0.2，the differential calculations had to be carried and about 

30 times of iterative operations are required. For our DTCNN， the times of iteration 

is less， for example， for the same 16x16 image， the number of iteration is only 3. Even 

though an input image is composed by 320x200 pixels superimposed σ= 0.7 Gaussian 

white noise， just 6 iteration operations are carried. Since no differential calculation is 

required in the iterations， the calculating speed is more faster than that of continuous-

time CNN. 

一竺二一 | 
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5.4 Visual pattern recognition 

Pattern recognition， naturally， is based on patterns. It comes as little surprise that 

much of the information that surrounds us lnanifests itself in the fornl of patterns. 

A pattern can be as basic as a set of feature rneasurements or observations， perhaps 

represented in two-dimensional geometric description， vector or matrix notation[ll]. In 

this study， we just consider the case of two-dimensional graphic patもerns，and classify 

some specific patterns from a background. The similar pattern recognition techniques 

have been widely used for computer vision[9]. The ease with which humans classify and 

describe patterns often leads to the incorrect assumption that this capability is easy to 

automate. Sometimes the difference between sorne patterns are immediately apparent， 

whereas in other instances they are not. Some research in geometric description have 

revealed that， human vision system can almost instantaneously detect differences in a 

few local conspicuous features without the need of complex familiarity cues. These fea-

tures are called as textons[10]， which include elongated blobs as rectangles， ellipses or 

line seglnents with specific color， angular orientation， width， length， binocular， move-

nlent disparity and fiicker rate. The terminators and crossings of 1ine segments a1so are 

textons. For examples， Figure 5.12 and Figure 5.13 show two testing pictures. Each of 

thenl consists of 64 x 96 pixels. 

The text ures in Figure 5.12 are com posed of" r" and "ノ"shaped e1ements with 

rotated orientations. The differences between " r" shaped e1ement and "ノ"shaped 

element are very obvious so that it is raもhereasy to pick "ノ"shaped pattern out from 

this background. But in Figure 5.13， it will take considerable time and effort to look 

out the "T" shaped patterns from the background， since the "T" shaped pattern and 

， r" shaped pattern are belong to one type of texton， they are similar with each other. 

Because the geometric descriptions are such dilfferent， it is easy to find that the "ノ"

shaped elemenもand"T" shaped element are belong to two distinct types of textons or 

patterns. It is nature to have to design two distinct templates to recognize them from 

the same background respectively. We give the templates as follows. 

The temp1ate 1 is used to each cell in DTCNN with r = 1. The elements in the 
weight matrix A of (5.1) are decided by TA， 11 by TB and 1 by T/. 1叩 utti時 the

probe image shown as Figure 5.12 to the DTCNN with the weight matrixes A B and 

1 coming from the template 1， after 4 times iterations， the "ノ"shaped elements are 

classified fronl the background shown as Figure 5.14. 
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Figure 5.12: _.¥ probe pattern cornposed by" ，" and "ノ"shaped elements 

Figllr(' J.13: .-¥ probr p礼tterll("Olllposrd by " ，" ancl "Tηshapecl elelnents 
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TA == 一一B
 
T
 

T1 == -2.50 

Table 5.3: Template 1 for pattern recognition 

TA == 

0.00 0.00 0.00 0.00 0.00 
0.00 0.25 1.50 0.25 0.00 

0.00 1.50 8.00 1.50 0.00 
0.00 0.25 1.50 0.25 0.00 
0.00 0.00 0.00 0.00 0.00 

TB == 

0.0 0.5 0.0 0.5 0.0 

0.5 0.5 -1.0 0.5 0.5 

0.0 -1.0 1.0 -1.0 0.0 

0.5 0.5 ー1.0 0.5 0.5 
0.0 0.5 0.0 0.5 0.0 

T1 ==-2.50 

Table 5.4: Template 2 for pattern recognition 

R 

寓

温

M 

Figure 5.14: Classified result for the probe image in Fig. 5.12 
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Similarly， by the weight matrixes coming from the template 2 with the neighbor 

radius r=2， inputting the probe image shown as Figure 5.13， the "T" shaped pattern 

are picked up. Figure 5.15 shows the desired result. 

