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Chapter 1

General Introduction

1.1 Background

1.1.1 The neuron

The human brain is one of the most complicated things that we have studied in detail,
and in the same time, is poorly understood on the whole.
The neuron is the basic unit of the brain, it is shown in Fig.1.1.
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Figure 1.1: The structure of the neuron
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The soma is the body of the neuron. Attached to the soma are long, irregularly

sharped filaments, called dendrites. The dendrites act as connections through which
all the inputs to the neuron arrive. Another type of nerve process attached to the soma
is called an axon. This is electrically active and serves as the output channel of the
neuron. The axon terminates in a specialized contact called a synapse that couples the
axon with the dendrites of another cells.
The dendrites can perform addition on the inputs. The axon is a non-linear device,
producing a monotone increasing output voltage when the resting potential within
the soma varies over a certain critical threshold. The contact strength between the
dendrites and other neuron’s synapse is different from another.

1.1.2 Development of artificial neural networks

The year 1943 is often considered as the initial year in the development of artificial
neural networks(l). McCulloch and Pitts(?l outline the first formal model of an elemen-
tary computing neuron. The model included all necessary logic computing element.
Although the implementation of this model was not technologically feasible in that era,
their model laid the groundwork for future developments.

Donald Hebbl! first proposed a learning scheme for updating neuron’s connections
that we now refer to as the Hebbian learning rule. He stated that the information
can be stored in connections, and postulated the learning technique that had a pro-
found impact on future developments in this field. Hebb’s learning rule made primary
contributions to neural networks theory.

During the 1950s, the first neuron computers were built and tested[4]. They adapted
connections automatically. During this stage, the neuron-like element called a percep-
tion was invented! °l. It was a trainable machine capable of learning to classify certain
patterns by modifying connections to the threshold elements. The idea caught the
imagination of engineers and scientists.

Despite the successes and enthusiasm of the early and mid-1960s, the existing learn-
ing theorems in that time were too weak to support more complex problems. Mean-
while, the artificial intelligence area emerged as a dominant and promising research
field, which took over, among others, many of the tasks that could not be solved by
neural networks of that time. the research activity in the neural network field had
sharply decreased.

During the period from 1965 to 1984, further pioneering work was accomplished by
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a handful of researchers. The study of learning in in networks of threshold elements
and of the mathematical theory of neural networks was pursued by S.Amaril®7]. Also
in Japan, K.Fukushima developed a class of neural network architectures called as
neocognitronsls]. The neocognitron is a model for visual pattern recognition and is
concerned with biological plausibility. The network emulates the retinal images and
processes them using two- dimensional layers of neurons.

Associative memory research has been pursued by, among others, T. Kohonen(9-11]
and J.A.Andersonl!2]. Unsupervised learning networks were developed for feature map-
ping into regular arrays of neuronsl10], S.Grossberg and G.Carpenter have introduced
a number of neural architectures and theorems and developed the theory of adaptive
resonance networks(13:14],

During the period from 1982 until 1986, several seminal publications were published
that significantly furthered the potential of neural networks. The era of renaissance
started with J.J .Hopﬁeld[15’ 16] introducing a recurrent neural network architecture
for associative memories. His papers formulated computational properties of a fully
connected network of units.

Another revitalization of the field came from the publication in 1986 of two volumes
on parallel distributed processing, edited by J.McClelland and D.Rumelhart!!”l. The
new learning rule and other concepts introduced in this work have removed one of the
most essential network training barriers that grounded the mainstream efforts of the
mid-1960s.

Beginning in 1986-87, many new neural networks research programs were initiated.
Among of them, the researchs of cellular neural network theorems and applications are
very activity and developed in surprising speed.

1.1.3 Cellular neural networks

Cellular neural network(CNN) is a nonlinear dynamical analog processing array having
a 2-, or 3-dimensional grid architecturel!® 191, There are only finit local connections
from each processing cell to their adjacent elements, so that it is very suitable for
the tasks where signal values are placed on a regular 2-D or 3-D geometric grid and
the direct interactions between the signals are limited within a local neighborhood[20].
Differing from general neural networks, CNN cells capture the geometric, nonlinear,
and/or delay-type properties in the interaction weights. Also differing from Hopfield
network, due to their local connectivity, CNN can be easily realized with VLSI tech-
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nique. Meanwhile, the range of dynamics and the connection complexity are inde-
pendent of the total number of processing cells, the implementation is reliable and
robust.

Since 1988, just in a short period, it has given rise to wide interests in the theo-
retical researches for various generalizations and their applications in the areas like
as image processing, pattern recognition, robot vision, motion detection and oth-
ers. T.Roska and L.O.Chua presented a structure with nonlinear and delay-type
templates[m], H.Harrer and J.A.Nossek extended the continuous model to discrete-time
architecturel22]. At the same time, many other researchers also make significant contri-
butions to the CNN paradigm, which have been documented in some proceedings[23’ 2
and special issues(25: 26],

1.2 Purpose of this study

In Chapter 2, first, we will show the cell model of the continuous-time CNN, and
some typical types of 2-D array structures briefly. After introducing a two phases
synchronous-updating signal into a continuous-time CNN, we obtain a synchronous-
updating CNN, we call it as SCNN. By extracting the values of state variations v; and
output variations y; at the updating moments ¢ = kT, k = 0,1,2.---, we derive a
discrete-time CNN which topology and output function are distinct from the DTCNN
presented by Harrer and Nossek. With the dynamic route method, the dynamical
properties of out DTCNN are analyzed. Moreover, the generalized energy functions
for our SCNN and DTCNN are presented respectively. After then, two convergent
theorems for our DTCNN are described. Since these convergent theorems are suitable
for generalized non-uniform DTCNN, they provide the potential to apply our DTCNN
more widely, for examples, to multi-types of visual patterns recognition, associative
memories and others.

In Chapter 3, we present a modified BDF curve tracing method. The results shows
this algorithm could be used efficiently to trace those solution curve with some sharp
turning points. Specially, we want to point out that the Brown method is a kind of
the Gauss-Seidel algorithm to be used for nonlinear algebraic functions. It is known
that the convergence ratio is second order near to the solution. Furthermore, a number

of the function evaluations is (N? + 3N)/2 when the function consists of N functions.
Observe that that the Newton method takes N? evaluations of the partial derivatives
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and N evaluations of functions. Thus, the Brown method is efficiently applied to trace
solution curve, such that the approximate solution is obtained by Hermite polynomial.

The algorithm presented here can be useful in the analysis of neural networks, e.g.
during the design of templates for cellular neural networks. It can be applied to large
networks provided that the extreme sparity and the structure of the coefficients are
exploited. The method can be applied for some types of neurons with smooth non-
linear output functions or piecewise linear output functions. In general, there does not
seem to be much hope for an efficient way to find all equilibrium points in a given
neural network unless appropriate guidelines are followed during the synthesis process.

In Chapter 4, first, we describe the outer product learning approach to set up the
weights with suitable values which is related to the object patterns information, it is
called as storing object patterns into a cellular associative memory. Meanwhile, some
analyses about the stationary property of the cellular associative memory with outer
product learning rule are taken. A condition is presented which ensure the stored
patterns as the stable states of a cellular associative memory. After then, a middle-
mapping learning algorithm for cellular associative memory is presented, which makes
full use of the properties of the cellular neural network so that every stored prototype
can be guaranteed as an equilibrium point of our memory. At the same time, it
has ability of iterative learning. This kind of computation is typical of a learning
process: once the synaptic matrix has been computed from a given set of prototype
vectors, the addition of one extra item of knowledge does not require that the whole
computation is performed again. One just has to carry out one iteration, starting from
the previous matrix, so that the computational efficiency can be improved. Besides,
its implementation with circuits is more feasible because the weight matrix is not
symmetric.

Since the synchronous updating rule is used in both of them, their associative speeds
are very fast compared to the Hopfield associative memory.

In Chapter 5, first, we apply our DTCNN to the feature extraction and noise remove
for the image processing. Some real image are chosen as our processing object and
then, input to DTCNN as both input signals and initial states. After a few times
iterative operations, desired results are obtained. Although the same function can
also be carried by continuous-time CNN, time consuming differential operations are
taken during the procedure and more iterative operations are required, Contrasting
it, our DTCNN realized by software simulation can do them only with 5% or 10%
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computing cost, so it is faster and efficienter than continuous-time CNN in this case.
After then, we illustrate the potential of DTCNN for the visual pattern recognition.
From a prototype composed by over two types of elements, we can detect desired visual
patterns successfully. When there exist obvious differences between these two types
of elements, it is easily recognized by human vision system. But for some similar
composed elements, it is said to be very difficult and time consuming for human vision
system. For our DTCNN, after suitable template is designed, it is easily and quickly
to pick out our desired patterns from a prototype in both cases. This technique can be
applied for robot vision. Finally, based on our convergent analysis result in Chapter 2,
we design space-varying non-uniform DTCNN for multiple visual patterns recognition.
In a non-uniform DTCNN, two or more templates are used for the cells lying in different
region of 2-D processing array. Two examples are given to show the ability of non-
uniform DTCNN to detect multiple visual patterns from a prototype at the same time,
which have distinct geometrical character so they can not be picked out by unique
template at once. It extented the application region of our DTCNN more over. Since
the weight matrix A and B contributed by two or more distinct templates are not
symmetrical matrixes, or, A;; # Aj and B;; # Bj; generally, the stability analysis of
non-symmetric continuous-time CNN is still open problem and dose not been solved,

the similar application by continuous-time CNN has not been reported until now.
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Chapter 2

Discrete-time Cellular Neural
Network

2.1 Introduction

In this chapter, first, a continuous-time cellular neural network(CNN) presented by
Chua and Yangll], and the network grid structure are introduced, their basic prop-
erties of continuous-time CNN are briefly described here. After then, as our study, a
synchronous-updating clock signal is introduced into an original continuous-time CNN,
by sampling the output values at a series of updating moments, we obtain another
type of discrete-time CNN which circuit topology is different from that by Harrer and
Nossekl2l. After then, some detail analyses about the dynamical property and stability
of out DTCNN are performed. The results show that, if the parameters in the tem-
plates are designed carefully so that the convergent sufficient conditions are met, the
generalized energy function is monotone decreasing and the stability of DTCNN can
be guaranteed.

Cellular neural network(CNN) is a locally connected, nonlinear dynamical analog
processing array having 2-, or 3-dimensional grid architecture. One processing element,
called as a cell, with piecewise linear output function template is shown on Figure 2.1.

In general, all cells are arranged on a 2-D geometrical regular grid(one layer), but
this layer can be duplicated to form 3-D multilayer CNN if it is required. Some typical
2-D regular grids are shown in Figure 2.2.

For simplicity, in this study, we just consider the case in which a 2-D rectangular
regular grid with M rows and N columns, as Figure 2.2(a), is used. In this grid, each
square represents a CNN cell. The ¢(i, j) denotes a cell lying in ith row and jth column.

16
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Figure 2.1: A continuous-time CNN cell
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Every cell just only connects directly with near cells, which constitute a neighborhood
N, around that cell, and the neighborhood of ¢(¢, j) is denoted by N,(7, ). The radius
of the neighborhood N, is denoted by r, the number of the cells in N, is equal to
(2r+1) x (2r +1).