.L 

1-

4 
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1- T 

Figure 5.15: Classified result for the probe image in Fig. 5.13 

5.5 Multiple visual pattern recognition 

In prior section， the capability to recognize a pattern from the background with uniform 

DTCNN is demonstrated. But in some cases， it is needed to extract some distinct types 

of patterns from a two-dimensional image. Since the character of distinct types of 

patterns are not like in geometric description， it is difficult or impossible for a uniform 

DTCNN. A non-uniform or variable-space DTCNN is needed for these tasks， but before 

that， the guarantee of the convergence for a non-uniform DTCNN is important. The 

theorems in Chapter 2 provide us with the convergence conditions for a non-uniform 

DTCNN. Based on those analyses， we can design some non-uniform DTCNNs for 

multiple distinct patterns recognition. 
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Figure 5.16: A probe pattern composed by three types of elements 



CHAPTER 5. APPLICATIONS IN IMAGE PROCESSING 120 

Figure 5.16 is composed of the" r"，" T" and "x"もhreetypes of elements. Assuming 
the "T" shaped elements only appear in the left half plane and the " x" shaped elements 

the right half plane. Then， for each cell lying in the left half plane， the ten1plate 3 is 

used. But for other cells， the template 4 are used. Each template makes a contribution 

to weight matrixes A， B and 1 by itself. In this way， we obtain a non-uniform DTCNN 

which template for eveηcell are variable with the space. This non-uniform property 

results in non reciprocal weight matrixes. After some times iterations， it is successful 

to recognize two distinct types patterns shown <<ぉ Figure5.17. 

0.50 0.00 0.50 0.00 0.50 0.0 0.5 0.0 0.5 0.0 

0.00 1.00 0.00 1.00 0.00 0.5 0.5 -1.0 0.5 0.5 

TA == 0.50 0.00 8.00 0.00 0.50 TB == 0.0 -1.0 1.0 -1.0 0.0 

0.00 1.00 0.00 1.00 0.00 0.5 0.5 -1.0 0.5 0.5 

0.50 0.00 0.50 0.00 0.50 0.0 0.5 0.0 0.5 0.0 

T] == -2.50 

Table 5.5: Template 3 for multiple visual pattern recognition 

0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 0.5 0.0 

0.00 0.25 1.50 0.25 0.00 0.5 0.5 -1.0 0.5 0.5 

TA == 0.00 1.50 8.00 1.50 0.00 TB= 0.0 ー1.0 1.0 -1.0 0.0 

0.00 0.25 1.50 0.25 0.00 0.5 0.5 -1.0 0.5 0.5 

0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 0.5 0.0 

T] == -2.50 

Table 5.6: Template 4 for multiple visual pattern recognition 

In previous example， we show that a non-uniform DTCNN has ability to recognize 

two types distinct visual patterns lying in the left half plane and the right half plane of 

a probe image at the same time. Next. we want to give another example to recognize 

two types distinct visual patterns lying in the upper part and the down part of a probe 

image at the same time. An image shown in Figure 5.17 is used as a probe image. It 

is similar with a reflection graph obtained by a laser radar， in which the upper part is 
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Figure 5.17: Two types of textons are picked out 
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supposed to be sky region so that the elements in this part is composed by the plane 

shaped reflect pixel and the noise refiect pixel， but the down part is sea region soもhe

elements is composed by the shop shaped refiect pixel and the noise refiect pixel. What 

we want to do is to detecもtheplane shaped reflect pixel and the shop shaped refiecも

pixel at the same time. In order to do so， two templates listed in Table 5.7 and Table 

5.8 are used for the cells lying the upper part and down part， respectively. Using the 

probe iInage shown in Figure 5.18 as both input signal and the initial state of DTCNN， 

afもer11 times iterative operations， a result is clerived successfully ， shown as Figure 

5.19. 

Figure 5.18: A probe image composed by three types elements 
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Figure 5.19: Two distinct types of elements are picked out 
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0.00 0.00 0.50 0.00 0.00 1.00 0.50 0.00 0.50 1.00 