For the cell circuit shown in Figure 2.1, a state equation and an output equation of
a continuous-time CNN are written as follows:

d 17 t 1 - g, =
C%() = -z ui(t) + Y. Al gk Dyu(t)
& c(k‘,l)EA.'V,-(l',j)
Y Bk Duu®)+1 (2.12)
c(k)EN,(1,5)
1
yii(t) =5 vi(t) +1] = | wis(t) = 11) (2.1b)

Vie{l,2,---,M}, Vie{L2---,N}

In order to analyze system character easily, we rearrange all cells into one-dimensional

vector form in the order of rows. Then, the cell is denoted by ¢(i),i € {1,2,---,n} and
n=MXxN.
Corresponding to this description style, we define a matrix S € R"*" as
_ .. si=1 c(j) € Ne(2)
S= {s,] " 8;; =0 otherwise (2.2)

In this way, the continuous-time CNN is described by following equations.

c‘fl—‘t’ o k(R L) + B4 7 (2.3a)

y(t) = sat(v(t)) (2.3b)

where
vER ueR yeD"={yeR": -1<y<1l,i=1,---,n}
1
A € R™" =diag[\ --- A] WithA=F>O;

¢

AeR™"={A;; 1<i<n, 1<j<n};
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Here, both A and B are sparse matrixes. Their elements satisfy the following condi-
tions:
A,'j = A,'j = S.'j (2.3C)

B;; = Byj - s;; (2.3d)

It means that, when s;; = 0, A;; and B;; are equal to zero, but in other case, they
are equal to arbitrary real number decided by the particular purpose of CNN.

IER"E{I] I --- In}

sat(v(t)) = [sat(vi(t)) sat(va(t)) --- sat(va(t))]”

) v >1
sat(vi) =4 v -1<v<1 (2.3e)
-1 < -1

When the next two conditions are met,
() <1, fu] <1 (2.4)

the range of dynamics is bounded by a single number M which can be calculated in
terms of the cloning templates:

M = max{|vi(} = max{l + R;|I|+ R, ) (|4y4]+|Byl)} (2.5)
c(5)EN (%)
Moreover, if the following condition is satisfied,

il
Ay > —R_z (2.6)

for symmetric continuous-time CNN, its stability can be proved. Then, the conver-
gent results can be derived as follows:

Hm | v;(t) |> 1 (2.7)
|
Jim i(t) = %1 (2.8) |
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2.2 Discrete-time cellular neural network

In this section, we build up a model for our discrete-time CNN. First, a state updating
signal is introduced into a cellular neural network, so that a synchronous-updating
cellular neural network(SCNN) is obtained. which means that, at the kth updating
time t = kT, the states of all cells are altered simultaneously. Here, T' describes the
updating period in our SCNN, According to this rule, a cell of SCNN is shown as
Figure 2.3(a).

: P
Bi vt - Vri(t
‘(.) 20 | Yei @)= (b) Piecewise-linear output function

y;®

1] s B

Ry ° o o } Cy;- I Iy T
b - L

L T )T
(a) A cell ¢(i) of SCNN {c) Clock signal for SCNN

Figure 2.3: A synchronous-updating CNN cell

® and @ in Figure 2.3(a) are a clock signal and its inverse, they control two updating
switchs respectively. @ is shown as Figure 2.3(b). C, and C, are two sample-hold
capacitors.

During ¢7, phase of the kth clock period, t € (kT, kT + T1],k=0,1,2,---, ® =1,
& = 0, the terminal voltage v;(t) in C, is kept as its initial value v;(t) = vi(k), k = kT
The voltage-controlled voltage source y;(t) = sat(wv;(t)) is also a constant during this
phase, denoted by yi(k). The capacitor C, is charged by the voltage source y;(k)
through the resistance R,. Since the value of R, is a very small and in the order of
the internal resistance of the voltage source y;(t), this charge is finished quickly in very
short time, we can write y.,(t) = y:(k) after the transient response, about 2.3R,C,, is

completed. The voltage vg,(t) is determined by the resistance R,, the current source
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I; and the voltage-controlled current sources A;;y;(t) and Byu;, j € N.(i). The
equivalent circuit is illustrated in Figure 2.4, it is a one-order nonlinear dynamic circuit.

“Oi vi®) Vri® o Ta®
Ry
1i Yi(k)
® DO T
Ry I Cy
i e

Figure 2.4: The equivalent circuit of SCNN cell during ¢,

A state equation and an output equation of this circuit model are

o — (v - set(u ()] (2.99)
Ya(t) = _%[__‘R}_v}zi(t)+iAiijj(t)+iBijuj+Ii] (2.9b)
11 x .11;} =1

Then, we consider the ¢r, phase of the kth clock period, ¢t € (kT + T3, (k+ 1)T]
and ® = 0 & = 1 in Figure 2.3. The piecewise linear voltage-controlled voltage source
yi(t) is varying with the voltage v;(t), but since ® = 0, it has no feedback effection to
vi(t) during this phase. The one-order dynamic circuit is consists of C,, R, I; and
the voltage-controlled current sources Aj;y.,(t) and Bjju;, here, y. (t) is the terminal
voltage in C, of the jth cell. Since the terminal voltage y.,(t) = wi(k), i = 1,2,---,n
is held as a constant here, this dynamic circuit is equivalent to a linear RC dynamic
circuit, the initial value of the terminal voltage in C, is determined by v;(¢) in previous
clock updating moment t = kT, i.e., v;(k). Obviously, after 2.3R,C,, the transient re-
sponse is settled to zero, the circuit must convergent to its steady state. The equivalent
circuit is shown in Figure 2.5.

Corresponding to this circuit model, we can derive a state equation and an output
equation as follows:

Ce dt

1 n n
— 5. %) + 2 A yi(k) + 2 Bijuj + I (2.10a)
T j=1

j=1

yi(t) = sat(vi(t)) (2.10Db)

in
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ui  vi® VRi(®) ¥ yi&)
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Figure 2.5: The equivalent circuit of SCNN cell during ¢,

In contrast to continuous-time CNNs, y;(k) in the state equation (2.10a) is a sampled
state of output variant at the kth updating time ¢ = kT and is held in the capacitor
Cy. The feedback strength 37_, A;;y;(k) from the neighbor cells to a cell ¢(i) remains
a constant value for t € (kT (k+1)T), but the variants v;(t) and y;(t) in the equations
are varying continuously with time ¢.

The equations (9) and (10) describe the state and output equations of SCNN in ¢r,
and ¢, phases respectively. Combining them together, we get a set of equations to
describe SCNN in a whole clock period.

When t € (kT, kT + T ]

dy.,(t) 1

C g = lbe(t) —sat(w(®) (2.11a)

1 1 n n
Ye:(t) = _I[_R_UR‘(t) + > Aijye;(t)+ > Biju; + 1]  (2.11b)

11 z =1 j=1

Y .
When t € (kT + T, (k+1)T]
dv;(t 1 = 2
G, I vi(t) + Y Aijyi(k) + Y Biju; + I (2.11c)
yi(t) = sat(wv(t)) (2.11d)
k=01,2,---, Vie{1,2,---,n}

In order to derive a DTCNN, extracting the state variable v; and the output variable
y; at a series of updating moments ¢ = kT, k = 0,1,2.---, and assume the updating
interval is long enough, i.e. T > 2.3R,C,, then, after the transient response has
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decayed to zero, dv;(t)/dt = 0 is kept at every updating moment. In this case, we can
obtain the following discrete-time equations from the equation (11).

1 £ i
—RT'U.‘(’C . 1) = 2:1 Aw'j yj(k) + z:l Biiu; + I; (2.12a)
T J‘= j=
yi(k+1) = sat(vi(k+1)) (2.12b)
=11, %+, ViE{l,Q,-“,n}

They describe the state and the output of our discrete-time CNN. Here, we derive
a discrete-time CNN which topology is distinct from the DTCNN presented by Harrer
and Nossek, but has more tighter corresponding relation with continuous-time CNN.
Moreover, we can write them as vector equations as follows.

R—v(k +1) = Ay(k)+Bu+1I (2.13a)
y(k+1) = sat(v(k+1)) (2.13b)
where £k =0,1,2,---, v, y,u, I € R*, A BeR"™™

2.3 Dynamical range of our DTCNN

In order to implement physical DTCNN, we need to investigate its dynamic range. In

an continuous-time CNN, the topology of the network is unvaried, its dynamic range

has been proved for the initial state |v;(0)] < 1. But in our network, the topology

is time-variant, the initial value of v; in each updating period is obtained from the
steady-state value of the last updating period, so that its initial value may be changed

within its dynamical range. To get the dynamic range of synchronous-updating CNN, |
let us consider the equivalent circuit shown as Figure 2.6.

In Figure 2.6, I; = 7-1 A y;(k) + Xj-y Biju;. While in ¢7, of the kth clock
period, ® = 0,® = 1, v; = vp,, assuming Ty > 2.3R,C,, when t = (k+1)T, the circuit
converges to its steady state. Analyzing the equivalent circuit in steady state, we can
get the maximum value of v;(?) in steady state as follows.

vi(t) = R (Li+1I)
= Rz[iA,Jy](k)“}'iBou'FI']

=1 =1

———
|'_|'J L
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Figure 2.6: The equivalent cell circuit of SCNN

< Ry lys(R) |+ 301 Byl Juj |+ L] ]

< R DA+ | Bil lui |+ L] (2.14)
=1 |
here, we define
n n
Umaz = Re { max[d | Ay | + Y| Bij| |uj| ]+ | L } (2.15)
j=1 =1

Next, in ¢r, phase of the next clock period, t € ((k+ 1)T,(k+ 1) T +T1], ® =
1, ® =0, v;(t) is held as v;(k + 1), but from (2.11b), we have

n n

’Um(t) = R,, [z A,-,—yj(t) + Z B,'ju]' & Ii]
j=1 j=1
Obviously,
tn; (5) 5 Opnte te((k+1)T,(k+1)T+T1]

The value of the voltage source y;(t) depends on v;(t), so that during this phase it
is also a constant. We denote it as y;(k + 1). By charging to C,, it is stored in C,. In
the following ¢7, phase, t € ((k+ 1)T + T3,(k+2)T], ® = 0 and & = 1 again, the
dynamical character of this cell is described as
d’U,’(t) 1 L

= ——=v;(t i Yi(k+1

J=

Ce

> Biju;+1I;
1

j=
where t € ((k + 1)T + T3, (k + 2)T']. !

In order to analyze the transient response, we solve this equation, the initial voltage
in C, is v;(k + 1) obtained previously, thus we get
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vi(t)
= v -S4 (k+1)+3 Byu; +I; i
vi(k +1)e RC ij Ui (k + )+J§ ij uj + Ii] k+1)T+T1€ R:Cz dT
= vi(k+1) e_t— k;z%i:-T SR C_[Z Aij yj(k +1)+ ZB,']' u; + LR, C.[1- e@}%};‘]
- =
= w(k+1)e "FED LR Y Ay ik +1) +ZB,,u,+I](1—eﬁﬁR:%?‘i)
9=l

where t € ((k+1)T + Ty, (k + 2)T|.
Then, we obtain the maximum value of v;(t) during whole ¢7, phase.

()] < [o((k+DT) | " FE 4 RS Ay ys(k+1)

i=1
(k+1)T+Ty —t
+ZB,,u,+I|(1-e Rt )
j=1
lvmaa:|

In this way, the biggest dynamical range of our DTCNN is illustrated as

|v;(t)| < |Vmae| forall t

and
Umae = Re { | Ii| + max[} " | Aij | + D | Bij| |u;|] } (2.16) |

Here, the maximum value of v;(t) is less than that of the continuous-time CNN, in
addition of that, the required initial condition |v;(0)| < 1 is also eliminated.

2.4 DTCNN with binary output

From previous analysis, we proved the dynamical range of state variables in SCNN.
Since a DTCNN is derived from a SCNN by extracting the states and outputs at a
series of discrete time t = 0,7,2T,---, in general, the values of the state variables in
DTCNN is a set of arbitrary numbers which amplitudes are less than |v,,,.|. Then, the [
output y;(k + 1) in DTCNN is a variable from -1 to +1, its value is determined by the ‘
state variable v;(k + 1) with (2.12b). But for some applications, the binary output is

required. In this section, we give two theorems to describe the sufficient condition and ‘
necessary condition respectively to guarantee a set of binary outputs in our DTCNN.

..
- A
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Theorem 2.1 If the following condition is satisfied, the output of DTCNN must be
equal to +1 or -1.

| A | 25 + YAyl + | Y- Bijus| + |1] (2.17)
:1 j=1
7&:

Proof: From (2.12a), we have

1
—uvi(k+1)= ZA.] y; (k) +X:B,J u; + I
R j=1 g=il
When the output amplitude |y;(k + 1)| is equal to 1, the amplitude of state variable

must be greater than 1 or equal to 1, |v;(k + 1)| > 1. so that we have

1

|ZA:_1 y] k)'l'ZBlJ Uj +I| E’ (2'18)
J= j=1 2

Since

1> Aijyi(k) + > Biju;j + I

j=1 j=1

> 1> Aiyi(k)| — | Y- Bijug| — |1,
j=1 j=1

> |Aayi(k)| = D | Asyi(k)| — | D Bijuj| — | I
i=1 =1
i

> |Auyi(k)| — E | ;| - Bu uj| — |1l (2.19)
]:1 ]=1
i#i
From (2.18) and (2.19) we can find that when the equation (2.17) is met, |v;(k+1)| >
1, then, |y:(k + 1)| = 1, the output is a binary value.

=
In the next theorem, we give the necessary condition for a binary output in DTCNN.

Theorem 2.2 If the output y,(k+1) of DTCNN is a binary value, the following relation
must be satisfied.

1 n n_
|Asi| > B > 1Al = 1 Bijuj| — | (2.20)
T 7= =1
i
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Proof: When the output y;(k + 1) of DTCNN is a binary value, we must have
|vi(k 4+ 1)] > 1 so that

n n 1
| Asjyi(k) + 3 Biju; + Ii| 2 +- (2.21)
j=1 =i Rﬁ:
Since
|2 Aijy;(k) + X Biju; + Iif
j=1 j=1
< Al + Y|4 + 1D Bijuj| + |1 (2.22)
Jj=1 Jj=1
J#i

Considering the equation (2.21), it can be found when |v;(k + 1)| > 1, the equation
(2.20) must be satisfied.
O
From above two theorems, it is known when the templates for DTCNN are designed
to meet the equation (2.17), DTCNN can be used to realize the mapping from R™ to
B™ so that the equation (2.13) can be written as

1

7 V(k+1) = Ay(k)+Bu+I (2.23a) |

y(k+1) = sat(v(k+1)) (2.23b)
where £k =0,1,2,---, v, u, € R* y€ B*, A, Be€ R,

2.5 Stability analysis of DTCNN

In other chapters, we will give the applications of our DTCNN to image processing,
include associative memory and visual pattern recognition. In these applications, first,
a probe image with multiple gray level is inputted into DTCNN as its initial state at
t = 0. Then, by some times of updating, final stable state is obtained, which means
that the subsequent set of state are the same totally, no state change is risen by a clock
signal. This final stable state is corresponding to an equilibrium point distributed in
DTCNN'’s dynamical space. The output in the final stable state is an object image. |
In general, a pixel in the object image is a multiple gray value, but if the matrix A
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and the matrix B are designed to meet the sufficient condition (2.17), the pixel in the
object image is only binary value +1 and —1.

It is known that one of the most effective technique for analyzing the convergence
properties of dynamic nonlinear circuits is Lyapunov’s method. This method is also
used by N.Fruehauf, L.O.Chua and E.Lueder for convergence analysis of reciprocal
DTCNN with continuous nonlinearities! 4], but their result is just suitable for reciprocal
DTCNN, not for general case.

In this section, first, Lyapunov energy functions are defined to SCNN and DTCNN
respectively. Then, the convergence condition is analyzed for SCNN. Since our DTCNN
is obtained by extracting a series of updating moments from SCNN, all convergence
analyzing results are easily extended to DTCNN. Our basic object is concentrated on
general case, i.e., nonuniform and nonreciprocal DTCNN, which covers a reciprocal
DTCNN'’s convergence condition by N.Fruehauf, L.0O.Chua and E.Lueder just as a
special case.

First, we define a generalized energy function for SCNN as follows:

n

BO) = -5 53 Asu(Ou) - 33 Byu(®)w

i=1 j= i=1 j=1

+3 L0 - LIl (224)

=1

where t € (kT, (k+1)T], k=0,1,2,---

yi(k) in the equation (2.24) is a constant, y;(t) is a variable during ¢r,, but in ¢,
phase, y;(t) is kept as a constant so that E(t) is invariant in this phase. At the updating
moments of t = (k+1)T, k=0,1,2,---, the value of y;(k+1) is substituted into y;(k),
so that F(t) may jump at those moments.

Meanwhile, a generalized energy function for our DTCNN is defined as follows:

Ek+1)= zn: iA,J vi(k + 1) y;(k) - ZEB,J yi(k + 1) u;
Zn: yi(k+1) - EI vi(k+1) (2.25)
1' =1

Since the energy function denoted in (2.24) is consists of four sums of finite items,
obviously, it is bounded, and then, we will prove that if the convergent conditions are
met, this energy function is a uncontinuous monotone decreasing function, so that the

differential of E(t) to time T is equal to zero when T is tending toward infinite.
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_dE(t)

Differing from the continuous-time CNN, here, the E(t) is an uncontinuous monotone
decreasing function so that this equation has two meanings, first, it denotes that E(t) is
kept as a constant during ¢, phase, but it is monotonely decreasing within ¢, phase.
Second, around an updating instantaneous, the value of E(t) may be suddenly changed,
but its monotone decreasing property is still remained, so that the instantaneous value
of E(t) under a updating must less than or equal to the previous value before this
updating. This situation is illustrated in Figure 2.7. During every period, E(t) is
continuous decreasing, but at some updating moments, for examples, at t = (k — 1)T
and t = (k + 1)T, it is reduced uncontinuously.

E()

! 1 1 1 1 | | 1 1 t

&-DT kT &+1)T

Figure 2.7: Uncontinuous monotone decreasing E(t) curve

At the same time, from (2.24), we can find '

dE(t)
F BN
—;;A,, J(k)dy'(t ;21 B u; dy,(t) 132 (1) ) dy,(t ; 1d3§§t)
(2.27) K

where t € (KT, (k+1)T]
so that if the convergence conditions are met, the differential of y;(t) to time T is
also equal to zero when T is tending toward infinite.

3
I
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lim dy,_(t) =D
t—oo dt
It means not only during every phases ¢r, in early stage, after the transient response,

(2.28)

the stable state and output can be obtained, but also after some times of updating,
the state and output are always stabilized in whole updating period.

Next, we provide the monotone decreasing conditions for DTCNN in two theorems.
In the first theorem, a sufficient monotone decreasing condition of E(t) is proved for
general SCNN. Then, it is extended to DTCNN in a corollary. Another sufficient
monotone decreasing condition for E(t) is proved on the worst-case in the second
theorem. This condition is stricter than the condition in the first theorem, but it is
convenient to be used.

For analyzing the transient variance around the kth updating moment, first, we
introduce a definition

Definition 2.1 Let ¢ € R, € > 0 and € is small enough. To describe the time round
the kth moment, we define
t=kT- =kT —¢

t=kTt=kT+e¢

Similarly, for the energy function E(t) and the output function y;(t) at those mo-
ments, we define them as follows respectively. |

E~(k) = E(t)li=kr- E*(k) = E(t)|=sr+ :

yi (k) = yi(®)le=kr- (k) = 4i(t)|emir+

Next, we give a theorem about monotone decreasing property of the energy function )
of our SCNN with reciprocal or nonreciprocal weight matrix. :
|

Theorem 2.3 The generalized energy function of a synchronous-updating CNN is
monotone decreasing if the relations (2.29) and (2.30) are satisfied.

(1) when yy(k) = —1 and yy(k + 1) = 1, then E
Ap 2 =D Apyf(k+1) (2.29) |
i=1
i#p

-
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(2) when y,(k) =1 and yo(k + 1) = —1, then

App 2 iA.-p Y (k+1) (2.30)
=
Vp e {1,2,---,n}
If ”>7 in above equations are changed to ”>7”, the energy function is strict monotone

decreasing, so that oscillation with limited cycle length does not exist in our DTCNN.

Proof: Differing from the proof in original continuous CNNs, our proof is divided
into two steps, first, it must be proved that E(t) is monotone decreasing within a
updating period, i.e. t € (kT,(k + 1)T'| However, because of ® = 0 in ¢r,, v;(t) and
yi(t) = f[vi(t)] is a constant, E(t) is also retained as a fixed value, in fact, it just require
to prove E(t) monotone decreasing in ¢, phase. Second, at the moment of t = (k+1)T,
the network is updated by the clock signal, it substitutes y;(k + 1) instead of y;(k)
in energy function, we must prove that the value of E(t) will be reduced or remained
after undergoing one time of updating. It means that the monotone decreasing of E(t)
is kept throughout a series of updating periods until the network converges to its final
stable points.
(1). First, during ¢7,, the energy function can be written as:

B(t) = - 3°3° Ay (®) us (k) + () (2.31) |

i=1 j=1
where

E(t) = 2R,, Z_:y?(t ZEB-Jys(t ZI vi(t) "

i=l j=
Then, the differentiation of E(t) with respect to time ¢ is denved from above equa-

tions. t

dE(t) e dyi(t) dv,(t) = dyi(t)  du(t)
Tdt 2.2 Ay dui(t)  dt ui(k )-}_R_hz;dv.(t) i)

=] y=i

non o gu(t) dut) " dy(t) dui(t)
p2p> ffa—(zj'wt—'”f‘szdv,.(t)' &

=1 5=l
2 dyi(t)  dui(t o
= Z; dg Et it )[ZAu yi(k) — - wi(t) + > Biju; + I;] | }
1 y— :L' ]=1
" ody(t -
5> “[EIA.,yJUc - )+ 3 By + 1 !
=] = < A=
Jui|<1 |

S

L
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According to the cell circuit equation (2.10a), it can be derived as follows:

dE(t) dv,(t)

Z C, [— (2.32)
|v.|<1

This conclusion is the same as in the continuous-time CNN[1], but the required

constraint condition of A;; = A((,&;m,n) is eliminated here, so that the conclusion

(2.32) is suitable to both reciprocal and nonreciprocal synchronous-updating CNN.

(2). As mentioned above, at the updating moment of ¢t = (k + 1)T', y;(k) in (2.13)
is replaced by y.,(k + 1) so that the energy function may be not continuous at that
point, a step change of the value of E(t) may exist at ¢ = (k+1)T". It is obvious that if
the relation E*((k + 1)T) < E~((k + 1)T) is satisfied, then, the monotone decreasing
of E(t) through any two sequent updating periods can be guaranteed. In order to do
so, we compare y;(k + 1) with y;(k) on three cases.

i). vpe {1,2,---,n}
yp(k +1) = yy(k)
then
Etf(k+1)=E(k+1)

ii). 3p € {1,2,---,n} |
yp(k) = =1, but y(k+1)=1

It means the voltage on the terminal of the capacitor C, is inverted from —1
to +1 in ¢p, phase after (k + 1)th clock signal. We can write E~(k + 1) and
E*(k + 1) respectively as follows: Lt

E-(k+1) = [- 33 Agu®) yk) + BQ - (233) R

i=1j=1
where E(t) is the same as that in (2.31).