0.00 0.50 0.50 0.50 0.00 0.50 -0.50 0.00 -0.50 0.50 

TA == 0.50 0.50 8.00 0.50 0.50 TB == 0.00 0.00 1.00 0.00 0.00 

0.00 0.50 0.50 0.50 0.00 0.50 ー0.50 0.00 -0.50 0.50 

0.00 0.00 0.50 0.00 0.00 1.00 0.50 0.00 0.50 1.00 

九==0.50 

Table 5.7: Template 5 for multiple visual pattern recognition 

0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 

0.00 0.50 0.50 0.50 0.00 0.00 0.50 0.00 0.50 0.00 

TA == 0.00 0.50 8.00 0.50 0.00 JrB == 0.00 0.00 1.00 0.00 0.00 

0.50 0.50 0.50 0.50 0.50 0.00 0.50 0.50 0.50 0.00 

0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 
」 ー

T1 == -2.50 

Table 5.8: Template 6 for multiple司visualpattern recognition 

5.6 Conclusion 

In this chapter，五rst，we apply our DTCNN to the feature extraction and the noise 

removal for the image processing. Some real image are chosen as our processing object 

and then， input to DTCNN as both input signalls and initial states. After a few times 

iterative operations， desired results are obtained. Although the same function can 

also be carried by continuous-time CNN， time consuming differential operations are 

taken during the procedure and more iterative operations are required， Contrasting 

it， our DTCNN realized by software simulation can do them only with 5% or 10% 

computing cost， so it is faster and e伍cienterthan continuous-time CNN in this case. 

After then， we illustrate the potential of DTCNN for the visual pattern recognition. 

From a prototype composed by two or more types of elements， we can detect desired 

visual patterns successfully. When there exist obvious differences between these two 

types of elements， it is easily recognized by human vision system. But for some similar 

composed elements， it is said to be very difficult and time consuming for human vision 

system. For our DTCNN， after suitable template is designed， it is easily and quickly 
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to pick out our desired patterns from a prototype in both cases. This technique can be 

applied for robot vision. Finally， based on our convergent analysis result in Chapter 2， 

we design space-varying non-uniform DTCNN for multiple visual patterns recognition. 

In a non-uniform DTCNN， two or more templates are used for the cells lying in different 

region of 2-D processing array. Two examples are given七oshow the ability of non-

uniform DTCNN to detect multiple visual patte:rns from a prototype at the same time， 

which have distinct geometrical character 80 they can not be picked out by unique 

template at once. It extented the application region of our DTCNN more over. Since 

the weight matrix A and B contributed by two or more distinct templates are not 

symmetrical matrixes， or， Aij -=1 Aji and Bij 子三 Bji generally， the stability analysis of 

unsymmetric continuous-time CNN is still open problem and dose not been solved， the 

similar application by continuous-time CNN haβnot been reported until now. 
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Chapter 6 

Overall Conclusion 

As one point of our research， we presented a model of discrete-time cellular neural net-

work in 2th chapter， and analyzed its stability property with uniform or nun-uniform， 

symmetric or unsymmetric weight coefficients matrix. First， we showed the cell model 

of the continuous-time CNN， and some typical types of 2-D array structures briefly. 

After introducing a two pha.ses synchronous-updating signal into a continuous-time 

CNN， we obtained a synchronous-updating CNN， we called it a.s SCNN. By sampling 

the values of state variations Vi and output variations Yi at the updating moments 

t = kT， k = 0， 1， 2.・・" we derived a discrete-time CNN which topology and output 
function are distinct from the DTCNN presented by Harrer and r、~ossek. In general， 

the output of this DTCNN is a variable value during (-1， +1)， so that it can be 

used to image processing in which the output is a multiple grey level image. in or-

der to guarantee the output a.s a binary value to meet some special applications， a 

sufficient condition and a necessary condition are presented here， which provide the 

design requirement for the matrix A and the matrix B. Moreover， in order to analyze 

convergence condition of this DTCNN， the generalized energy functions for our SCNN 

and DTCNN are defined respectively. Here， we don 't directly compare the value of 

the energy function of DTCNN at two sequent of updating moments， which method 

is used by N.Fruehauf， L.O.Chua and E.Lueder for reciprocal DTCNN with the same 

output function. We analyze the energy function of SCNN during a clock period and 

around a updating moment， because the energy function is not continuous at those 

moments， which impact must be considered carefully. Two theorems about the conver-

gence condition of nonreciprocal and nonuniform SCNN are described first. Meanwhile， 

since the energy function of DTCNN is sampled and discreted from that of SCNN， two 

convergence conditions are also available to nonreciprocal and nonuniform DTCNN. 
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The result covers the reciprocal DTCNN as a special case， and provide the potential 

to apply our DTCNN more widely， for examples.， associative memories， multiple visual 

pattern recognitions and others. 