Since y;(t) is variable continuously at t = (k+1)T', based on the circuit character N
analyzed previously, it is known that if ¢ is chosen small enough, yf(k +1) =
y7 (k+1) and E+(k+1) = E~(k +1). Then, we get

Ef(k+1)

_—..-_
Ol
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n n

= [- Z:l Z_:l Aij yi(t) yi(k + 1) + E(t) le=gerryr+

= {2 2 45w yi(k) +2 2: Aip () Yok + )] + E(®) Hemgerryr+

i=1j=1

= E(k+1)—23 Apui(t) yp(k + lemesnyr+ (2.34)

ge=

As it is assumed

ypk+1)=1

we derive

E*(k+1) = E~(k+1) — 23 A te(Blecqesayrs (2.35)

=il

According to (2.29) and yf (k + 1) = yp(k + 1) = 1, we have

Apyy (k+1) > ~ Y A Uil e=ernyr+
i=1
i#p
and ]
Y Ap¥i(®)li=esyr+ 20

=1l

Substituting it into (2.35), it can be found that, in case of (2.29) being met, we
have E+(k + 1) < E~(k + 1).

If the strict monotone decreasing condition is satisfied, we have

Apptiy (k+1) > =3 Aip - Yi()li=(r1yr+
I
i#p |

and |

ZAipyi(t)|t=(k+1)T+ >0

=1

then, E+(k R 1) < E_(k + ].) I
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iii). Next, it is assumed that

yP(k) = ]'a bUt yp(k - 1) = ]

Similarly, we can write the energy function at the moment of ¢t = (k + 1)T" as

E*(k+1)=E"(k+1)+2) Apy(®)|=@+yr+ (2.36)

=1

If the following relation is met,
2 Z Api Yi()le=(k41)r+ <0
i=1

then, we can get E¥(k+1) < E~(k+1).
Based on (2.30) and g} (k + 1) = yp(k +1) = —1, we have

Apyi (K +1) < =Y A ui(t)|e=es1yr+
1

i#p

and i
> A yi(®)|i=esryr+ <0

i=1 [
Substituting it into (2.36), it is proved that if the condition (2.30) is satisfied, we
have

EY(k+1)<E (k+1)

Similarly, when the strict monotone decreasing condition is met, we have E*(k +
1)< E-(k+1).
D |
Since our discrete-time CNN described with (2.12) is derived with just extracting
the values of SCNN at a series of discrete time, ¢t = kT, £k =0,1,2,---, it is believable
that all properties of SCNN are kept in our DTCNN, the conclusion of Theorem 2.3 is
also suitable to our DTCNN. A corollary can be easily derived. LB

Corollary 2.1 If the conditions (2.29) and (2.30) are satisfied, the energy function of e
discrete-time CNN defined by (2.25) is also monotone decreasing.
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Theorem 2.3 gives a proof for monotone decreasing property of an energy function
of SCNN. In the next theorem, we want to give another convergent criterion for nonre-
ciprocal SCNNs and DTCNNSs, which is used easily. In order to do so, first, we present
a definition about diagonal-column eigendominant.

Definition 2.2 The weight matriz A is said as diagonal-column eigendominant if the
ith diagonal element A;; is greater than or equal to the sum of absolute values of other
elements in the ith column. i.e.,

Au 2D | Asil (2.37)

<.
-

Vie{1,2,---,n}
For strict diagonal-column eigendominant, the sign "> " in above equation is replaced

by ”> J).

For a SCNN, the ith diagonal element A; in its weight matrix A is corresponding
to the self-feedback coefficient of a cell ¢(¢), but other elements in the ith column are
corresponding to the feedback coefficients from near cells within the neighbor to cell
¢(?). Therefore, the physical meaning of the diagonal-column eigendominant is that a
self-feedback of cell ¢(7) is stronger than feedbacks from other near cells.

Theorem 2.4 A SCNN generalized energy function defined as (2.24) is monotone de-
creasing if it is diagonal-column eigendominant. Thus, this SCNN must be convergent.

Proof: Within a period t € (kT,(k + 1)T'), k = 0,1,2,---, the proof is the same as
that in Theorem 1. Here, we just need to provide a proof of the case y ((k + 1)T) # i
v (6 + 1)T). |

i). Let us assume
yp(k) = -1, Yp(k +1) = +1

then, the equation (2.35) is written again as follows: =

E*(k+1)=E~(k+1)— 2> Aip %i(t)|e=trsryr+ (2.35)

=]
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On the base of (2.37), we can obtain

v

2 | Aip' —. Z | Aip y,-(t) ||t=(k+1)T+
s=I1 i=1
i#p i#p

13" A 4i@) lle=gr+1yr+ 2 =Y Aip Yi(8)|s=rr1yr+
i=1 i=1
i#p i#p

v

thus i
> Aip Yi(®)le=h+1yr+ 2 0 (2.38)
1=t]

Substituting (2.38) into (2.35), we have
Et(k+1)<E (k+1)

ii ). Next, we assume
Yp(k) = +1, but y(k+1) = -1

then, the equation (2.36) is rewritten as follows:
Et(k+1)=E (k+1)+2 Aip ¥i()|e=es1)r+ (2.36)
gl

According to (2.37), we have

| D Aip %i(t) le=e+ 1)+
futl

i#p
> Aip Yi(8)|e=e+1yr+

i=1

i#p

App

v

v

Since yp(t)|s=(k+1)r+ = —1, then

> Aip Yp()li=(e41yr+ < 0 (2.39)

g=i
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Substituting (2.39) into (2.36), we get

Et(k+1)<E (k+1)

In the case of the strict diagonal-column eigendominant, the relation E+(k+1) <
E~(k + 1) is available.

m
The theorem has been proved. Similarly with Corollary 2.1, here, we can derive

following corollary.

Corollary 2.2 If a nonreciprocal discrete-time CNN satisfies the condition of the diagonal-
column eigendominant defined as (2.37), its energy function is monotone decreasing

and the network is convergent.

Theorem 2.4 is suitable to general case including nonreciprocal and reciprocal SCNN.
Specially, if the network is reciprocal, i.e., A;; = Aj:, we can obtain Corollary 2.3 as
follows:

Corollary 2.3 The generalized energy function of a SCNN with reciprocal weight co-

efficients is monotone decreasing if the next relation is satisfied.

j=1

Ai 2 3 | Ayl (2.40)
i#i

Vie{1,2,--,n} :

In this case, similar with the column-diagonal eigendominant, the condition (2.40)

can be also called as row-diagonal eigendominant. It means that within a weight matrix |I '
A, the ith diagonal element A;; is greater than or equal to the sum of absolute values I
of other elements in the ith row. In fact, the condition (2.40) is similar with that i
presented by N.Fruehauf, L.O.Chua and E.Lueder in [4]. Here, we can find that this

condition is a special result of Theorem 2.4 for the reciprocal SCNN and DTCNN just

only.
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2.6 Conclusion

In this chapter, first, we showed the cell model of the continuous-time CNN, and
some typical types of 2-D array structures briefly. After introducing a two phases
synchronous-updating signal into a continuous-time CNN, we obtained a synchronous-
updating CNN, we called it as SCNN. By sampling the values of state variations v;
and output variations y; at the updating moments t = kT, k = 0,1,2.-- -, we derived a
discrete-time CNN which topology and output function are distinct from the DTCNN
presented by Harrer and Nossek. In general, the output of this DTCNN is a variable
value during (—1, +1), so that it can be used to image processing in which the output
is a multiple grey level image. in order to guarantee the output as a binary value to
meet some special applications, a sufficient condition and a necessary condition are
presented here, which provide the design requirement for the matrix A and the matrix
B. Moreover, in order to analyze convergence condition of this DTCNN, the general-
ized energy functions for our SCNN and DTCNN are defined respectively. Here, we
don’t directly compare the value of the energy function of DTCNN at two sequent of
updating moments, which method is used by N.Fruehauf, L.O.Chua and E.Lueder [4]
for reciprocal DTCNN with the same output function. We analyze the energy function
of SCNN during a clock period and around a updating moment, because the energy
function is not continuous at those moments, which impact must be considered care-
fully. Two theorems about the convergence condition of nonreciprocal and nonuniform
SCNN are described first. Meanwhile, since the energy function of DTCNN is sampled
and discreted from that of SCNN, two convergence conditions are also available to
nonreciprocal and nonuniform DTCNN. The result covers the reciprocal DTCNN as a,
special case, and provide the potential to apply our DTCNN more widely, for examples,

associative memories, multiple visual pattern recognitions and others.
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Chapter 3

A Modified Tracing Curve
Algorithm for CNN

3.1 Introduction

Owing to the piecewise linear character of the non-linearities, cellular neural networks
depend crucially their nonlinear dynamics. Proper operation often requires the exis-
tence of multiple equilibrium points or DC operating points. Therefore, it is important
to have an efficient analysis method for obtaining a global picture of the dynamic be-
havior, the equilibrium pattern and the basins of attraction in a given network. It is a
problem to find equilibrium points in CNN described by the equation (2.3), it amounts
to solving a set of piecewise linear equations

— Av(t) + Asat(v(t))+ Bu+I=0 (3.1)

The Newton-Raphson iteration method is a general tool to be used for nonlinear
algebraic equations, but Newton method converges only in those cases where an ini- '
tial guess is a pretty exact approximation to the actual solution. In order to widen
convergence region of iteration methods, the continuation method is applied to solve
homotopy equation. This method is designed to solve a system of n nonlinear algebraic
equations with n + 1 variables.

F(x)=0, F: DCR*!' - R, xeR" (3.2) ‘.

Some algorithml! - 4] have been proposed to solve equation (3.2). The predictor-
corrector tracing curve algorithm in Ref. [1] may be one of the most effective algorithms n
between them, where the implicit backward-differentiation formula was used, so called

40
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the BDF algorithm. In this section, first, we present an modified BDF algorithm. Its
main feature is bellow:

1. At the jth step of curve tracing algorithm, a guess value x?(s;) is predicted, where
the kth order Hermite polynomial[5] is used whose coefficients are determined
by (k + 1)/2 known functional values and their differentiations. The Hermitor
formula is used to extrapolate and produce the predictor x?(s;).

2. After the xP(s;) is obtained, the Brown iteration method(8] is used to solve aug-
mented equations. With this method, the total numbers of subfunction evalu-
ations are only half of that in classical Newton-Raphson method, so that the
evaluation times of nonlinear functions are reduced efficiently.

3. We could get the curvature and the norm after x(s;) is obtained. Then the next
step size could be determined based on the norm. At the neighborhood of the
sharp turning points on the solution curve, the step could be reduced in time so
that some iterations are avoided which may result in failure. At the smooth part
of the solution curve, we can get more large step size. In this way, our algorithm
get more better stability and efficiency.

3.2 Predictor algorithm

At first, we introduce parameter s and describe variables x in equation (3.2) as function
zi(s), 1 =1,2,..., n+ 1. If z;(s) is continuously differentiable, we can get

Fx) = 0
(ds) = (dz1)®+ (dz2)? + - + (dTn41)?

where s is an arc-length of the solution curve when it stretches from a starting point
along a direction. It could be described as:

G(x) =0, G: Dc R - R" x e R*! (3.3) E4

where s is an implicit parameter. We can trace the solution curve from s = 0
along the positive direction and get half of the solution curve. Another half of the !
solution curve can be obtained when it be traced along negative direction. Of course,
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if it is a close curve, we can trace the total curve along either position and direction.
Every tracing step consists of two stages which are called as predictor and corrector
respectively.

With the algorithm suggested in Ref. [1], when the curve is traced from s = s;_;
to s = s;, the kth order Lagrange polynomial is used to predict an initial point for
the corrector iteration. Obviously, the predictor is given more precisely, the iteration
in the corrector step converge quickly. Thus, we propose a technique for finding the
precise predictor based on Hermite extrapolation.

According to remainder theory of Lagrange polynomial, once k + 1 points s;_1, s;_2,
-+, 8j—k—1 C (a,b) are selected to formulate a Lagrange polynomial L(s) which
approximates z;(s) in range (a,b), the cutoff error Ry, (s) = z:(s) — Li(s) is

(k+1)
Ry (s) = %CTf)?WkH(S) (34)
where
§€(ab)
Wisi(s) = (s — 85-1)((s — sj-2) - - (5 — 8j—k-1)
We can set

sup [z3¥tD(s)| = My
a<s<b

Then, the upper bounded the remainder of the kth order Langrange polynomial is

My,
k+ 1)

agggblRLk(S)l = [Wisa(s)] (3.5)

This value relates to |Wj41(s)| when M, has been determined. Because we use
this Langrange polynomial to extrapolate z;(s;) at s = s;, |Wi41(s)| generally is
larger. In order to reduce the error of the predictor, (k + 1)/2 known function values

(L‘,’(Sj_l), :L‘i(Sj_g), AR ,l‘i(sj_k_;c_l_) and their differentials i?,'(Sj_l), i‘,‘(Sj_2), cee ,:i:,-(sj_%g)
are selected, where s;_1, 852, "+, 8;_ k1 locate in side of the range (a, b) near the point

85, and formulate a kth order Hermite polynomial Hi(s) to approximate z;(s). Then,
the remainder is given by

(k+1)
Ray(s) = :(6) = Hu(s) = eyt Wiyl (36)
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where
§ € (8j—(k+1)/2) Sj-1)
Wiks1y/2(s) = (s —85-1)(8 — 8j-2) =+ (8 = Sj—(k+1)/2)

Because
(85—(k+1)/2 8i-1) € (Sj—k-1,85-1)

there exists

sup  [5{*V(s) < sup  [2{(s)| < Miw

Si—(k+1)/258585-1 8j—k-158%58j—1
moreover, because
(S 2= Sj_l) < (S = Sj_z) C O e (3 = Sj_k) < (S == Sj—-k—-l)

so that
Wiiiy2(8) < Wipa(s)

and
| Rn,(5)] < |Ri,(s)]

Thus, we can derive

Theorem 3.1 If we select (k+1)/2 known function values z;(s;—1), z:(sj—2), - - - ,x.-(sj_%i)

and their differentials £:(sj—1), Zi(sj-2), - ,:i:;(sj__ 5%) to formulate a kth order Her-
mite polynomial Hy(s) for approzimating z;(s), and where s;_1,8j—2,- - - Skl locate

in side of the range (a,b) near the point s;, it can be proved

|th(s)| < 'RLI:('S)I (37) I

Although this conclusion comes froms interpolations, it can be applied to the extrap-
olations for small As. So, we can get conclusion that the precision of kth order Hermite
polynomial which is used to extrapolate for getting the predictor z¥(s;) is higher than
the precision of the kth order Lagrange polynomial.

The coefficients of the predictor formula for z7(s;) could be obtained from the equa-
tion bellow:
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= ' . (j—1 7
[0 1 2.9]'_1 s kS’i:ll ag .’L'EJ 2)
0 1 2.9]'_2 «g= ks]:% a.l i.g]_ )
' ' . k-1 ;  (=(k+1)/2
. ; 28j-(k+1)2 " ksj"£’“+1)/2 i i (. ¥ (3.8)
L 8j-1 S‘Z—l .- s{:_l .’L'E]_l)
1 s 852 o 8j—2 : 792
| 1 8i—ke1)2 312'—(k+1)/2 3?—(k+l)/2 ) af xEj'("+1)/2

We can express it as the matrix:
o T
stag = (%;x}) (3.9)

thus, we have

zf(s) = (1ss®-s")-af

(Vs 8* - s*)(sh) 7 (bf zp%0)"

It can be rearranged as

j-1
() = X h)(si— s)2afz — ) + 2] |
1=j~(k+1)/2
-1
- S {hu(s) - [t +2a0(s1 — 8)] x 2P + hu(s)(s — 51)3"} |
1=j—(k+1)/2 t,

= I !
= Yo pL(s)zd + p2(s)il) (3.10)
1=j—(k+1)/2 |

where i

hm(s)=II [(s—s1)/(s1—s:))? ,
i=j—(k+1)/2 ;
i#] hl

i)

al = E —
i=j—(k+1)/2 *!
i#j

Si -
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3.3 Corrector algorithm

We use xP(s;) as an initial point to iterate and solve equations bellow:

F(x(s;)) = 0 (3.11a)
rfii(sj) =1 (3.11b)

If #;(s;) can not be obtain by differentiating F'(x(s;)) respect to s, we can construct
the Hermite interpolation polynomial

z(s) = af+af +a5s® +--- + afsk

and make differentiation by s. In this case, we have the following equation.

. 5 N z,”
1 8$j-1 52 3 s;?_l o xf’ =l
. : : J = k
il 8j—(k+l)/2 s_%-—-(k+l)/2 o) 5 3;?_(’0’:_1)/2 . -’L‘? (.+1)/2)
0 1 2851 ksi—l 3 -ig]_l) I
0 1 2Sj_2 kst . . i‘(j_2)
|4 0 1 23j..(k+1)/2+1 il ksf_(k+1)/2+1 | az J :l‘:(_j_(k';'l)/2+1)
(3.12)
This equation can be written as follows |
spag = (xixg)” (3.13) '
We have {
|
zis = (1sg®--- s)-af ]_
I
= (1ss® - s*)(sp) 7 (xexp)" ¢
i - b A= |
= cli(8)z + elj_1()ad ™V + - + climqrrya(8)atTEID 4 2,y (5)5E Y R
+02j-a(8)E7 D 4 -+ €2y (s)3 7T EHED (3.14)
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In this case, the corrector formula is given by

F(x(s;)) =0 (3.15a)
n+1 -
So[e1y(s) - 2 + QP —1=0 (3.15b)
i=1

where
—(k+1)/2 j—(k+1)/2

Q= % aal+ Y 2l
I=j-1 I=j—1

Brown method®! is applied to solve this set of equation as (11) or (15). First,
every subfunction is expressed as taylor series, then, it is linearized and the variables
is eliminated one by one until the linearized system of equations is transformed into
a triangular system of equation. For per iteration step of Brown method, in every
iteration step of (3.2) which consists of n + 1 functions, (n + 1)(n + 4)/2 numbers of
subfunctions should be evaluated, but with Newton-Raphson method, (n + 2)(n + 1)
umbers of subfunctions evaluations is needed. When subfunction calculations are more
complex, Brown method can reduce cost of calculation. Moreover, the evaluation times
of subfunction g;(x) is (n +2) in per iteration, the evaluation go(x) is (n + 1) which is
less than that of g;(x), the evaluation times of another functions are reduced gradually
in proper order. So, we can rearrange the linear equation in simultaneous equations 1
(3.3) as the first equation, but nonlinear equations are rearranged as the latter, the '
nonlinear equation which calculation is most complex is rearranged as the last. In this
way, actual calculation for nonlinear functions is reduced once more. This method is
suitable especially for analysis of a nonlinear network in which only a few elements are ] L
nonlinear but most of elements are linear. I

3.4 Choice of the step sizes

In curve tracing algorithm, one of the crucial problems is the choice of the step sizes.
In Ref. [1], the next step size is predicted based on previous step sizes, if the predicted

)

step size is not suitable so that the difference of the first iteration corrector x*1) and

the predictor x?, [x*(!) — xP| is over the upper limit §,,q., then, this step size should n'
be reduced and the first corrector should be carried again. In our algorithm, the
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curvature of the solution curve is used as a parameter to control next step size. In

the neighborhood of a sharp turning point on a solution curve, its curvature must get

more larger, then we can choose a small step size to prevent the iteration failure. In

smooth parts of the solution curve, their curvature should get less, so we can obtain

more larger step size. In this way, we can obtain a robust and efficient curve tracing

algorithm which gives more satisfactory results n practical numerical calculation.
After the jth curve tracing step, we define

dzi(s;)/ds = Zi(sj-1)/(s; — 8j-1) (3.16)
and
n+1
o = 3" |dii(s;)/ds] (3.17)
=1

o)) describes the sum of the curvature variations of the solution curves z;(s) i =
1,2,..,n+1 at the neighborhood of s = s;. Considering the stability of the calculation,
we further introduce averages of the curvatures and step sizes as follows.

AVD = (o) 4 gD 4y oli-Gerryy_2 (3.18a)
k+1 |
L 2 [&
hi = (hj+hj—1+---+ hj—(k+1)/2)k ] (3.18b)
Based on ¢(), AV and h;, we determine the h;

Bih; o) < (1 - a;)AV®

hipi=14 hy (1= 01)AVE) < ¢\ < (1 4 ) AV (3.18¢)
ﬂghj (1 -E az)AV(i) < o)

The value of the a; and §; are relating to the solved equations, they can be modulated
in calculating procedure based on the calculated results.

3.5 Computational Algorithm

At the first, we set the parameters as follows. i
k:  the order of BDF, because (k + 1)/2 points should be used in Hermite polyno- K
mial, the number of k¥ + 1 must be an even.
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H,...: maximal length of curve tracing step.
H,.,: minimal length of curve tracing step.
6maz:  Mmaximal difference between a predictor x?(s;) and the first corrector x*)(s;)

as
6maa: > |XC(1)(SJ') = XP(Sj)l

a1, @z, B, B2 a group of parameter to be used to control next curve tracing step
size.

e, M when |G(x)| < &; or |xk+1) — x<(*)] 1077, the iteration at that point is
successful.

N.: maximal number of corrector times.
Calculation procedure:

[step 1] Input initial parameters: x°, so and H° so that

G(x% =0, Hoin < Hy < Hpge

[step 2] Set j =1.

[step 8] When j=1,2f =20, i=1,2,---,n—1,n,25,, = 2%, + Hy, go to step
6.

[step 4] When j # 1, the coefficients of kth order Hermite polynomial, p1;(s) and
p2i(s),i=1,2,---,j — (k +1)/2 are produced according to the formula (3.10).

[step 5] Find

i-1
1 . (1
(s) = X Ipu(s)al’ +p(s)s"]
I=j—(k+1)/2
1=1,2,---,n+1

[step 6] If x can be derived directely, go to the next step; otherwise, find c1;(s)
and c2i(s),l=j—-1, j—2,---, j = (k+1)/2, according to the formula (3.13).

[step 7]  take xP(s;) as an initial point, Brown method is applied to solve G(x) = 0
once so that x1)(s;) is obtained.

[step 8] Find DB = |x*W(s;) — xP(s;)|, if DB < maz, g0 to step 10, else, go to
next step.
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[step 9]
3;- = (Sj = Sj—l) : 6_‘ + 851
DB
zi(s;) = (28(s5) = 2il85-)) - 5— + i(85-1)

i=1,2,---,n+1

set s; = 8;, go to step 6.
[step 10]  Use last corrector result x*~1)(s;), k = 2,3, - - and coefficients ¢1,(s), ¢2i(s),
to set up the equation:

gns1(x*71(s;))
n+1

= 3 (eL;(s5) - () + Qi) — 1
=1
=0

[step 11] Carry the kth iteration for the equation G(x) = 0.
[step 12]  If |G(x™)(s;))| < &1 or [x*~V(s;) — x¥)(s;)| < 107, go to next step; else,
go to step 10.

[step 13] Find o\
n+1 d.T,

) —
i 'Z:;ldsl

[step 14] Find AV® and h;,

) 9 J—(k+1)/2
Iy 10 g = TR > o '

e e

oyl
o+

j—(k+1)/2 ' ‘

hj = T 2 (s—s)

I=j

ol
-~

[step 15] Determine hjy; according to the formula (18).

[step 16] If a homotopy equation is solved, when z,.; = A = 1, one solution is
found, if all solutions are found, the curve tracing procedure terminates; else, go to a
step 3 to carry on.

-
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3.6 Illustration examples

Three examples are demonstrated here. With the first example to derive multiple
solutions for a set of equations, we show the effective of this algorithm. Then, we
analyze the DC operating points for a 6-orders Hopfield network and obtain its multiple
solutions successfully. Finally, a example is shown to apply our modified curve tracing
algorithm to CNN, some results are gotten.