Owing toもhepiecewise linear character of the non-linearities， cellular neural net-

works depend crucially their nonlinear dynamics. Proper operation often requires the 

existence of multiple equilibrium points or DC operating points. Therefore， it is impor-

tant to have an efficient analysis method for obtaining a global picture of the dynamic 

behavior， the equilibrium pattern and the basins of attraction in a given network. It is 

a problem to find equilibrium points in CNN described by the state equation and the 

output equation. 

In the chapter 3， we present a modified BDF curve tracing method for this problem. 

The result shows this algorithm could be used efficiently to trace those solution curve 

with some sharp turning points. Specially， we want to point ouもthatthe Brown method 

is a kind of the Gauss-Seidel algorithm to be used for nonlinear algebraic functions. It 

is known that the convergence ratio is second ordler near to the solution. Furthermore， 

a number of the function evaluations is (N2 + 31V)j2 when the function consists of N 
functions. Observe that that the Newton method takes N2 evaluations of the partial 

derivatives and N evaluations of functions. Thus， the Brown method is e伍ciently

applied to trace solution curve， such that the approximate solution is obtained by 

Hermite polynomial. 

The algorithm presented here can be useful in the analysis of neural networks， e.g. 

during the design of templates for cellular neural networks. It can be appliedもolarge 

networks provided that the extreme sparity and the strucもureof the coefficients are 

exploited. The method can be applied for some types of neurons with smooth non-

linear output functions or piecewise linear output functions. In general， there does not 

seem to be much hope for an efficient way to find all equilibrium points in a given 

neural network unless appropriate guidelines are followed during the synthesis process. 

The artificial realization for the associative memory is one of the important prob-

lems on the neural network applications. In several books and papers， the ability of 

neural networks to implement associative memories has been discussed. First， the in-

formation of several prototypes are stored into a neural network and then， a signal is 

inputted to the network where some information from a prototype is lossed because 

of the distortions and noises during the signal transmission and processing. Then， all 

or most of original information can be recovered with the associative memory. The 



CHAPTER 6. OVERALL CONCLUSION 129 

researches on the ぉsociativememory can be directly applied to pattern recognitions 

and classifications. 

In the chapter 4， first， we describe the outer product learning approach to set up 

the weights with suitable values which is related to the object patterns information， 

it is called as storing object patterns into a cellular associative memoη'. Meanwhile， 

some analyses about the stationary property of the cellular associative memory with 

outer product learning rule are taken. A condition is presented which ensure the stored 

patterns as the stable states of a cellular associative memory. After then， a middle-

mapping learning algorithm for cellular associative memory is presented， which makes 

full use of the prope此iesof the cellular neural network so that every stored prototype 

can be guaranteed as an equilibrium point of our memory. At the same time， it 

has ability of iterative learning. This kind of computation is typical of a learning 

process: once the synaptic matrix has been computed from a given set of prototype 

vectors， the addition of one extra item of knowledge does not require that the whole 

c01nputation is performed again. One just has to carry out one iteration， starting from 

the previous matrix， so that the computational efficiency can be improved. Besides， 

its implementation with circuits is more feぉiblebecause the weight matrix is not 

symmetric. 

Since the synchronous updating rule is used in both of them， their associative speeds 

are very fast compared to the Hopfield associative memory. 

From the simulating results， we can find that， when the number of the stored pro-

totypes is increased or the distortion in a probe is strong， the associative ability is 

decreased and the probability of converging to spurious states is increased. It is similar 

with the situation in the other types of associative memory networks. But in a cellular 

associative memory， it is believable that we can extend the size of a neighborhood of 

our cellular associative memory to improve its associative ability. Unfortunately， the 

realization of circuits is get more difficult at the same time and the manufacture cost 

lS nsen. 

Differing with prior chapter， in the chapter 5， we apply our DTCNN to im乱gepro-

cessing with another view point. It is to consider DTCNN as a spatial operator. With 

appropriate choice of the connecting weights， the network can operate as a differen-

tiator， an integrator or even more complexer operator， which include the cooperative 

operation， the competitive operation and the mixed operation. Although many sim-

ilar tasks can be performed by current digital image processing techniques， DTCNN 
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will operate faster than the former， generally， since it is a parallel operator. First， we 

apply our DTCNN to the feature extraction and noise removal for the image process-

ing. Some real image are chosen as our processing object and input to DTCNN as 

both input signals and initial states. After a few times iterative operatiolls， desired re-

sults are obtained. Although the same function can also be carried by continuous-time 