Ezample 1:
In this example, a system of 10 equations should be solved.

10
cos(k Y zi)
) == T =0 k=1, 2510
After introducing an additional parameter, we can set up the homotopy equations:

cos(kﬁz,’)
g A} = Bp—=2e =1 = 0 = 1; L., I0

The solution curve is shown in Figure 3.1.

1.2

1.0
0.8
0.6 |
0.4

0.2

0.0 . ! . l ; I : ! . 1S L

20. 40. 60. 80. 100.
Figure 3.1: Solution curve with our algorithm
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Table 3.1 describes some points near the most sharp turning point on the solution
curve. The minimum observed step size is 0.00904 which is at s = 58.43885. The
maximum step size is 0.44303 at s = 61.84822.

No. of
NS, it s step size N i modulated A 12 |di;/ds|
step iteration "
step size
329 56.7222 1 0 42454 .8196 1.252
331 57.2869 1 0 .26069 7620 1.665
333 58.0191 1 0 40250 .6596 1.355
334 58.3170 1 0 29788 6170 9956
335 58.3610 1 1 .04406 6117 4824
336 58.4389 10 1 07783 .6152 61.05
337 58.4479 2 0 .00904 .6167 9227
339 58.5453 2 0 .06810 .6340 1.382
342 58.7531 3 0 .09353 .6690 1.258
346 59.1476 1 0 .10032 7324 1.545
351 59.6430 1 0 13363 .8030 1.600
360 61.8482 1 0 44303 .8635 1.010

Table 3.1: Some calculated data for Example 1

In this example, the amount of function evaluations is 966, but in Ref.[7], this number |
is 5936, and in Ref.[1], this number is 1787. Furthermore, considering with the Brown ‘
method the total number of nonlinear functions evaluations is only about half of that in
Newton-Raphson method. Thus, we found that the curve tracing algorithm is largely
improved.

Ezample 2:
A Hopfield network with 6 cells is described as follows

e e

d’U/,‘ - s U;
Gy = ’Z:;Wijxi— E"'Ii |
|
1 n
= = g+ W

% 0.5%(1+ tzxnh%)

1]
where, the parameters are selected as l
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Fdh ek o [ 3.5 ] [ 8 ]

3 o0 a2 8 3.5 8

$ 2 o081 2 4 5. 11

W=l o3 5 § 3 2] =|3 9= 1 11
Lk ol S Sl 3.5 8

R B IR= e, IS N | 35 | | 8 |

Assume a = 0.1, beginning from a initial point (u, A) = (0.1,0.1,-0.1,0.1,-0.1,-0.1,0.0),
the solution curve is traced in 322 step. In this case, 9 solutions are found together. It
is shown in Figure 3.2.

A

4.0+

2.0+

0.0

0. 20. 40. 60. 80.
Figure 3.2: Solution curve for 6-cells Hopfield net. in a=0.1

Beginning from different initial points, others equilibrium points can also be searched.

Ezample 3:
In this example, we apply the algorithm to the connected component detector CNNU
with n=>5. The system equations are described as follows

Cccll—: = —Av(t) + Ay(t) + Bu+ I ;

y(t) = sat(v(?))

The matrix A, B and I are composed by the templates
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00 O 00 0 0
Tu=|1 2 1| Teg=(00 0] Ty=|0
00 O 00 0 0

The external input u is euqal to 0. This CNN detects the number of connected black
components on a white background(or vice versa). The algorithm is applied to obtain
total 20 solutions from different start point tracing the solution curves. Between them,
only four solutions shown in Figure 3.3 are stable and correspond to real convergent
points in CNN. The remainder are corresponding to unstable equilibrium points, since
there exists an component at least which absolute value is less than 1, they are non-

measurable in real networks.

Fd
H B
H EH N

Figure 3.3: Four convergent states for CCD with CNN

3.7 Conclusion

In this chapter, we present a modified BDF curve tracing method. The result shows
this algorithm could be used efficiently to trace those solution curve with some sharp
turning points. Specially, we want to point out that the Brown method is a kind of
the Gauss-Seidel algorithm to be used for nonlinear algebraic functions. It is known

that the convergence ratio is second order near to the solution. Furthermore, a number
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of the function evaluations is (N? 4+ 3N)/2 when the function consists of N functions.
Observe that the Newton method takes N? evaluations of the partial derivatives and
N evaluations of functions. Thus, the Brown method is efficiently applied to trace
solution curve, such that the approximate solution is obtained by Hermite polynomial.

The algorithm presented here can be useful in the analysis of neural networks, e.g.
during the design of templates for cellular neural networks. It can be applied to large
networks provided that the extreme sparity and the structure of the coefficients are
exploited. The method can be applied for some types of neurons with smooth non-
linear output functions or piecewise linear output functions. In general, there does not
seem to be much hope for an efficient way to find all equilibrium points in a given

neural network unless appropriate guidelines are followed during the synthesis process.
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Chapter 4
Associative Memory with DTCNN

4.1 Introduction

The artificial realization for the associative memory is one of the most important prob-
lems on the neural network applications. In several books(®> 2l and papers[3' 8], the abil-
ity of neural networks to implement associative memories has been discussed. First, the
information of several prototypes are stored into a neural network and then, a signal is
inputted to the network where some of information from a prototype is lossed because
of the distortions and noises during the signal transmission and processing. Then, all
or most of original information can be recovered with the associative memory. The
researches on the associative memory can be directly applied to pattern recognitions
and classifications.

Depending on recalling approaches of stored information, associative memories can
be classified into two groups. The approach in the first group can be performed in
the feedforward mode, where a signal is only from input toward output. The typical
example is a linear associative memory presented by Kohenenl!l. The second group
of associative memories performs the recalling computation with feedback operation,
these networks are called recurrent networks. A typical example of recurrent associative
memory is the Hopfield network.

Hopfield presented continuous time and discrete time systems that are capable of
implementing associative memory in 1982 and 198415; 6], respectively. Recently, several
other investigators addressed the analysis of various types of continuous time and
discrete time neural networksl”:8 9.

For a two-dimensional cellular associative memory with N x M cells, one neural cell
has a output from —1 tp +1, which corresponds to one bit in the two-dimensional

56
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prototype with multi-gray degree, so that the total state of this cellular associative
memory describes a N x M bits two-dimensional prototype. Since the associative
recursion algorithm is carried out with the synchronize refreshing approach, the state
of the #th cell at time ¢,, can be transferred to the input of the jth cell through the
connection weight A;;, which affects the next state.

In order to realize associative memory, first, we must store the information of some
prototypes into the networks through a learning process. During a pattern storing
stage, the weights Ay (kK = 1,2,---,n;1 = 1,2,---,n) are gradually set to suitable
values with a learning rule so that the weight matrix A includes the information of
all prototypes. Then, in a stage of the prototype recalling, a probe pattern which
just remains a part of information of an original prototype pattern is input to the
cellular associative memory as the initial state. Furthermore, due to the monotone-
decreasing property of the energy function, if the stationary condition is satisfied for
the stored prototypes, after some recursion iterations, we can find out the complete
stored prototype which has minimal Hamming distance to the input pattern within all
stored prototypes. In this way, it is enable to realize the associative memory with a
cellular neural network.

There some types of learning rules for associative memoriesl%], Differing from the
supervised learning mode and the unsupervised learning mode, most of artificial neural
memories are trained under a batch learning mode. It means that the complete design
information is available a priori, so that the network is first designed by recording
desired equilibria points, after then, the weights of such network remain fixed during
the associative memory process. Experimental data on biological systems have led
Hebb’s learning mechanism/(20] whereby the synaptic coupling between two neurons is
enhanced if both neurons are active at the same time. Based on this idea, the outer
product method for computing the coupling coefficients has been proposed by Cooper
et all2ll, Outer product learning rule is used for cellular associative memories by S.Tan
et all6l such that the application area of CNN is extended to associative memories,
which is one of the most important function of the brains. But associative memories
with the outer product method have some fatal weaknesses to limit their applications.
The associative memories designed by the outer product method can not guarantee
every stored prototypes as equilibrium points in general, so that the stored information
can not always be recovered. In the section 4.2, first, we describe the outer product

learning approach to set up suitable values for the weights of associative memory with
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discrete-time cellular neural network, these values are related to the object patterns
information. This procedure is called as storing object patterns. After then, we focus
on the stability analysis and present two theorems to ensure stored prototypes by the
outer product learning algorithm as equilibrium points of cellular associative memories.
Some application examples are also given in this section. In another aspect, experience
and theoretical analysis show that Hopfield network with the outer product method
can effectively store only up to 0.15n arbitrary vectors as equilibrium points, where n
denotes the order of the network!!8]. Moreover, it may be possible that the memory
capacity and/or ability of an artificial associative memory decreases as the number of
interconnection decreasing. We want to find another learning method suitable for the
cellular associative memory networks. In the section 4.3, we present a middle-mapping
learning algorithm for the cellular a ssociative memory. Its basic principle is similar
to the project learning rule presented by L.Personnaz et alll® where the projection
learning rule was considered to be used for the system presented by McCulloch and
Pitts[23], which operates in a synchronous mode. Since in the interconnection weight
matrix A obtained with the projection learning rule, the diagonal element A;; is equal
and/or approximate to 1, never equal to zero[lgl, so it is difficult to apply this method
directly to the Hopfield network. But in our memory, this kind of problems does not
exist. It can guarantee to store a given vector as an equilibrium point so that every
stored prototype is retrievable.

4.2 QOuter product learning algorithm

Outer product learning rule is used for discrete-time cellular associative memories by
S.Tan et all!6l in 1990, but the convergent and stability conditions are not analyzed
in their paper. Moreover, in general, outer product learning rule can not guarantee
that networks always store the desired prototypes as equilibrium points of the network.
How to solve this problem and, what is the stationary condition of a cellular associative
memory, the analyses are also not given. In this section, first, we describe the outer
product learning approach to set up suitable values for the weights of associative mem-
ory with discrete-time cellular neural network, these values are related to the object
patterns information. This procedure is called as storing object patterns. After then,
we focus on the stability analysis and present two theorems to ensure stored prototypes

by the outer product learning algorithm as equilibrium points of cellular associative
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memories. Some application examples are also given in this section.

4.2.1 Storing object patterns

In order to realize associative memory, first we must store all the object patterns
information into the associative memory network. This storing process is also called
as the network learning process. According to the Hebb theory[zol, the weight matrix
contains the information of the stored patterns, so we try to find out a technique to
set up the weight matrix that will produce a stationary state of that network for each
object pattern. Since the energy function of the cellular associative memory network is
the monotone decreasing function, the stationary state of the network lies in a minimal
point of the energy function. Through storing a pattern, we minimize the value of the
energy function for the particular pattern so that it occupies a minimal point in the
energy landscape. However, we also want to leave any previously stored patterns in
their hollows at the same time, so that adding new patterns does not destroy any of
the previous information.

Let us show this learning process in terms of the object patterns and the cor-
responding energy function. First, assume that there are S stored object patterns
o CcR"n=NxM,i=1,2,---,5, which elements are either +1 or —1.