CNN， more iterative operations are required and， moreover， time consuming differen-

tial operations are taken during each iterative. Contrasting it， our DTCNN by software 

simulation is faster and e伍cienter七hancontinuous-time CNN in this case. After then， 

we illustrate the potential of DTCNN for the visual pattern recognition. F'rom a proto-

type composed by two or more types of elements， we can detect desired visual patterns 

successfully. When there exist obvious differences between these two types of elements， 

it is easily recognized by human vision system. But for some similar composed ele-

ments， it is said to be very difficult and time consuming for human vision system. For 

our DTCNN， after suitable template is designed， it is easily and quickly to pick out 

our desired patterns from a prototype in both ca.ses. This technique can be applied for 

robot vision. Finally， based on our convergent analysis result in Chapter 2， we design 

space-varying non-uniform DTCNN for multiple visual patterns recognition. In a non-

uniform DTCNN， two or more templates are used for the cells lying in different region 

of 2-D processing array. Two examples are given to show the ability of non-uniform 

DTCNN to detect multiple visual patterns frorn a prototype at the same time， which 

have distinct geometrical character so they can not be picked out by unique template 

at once. It extented the application region of our DTCNN more over. Since the weight 

matrix A and B contributed by two or more distincももemplatesare not symmetrical 

matrixes， or， Aij =1= Aji and Bij =1= Bji generally， the stability analysis of unsymmet-

ric continuous-time CNN is still open problem and dose not been solved， the similar 

application by continuous-time CNN has not been reported until now. 

「:ε一 一竺=二孟



Appendix A 

A List of the Relat(~d Papers by 

the Author 

A.l Publications 

1. Chen He and Akio Ushida， "Iterative middle mapping learning algorithm for cel-

lular neural network"， Institute of Electronics， Info門nαtionαndCommunicαtion 

Engineers 1干ans.，vol.E-77 A， no.4， pp.706-715， 1994. 

2. Chen He and Akio Ushida， "A modified predictor-corrector tracing curve algo-

rithrn for nonlinear resistive circuits"， Institute of Electronics， Informαtion and 

Communicαtion Engineers Trαns.， vol.E-74， no.6， pp.1455-1462， 1991. 

131 



APPE1VDIX A. A LIST OF THE RELATED PAPERS BY THE AUTHOR 132 

A.2 International Conferences 

1. Chen He and Akio Ushida， "Convergence analysis of synchronous-updating CNN 

and related DTCNN"， Proc. 01 1993 117，t. Symp. 017， No17，li17，ear Theor. a17，d its 

Appl.， pp.29-34， Hawaii， American， 1993. 

2. Chen He and Akio Ushida， "Cellular associative memory with middle mapping 

learning algorithmぺProc.01 1993 117，t. Symp. 017， Neural Networ・kα17，dSignal 

Processing， pp.160-165， Guangzhou， China， 1993. 

3. Chen He and Akio Ushida， " An efficient algorithm for solving nonlinear resistive 

circuits"， Proc. 01 1991 1EEE 117，ter17，αtionαl Symposium on Cir‘cuitαnd System， 

pp.2328-2331うSingapore，1991. 

五 竺二孟



APPENDIX A. A LIST OF THE RELATED PAPERS BY THE AUTHOR 133 

A.3 Technical Reports ancl Other Presentations 

1. Chen He and Akio Ushida， "Non-uniform discrete-time cellular neural network 

and multi-patterns recognition"， Technical Report of the Institute of Electronics， 

Informαtionαnd Communicαtion Engineers， vol.NLP94-11， pp，1-8， 1994. 

2. Chen He and Akio Ushida， "Cellular associative memory with the pseudo pro-

j ection learning algori thmぺTechnicalReport of the Institute of Electronics， In-

formationαηd Communication Enginee1司 vol.NLP92-97，pp.41-46， 1993. 

3. Chen He and Akio Ushida， "Cellular associative memory with middle mapping 

learning algorithm"， Pr‘oc. of IEICE 1993 Nationαl Conference， p. SA-1-1， 

N agoya， 1993. 

4. Chen He and Akio Ushida， "The stationary analysis of the associative memory 

with the cellular neural network"， Proc. of 1992 IEICE Symp. on NonlineαT 

Theor. and its Appl.， pp.131-135， Hakone， 1992. 

5. Chen He and Akio Ushida， "Analysis of the model of Hopfield circuit with homo-

topy method"， Proc. of IEICE 1991 N，αt2:onαl CO'T吹rence，p.(1)84， Tokushima， 

1991. 






	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142