To simplify the analysis, we let B = 0 and I = 0 in the discrete-time cellular asso-
ciative memory defined with (2.12), then, the state equation and the energy function
can be described as follows:

kD) = Ay (k) (412)
vilk+1) = sat(vi(k+1)) (4.1b)

Then, the energy function of discrete-time CNN in (2.25) can be described as follows:

E(k+1)

_ZZAuyz(k'*'l)yJ k)'*‘ Zy,(k+1)

=1 7=1

= E(k+1)+Ey(k+1) (4.2)

Because A;; contains the patterns information mapped into the neighborhood N.(7)

from all the object patterns, we can split F; into two parts. One represents the effects
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of all the patterns except the Ith one and denotes it by A%., and the second is the

C] ?
contribution made by the Ith pattern alone, [ € {1,2,---, S}, shown as Aﬁ-). Besides, we
ignore the description for the iteration number, because we just consider final stationary

state in which there exists y*+1) = y(*). Thus, we can rewrite E; in two parts

1 n
= 73 Z Z A,,y,y, Z Z A(l)y,yj

i=1 j=1 1—1 7=

== Eothers . El (43)

where E is the energy due to the pattern I, while E,ers is due to the contributions
from all the other patterns.

Storing /th pattern corresponds to making the energy function as small as possible
for this pattern. The first term corresponds to the other patterns, so we can not change
this term now. But we can reduce the contribution made by the second term E;. In
other words, to store pattern [, i.e. y = y), we want to minimize the contribution to
the energy function from the /th energy term, and so make

1 n n
-5 2 L AGuy (44)

i=19=1
as small as possible.
Due to the minus sign in the equation above, this corresponds to making

> Ay y

=1 j=1

as large as possible.

Now, since the elements in the Ith sample y() are either -1 or +1, hence y(')2 is

()2

always positive. So if we make an energy term equal y; (2 Y;

, it will always be positive
and the sum will arrive to the largest value.

Thus, in this case, we have

33 ADYO0 - 33 02 02
1j

g=] y=i 1=1 j=1

It is equal to make the weight as follows:

A = 40y (4.5)
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Therefore, we obtain an important result: setting the values of the weight A(I)
yfl)ygl) for every ¢ and j will minimize the energy function for the pattern /. In order
to calculate the weight values for all the patterns, we sum this equation over all the
patterns as follows:

)
Z AP = Zj %y (4.6)

Since the energy function shown in (4.2) can be rewritten as

Zy,

1 n
E=—- At i
) ;; Yl + 2R,_. =
1 n
= ) Z[ Z AijYiy; + (As — )yz] (4.7)
=1 ¢(§)EN: (%)
c(5)#e(i)

we make some adjusting for A;; so as to minimize the energy function once again for
the stored object patterns. In this way, the weight between ¢(i) and its neighborhood
cell ¢(j) is given by

2 0, M
> Uy
=1
¢(§)ENL(1)
c(d)#e(s)

1 ks I
& =1

A,’j

Let us summary above description as follows:

Lemma 4.1 Applying outer product learning rule to a discrete-time cellular associa-
tive memory, in the case of B = 0 and I = 0, we can derive the weight coefficients

connecting c(i) and its neighboring cell c(l) as

S
I {
A = 2 i (4.8)
l=
e()EN~(3)
c(g)#c(3)

1 S
Ai = —+), ygl)2 (4.9)
Rz =1
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Based on Theorem 2.4, it is known that a DTCNN is convergent if it is diagonal-
column eigendominant. Considering the connection coefficients described in Lemma
4.1, we can get a theorem as follows.

Theorem 4.1 If the number of cells during the neighborhood N,(i) is equal to p, and
the R, is selected so that the condition

1
—>(p-2)8 4.1
7 20-2) (410)
is met, the discrete-time cellular associative memory with outer product learning

algorithm is convergent, its generalized energy function is monotone decreasing.

Proof: From Definition 2.2, the weight matrix A is said as diagonal-column eigen-
dominant if the sth diagonal element A;; is greater than or equal to the sum of absolute
values of other elements in the ith column. i.e.

Ai > z": | Aji | (4.11)

—

LRSS
-

Vie{1,2,---,n}
Since the matrix A is a sparse matrix, besides the elements A;; for c(j) € N.(3),
other elements A;; must equal zero. Moreover, according to Lemma 4.1, we have

n

Z|Aji|S(P—1)S
o

But
£ i
Yy t=5
I=1

so that when the relation (4.10) is met, the weight matrix A has diagonal-column
eigendominant property as denoted in (4.11), the energy function is monotone decreas-
ing and the cellular neural network designed by outer product learning algorithm is

convergent.

O
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4.2.2 Stationary character analysis

There are some different ways to characterize the performance of an associative memory
network, but finding the stationary condition of the stored patterns is one of the most
important problems. Because, if and only if every stored object pattern corresponds to
a fixed point in the associative recursive algorithm, then these object patterns will be
retrieval. In this section, we discuss the stationary property of the cellular associative
memory, and present a stationary condition.

First, we give a definition of the stationary state of the cellular memory network.

Definition 4.1 The state of an associative memory network y will be called stationary
point, if and only if, for the recursive operation from an initial state y, the following
state is still kept iny. i.e.

y(k+1) =y(k) (4.12)

For a discrete-time cellular associative memory network with B =0 and I = 0, this
condition can be denoted bellow

yi(k)gily (k)] > 1 (4.13)

Vie{1,2,---,n}
where, g;[-] is the transfer operator of the cell c(i) obtained from the state equation

(4-1).

This stationary condition is suitable for a discrete-time cellular associative memory
networks with B = 0 and I = 0. But at the same time, it could be found from the
structure of cellular neural network, that v; = g;[vy] has direct relation only with the
output value y; of the cells ¢(j) € N,(¢). It implies that, when each cell’s equilibrium
condition is judged individually, just a part of the stored object pattern is concerned.
Thus, we define the local pattern as bellow:

Definition 4.2 Assume N x M bits two-dimension pattern o are stored in a two-
dimension cellular associative memory network constituted by N x M cell units. Let N x
M = n and write o as a 1-dimensional vector, thus, we get o = {ox,k = 1,2,---,n}.
In the neighborhood of the cell c(i), the number cells covered in this neighborhood is p,
a part of the object pattern is mapped and stored, we call this part of the object pattern
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as a sub-prototype £;, £f; € RP. The context in f; is a part of the object pattern o. For
different neighborhood, the contents of f; are also different. The f; corresponding with
the N,.(i) is

fi = {fi = 0j; c(j) € N:(i)}, fie R

Similarly, we can define a state sub-vector V; and a output sub-vector §; to correspond
to the neighborhood N.(i) as

%= {55 =v; (i) N}, ViR
i = B=vi ) eN®}, FicR

From this definition, we prove a condition of the stationary state on the neighborhood
N,(3) of the cellular associative memory network. Obviously, if every neighborhood of
the cellular associative memory network satisfies this stationary condition, the network
is stationary.

Theorem 4.2 Suppose a cellular associative memory network has M x N = n cells.
Assume the number of cells in a neighborhood is p = (2r + 1)?, every cell is directly
connected with near cells in its neighborhood, and within a neighborhood N,(i), S sub-
prototypes £, £ ... £5) are stored, £*) € REr+DX@r+1)  gnd the Hamming distance
between arbitrary two sub-prototypes f,~(k) and f,-(l) is 6(f,~(k) ~f,-(l)). Then, if and only if the
condition (4.14) is satisfied, the local object patterns f,-(l) stored in N,(i) will correspond
to the stationary states obtained by the associative memory recursive algorithm.

S
p+ Y [p— 2605 ©, £ 0 > 0 (4.14)
k=1
ey

Proof: For B =0 and I =0 in (4.1a), we have

2 L.
Z Ai;0i(k) — R—’U,'(k +1)=0 (4.15)
(F)EN(1) )

Vie{1,2,---,n}
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First, for simplicity, we denote #;(k) and §;(k + 1) as 9; and §;, respectively. Then
while §; = f;, from Lemma 4.1, the network state 9; = g;[f;] is given by

glll=R. Y. Ayf;

= R[Aafi+ Y Aifi]

e(F)EN-(i)
Py

= R [fi( Z y2(1) ) - Z z ﬂfl)yj(l)fal

=1 ¢(f)ENr(%)
J#4,j

= fi+R, [Z 5O f + Z > P05

=1 ¢(5)ENL (%)
J#i

R Y 08

=1 ¢(§)€N:(4)
=fi+R, z(y, » . £y (4.16)

7" is the output corresponding with the /th local object pattern stored in

where, y,
the neighborhood N,, and T denotes the transpose.
According to (4.4), if f,-(l) is a recoverable sub-prototype and corresponds to a mini-

mum point of the energy function, it must have

A% gt = 1+ RGO 1)
k 1

> 1 (4.17)

Since the first term in right side above equation f,-(l)2 = 1, above relation is corre-
sponding to

S
>EO-8)f0 >0 (4.18)

==
Because the number of cells in a neighborhood N, (i) is p, we have

S
ol T
BRI B MR )i

k=1 k=1
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= ot Y lp— 20670 N0 (4.19)
o

so that fi(l) is a recoverable sub-prototype if and only if the relation (4.14) is satisfied.
[
Obviously, for eacn sub-prototype f,-(l), the Hamming distance between it and other
sub-prototypes stored in the same neighborhood, a(yf @ ;) is diffrent. Beside it, the
stored sub-prototype number S in a neighborhood is also different from each other. If
and only if the relation (4.14) is satisfied for each sub-prototype stored in every neigh-
borhood N,(i),i =1,2,---,n, the stored object patterns correspond to the stationary

points of the network, and every of them will be recallable.
From above theorem, we can derive another sufficient condition as follows. First, we

introduce a definition.

Definition 4.3 For each sub-prototype f,-(l) described in (4.14), we can define two col-
lections ¢, and cs.

& = {8 {00 >0 (4.202)
e = {£9; P50 <0} (4.20b)
ke{l,2,-,5)

Then, we can get a sufficient condition on the stationary property of the cellular '
associative memory as follows.

Theorem 4.3 For sub-prototype f,-(') , we assume that the number of elements in c; is
m and the number of elements in cy is s — m. If the following relation is satisfied, fi(')
is corresponding to a stationary points of the network and it is recoverable after some

times of associative operation.

mlp—2 max o(3 £~ (s-m)lp—2 min o3 ® £ >0  (421)
g (¥) vMec,

Y, '€a
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Proof: From (4.18), we know if and only if
s
>3- 8)f" 20
k=1

the f,-(l) is recoverable. But

i(y-“" £)f0

k=1
~ar sl
= Y -2 £ - ¥ Ip—20(3:“ - £)]
¥Pec ¥ Pec,
>mlp—2 max oy ® - £)] - (s ~m)lp— 2 max o(3; ¥ -£")] (4.22)
yf Jees yf dee,

so that if (4.21) is satified, the £ is corresponding to a stationary points of the
network and it is recoverable after some times of associative operation.

4.2.3 Illustration example

In this section, a specific example of using a cellular neural network as the associative
memory is given.
Ezample 1:

The network consists of 5 x 5 neural cells. Every cell has the neighborhood with
r = 1 and the parameters as bellow:

R, = 0.02 k1, B=0(k)", and I=0mA .

Since, for a cell lying in the boundary of the grid, there are not enough neighboring
cells arounded it to construct a complete neighborhood, it may give bad influence on .
the associative operation of our memory network. To solve this problem, a ring of
dummy cells are added to the border of the grid. The initial states of the dummy cells
are all y; = —1. After then, their states are changed as the same as the inner cells. |
The number of the dummy cells of a cellular associative memory grid with available |
N x M cells is 2(N+ M +2). When N and M are large enough, 2(N+M+2)/(N x M) |
becomes smaller, the dummy cells just take a very small part of total number of all
cells. But they play important rule to the ability of the memory.
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Figure 4.1: Stored sample patterns

First, the sample patterns shown in Fig.4.1 are stored into this cellular associative
memory network.

Obviously, here the numbers of stored prototypes is equl to 4 and p = 9, the con-
vergent condition (4.10) mentioned in Theorem 4.1 is satisfied so that the network is
convergent in this case.

Using (4.8) and (4.9), the weight A;; between connected cells within a neighborhood
of the network is determined from the stored patterns information. The numerical

values of the elments in A weight matrix are shown as Figure 4.2.

S ——
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Figure 4.2: The A matrix for Example 1 (KQ)™!
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Moreover, based on the calculating for every neighborhood, the stationary condition

(4.14) is also met for each stored sub-prototype so that they are recallable. Inputting

four probe patterns shown as left side in Figure 4.3 which has distortion pixels from

48% to 68%, after some times associative memory recursion we can get the correct

answer as shown in right side of Figure 4.3.
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(a) After 31 iterations, stored prototype is recalled from the probe

(b) After 44 iterations, stored prototype is recalled from the probe

(c) After 35 iterations, stored prototype is recalled from the probe
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(d) After 31 iterations, stored prototype is recalled from the probe

Figure 4.3: Associative memory with outer product learning rule

Ezample 2:
In the next example, the network’s size and the radius of a neighborhood are the
same as above. But the resistance R, is modified as

R, =0.01 KQ

8 sample patterns are stored into the cellular associative memory network, which are
Chinese characters T, K. £. H. H. T. #. and F displayed in Figure 4.2.3.

In this example, the convergent condition (4.10) is also satisfied, the generalized
energy function is monotone decreasing and the network is convergent. Meanwhile, we
get the matrix A by outer product learning algorithm from stored all prototypes. the
matrix A is shown in Figure 4.5.

From calculating, it is found that most of sub-prototypes in all stored prototypes
satisfy the stationary condition (4.14) and are recallable sub-prototypes. Some results
are plotted in Figure 4.6.

But in the prototype K, one sub-prototype stored in the neighborhood of the cell
lying in the 3th row and the 3th column does not meet the stationary condition (4.14)
and it is not recallable in this case. A probe shown in the left side of Figure 4.7 is
inputted into the network as a initial output state, after 20 times iteration operations,

the result is obtained as the right of the same figure. The stored sub-prototype in

N,(3,3) is destroyed but sub-prototypes stored in other cells are recalled successfully.
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(to be continued )
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Figure 4.4: Stored sample patterns in Example 2
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Figure 4.5: The A matrix for Example 2 (KQ)~!
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(a) After 9 iterations, stored prototype is recalled from the probe

(b) After 18 iterations, stored prototype is recalled from the probe

(c) After 19 iterations, stored prototype is recalled from the probe
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(d) After 44 iterations, stored prototype is recalled from the probe

(e) After 22 iterations, stored prototype is recalled from the probe

Figure 4.6: Associative memory with outer product learning rule

4.3 Middle mapping method

In above section, we have analyzed the stationary property of a cellular associative
memory with the outer product method, and presented a sufficient and necessary con-
ditions about this problem. If the stored prototypes satisfy thie condition, then all of
them are corresponding to stationary points of the networks respectively. We want to
solve this problem to some extent. But on the other hand, the memory capacity of a
network with the outer product method is rather small. When this method is used in
a full interconnection network, from the experimental results and theoretical analyzes
just 0.15n patterns can be effectively stored and recovered, where n is the number of

the neuron units in the network[18]. When this method is applied for a cellular associa-
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After 20 iterations, a part of prototype is recalled from the probe

Figure 4.7: One sub-prototype does not satisfy the stationary condition and can not
be recurred in this case

tive memory, the available capacity may be decreased further because of the reducing
of interconnection. Therefore, it is natural to attempt to find a more suitable learning
method to improve the properties of cellular associative memories.

In thie section, we present a middle-mapping learning algorithm for the cellular a
ssociative memory. Its basic principle is similar to the project learning rule presented
by L.Personnaz et all19 where the projection learning rule was considered to be used
for the system presented by McCulloch and Pitts(23], which operates in a synchronous
mode. Since in the interconnection weight matrix A obtained with the projection
learning rule, the diagonal element A;; is equal and/or approximate to 1, never equal
to zerol19, so it is difficult to apply this method directly to the Hopfield network. But
in our memory, this kind of problems does not exist. The main results of our memory
are follows:

1. It can be guaranteed to store a given vector as an equilibrium point so that every
stored prototype is retrievable.

2. It does not result in symmetric interconnection structure, i.e., A;; # A;; in gen-
eral, so that it is easy for the practical circuit implementations.

4.3.1 Middle-mapping learning algorithm

Now, let us show how the middle-mapping learning method is availably used in a

cellular neural network to improve its properties so that it is possible to guarantee the
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stationary of the stored prototypes and make it easily to be implemented by circuits.
Assume that there are S stored prototypes o) ¢ RN*M j = 1,2,..., S for a 2-
dimensional cellular associative memory with NV x M cells, each element is either +1
or —1.
Depending on Definition 4.1, in the case of B = 0 and I = 0, the state of an
associative memory network y will be called equilibrium point, if the following relation

is met.

vi(k)gily (k)] > 1 (4.23)
Vie{1,2,---,n}

where, g;[-] is the transfer operator of the cell ¢(i) obtained from the state equation
(4.1).

Depending on this description, the equilibrium condition about the £th sub-prototype
f,-(k) stored in neighborhood N.(7) could be provided by

£l 2 1 (4.24)

k=12,8

For each cell ¢(i) in DTCNN, there exists direct connections only with the cell ¢(5) in
its neighborhood N, (%), but for other cells outside the neighborhood N, (%), the element
A;; must be equal to 0 so that we can rewrite the equation (4.1) as follows,

Rivi(k +1) = Y Ayyk) (4.25a)

" c(§)EN.(1)
vi(k+1) = sat(vi(k+1)) (4.25Db)
yc.'(k) = yt(k) (4250)

Then, based on the definition 4.2 we get the output sub-vector ¥; to correspond to
the neighborhood N, (i) as §;. When yE’“’(m) = %) next relation could be obtained
from the equation mentioned above.
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alf = aly®(m)]
== vfk)(m+1)

~(k
= R, Y Ayi® (4.26)
(F)EN(V)

Although A;; is two-dimensional vector, in order to describe above relation as a form
of the product of two vectors, we can rearrange it into 1-D vector as follows:

Definition 4.4 For a cell ¢(i), we extract all elements A;; for every c(j) € N(i) from
the ith row components in matriz A and obtain a vector A; € RP.

Ai = {A,‘j s A,‘j; C(]) & N,-(Z)} (4.27)
Then, the equation (4.26) can be equivalently written by

alf”] = Ro(Ai - £) (4.28)

From this equation and the equation (4.24), we can obtain the next relation

R (£ A 21 (4.29)

Obviously, if we assume
Rz(f,-(k) LA = )\fi(k) and A>1

then the above relation can be satisfied.

It means

(k) (8
(8. 4;) = R,, (4.30)

For simplicity, we let A = R, then, we can find that, if the next relation exists

(9. 4) = ¥ (4.31)

the kth sub-prototype will meet the equilibrium condition (4.24).
We can extend (4.31) to all sub-prototypes f,-(k), k=1,2,---, S stored in the neighbor-
hood N,(z), such that they satisfy the equilibrium condition. Then a vector equation

could be provided:
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F. Ai =F (4-32)

where
F=[fD 2 ... g

F= [fz(l)’ i(Z), S fi(S)]T

The form of the equation (4.32) is similar to the formula of the projection learning
rulellg], where the connection weight matrix is the orthogonal projection matrix into

~

the subspace spanned by the prototype vector families. In our formula (4.32), A;; is
a (2r + 1)%length vector which maps a prototype yS’“) into its middle element y,(k).
Therefore, formula (4.32) could be termed as middle-mapping learning rule or pseudo-
projection learning algorithm.

Let p = (2r + 1)2, then A; € R?, Y € RS, Y € RS*?. Formula (4.32)isa Sxp
system of linear non-homogeneous equations. Based on the theory of linear algebra, if
the rank of the coefficient matrix Y is equal to the rank of augmented matrix (Y|Y),
i.e. rank(Y) = rank(Y|Y), then, the equation (4.32) must have solutions. When
p > rank(Y) = rank(Y|)), there are solutions more than one, the number of solutions
depends on the value of p — rank(Y).

Obviously, we can find that from formula (4.28), at the least, it has a solution
A, = (0,0,---,0,1, 0,---,0), i.e. the self-feedback coefficient of a cell is equal to 1,
Ay; = 1, while others are zero.

Note that in Hopfield network, the self-feedback coefficient of a cell is limited to equal
zero, it causes that we can not directly apply the middle-mapping learning method to
Hopfield associative memory, although this method has some advantages than the outer
product method. In our cellular associative memory, the self-feedback coefficient of a
cell is not equal to zero, the number is greater than 1/R,, so that if the value of R, is
selected big enough, the condition (6) can be satisfied easily.

On the basis of generalized matrix inverse, we can obtain

A;=F*.F (4.33)

where Ft is the Moore-Penrose pseudoinversem] of F. If and only if YY*Y = ),
then, the system of equations (4.32) has solutions. Even if there are no solution
on (4.32), the A;; denoted in (4.33) is still a solution of the least squares problem
minHYA,-j -V
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4.3.2 Iteration learning algorithm

In the preceding section, we present a middle mapping learning algorithm for cellular
associative memory networks. It is well known that, in general case, the couping weight
matrix shown as (4.33) can be directly calculated by pseudo-inverse. But on the other
hand, the interconnection vector A; can be obtained conveniently, without solving
high-order matrix inversion, but using an iterative algorithm[22’24]. After some times
iterations, the exact solutions of system (4.33) is yielded, the number of iterations is
equal to the number of sub-prototype vectors. This kind of computation is typical of
a learning process: once the synaptic matrix has been computed from a given set of
prototype vectors, the addition of one extra item of knowledge does not require that the
whole computation is performed again. One just has to carry out one iteration, starting
from the previous matrix, so that the computational efficiency can be improved.

In this section, we describe an iterative learning algorithm which can be incorporated
into our middle mapping algorithm to extend its computation ability. First, we give

some definition and theorems.

Definition 4.5 Letc;, ¢, -+, ¢n be column vectors in an n-dimensional space, and
introduce a n X m matric

Cm = (ci]ca| -+ |em)

where the jth column is c;.
In terms of C,,—1 and c,,, above matriz can be written as

G = (Cm_1|cm) m=2,3,--

Theorem 4.4 If Cpyy = (Crlcms1) € R™™D) where C,, € R™™ is the submatriz
of Crny1 consisting of the first m columns, and ¢m41 € R" is the (m + 1)th column of

+(7 T
Crt1 = Call = emsrkinsa) (4.34)

km+1

where
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T Chemyn L L
1'*'“Cvnc'ru+l"2 1f(I = Cmcm)cm+l — 0
1 = (4.35)

! —CmC+ Cm+4-1 :
W(S—C’T,?)ﬁ otherwise

Proof: The detail of the proof can be found in Ref.22. 0

In that theorem, (I — Cp,C})cmy1 = 0 if and only if ¢4, is in the space spanned by
€1,C2," **,Cm. Hence, kn4 is defined by the first part of (4.35) if and only if ¢4 is
not a linear combination of ¢;, ¢, -, Cm.

Theorem 4.5 For the pseudo-inverse C}. of Cy,, we have

(CRyr=(Cn)"

Proof: The proof can also be found in Ref.22.
After then, we define

F, = [fi(l)a f§2), iy ’f’_(m)]T
Fn = [ 12, JE

and describe A; derived from m sub-prototypes as fifm). Here, f,-(k) is a column vector,
fi(k) € R?, and F,, € R™*?, F,, € R™ and AS’") € RP. In this way, the equation (4.33)
can be expressed as

A =FiF, (4.36)

It is used to store m sub-prototype vectors {f,-(l),f,.(z), e ,f,-('")} as stable equilibrium
points of a cellular associative memory network. Now suppose we desire to store
an additional sub-prototype fi(""H) into the network. According to Theorem 4.4 and
Theorem 4.5, we have

215’"“) = F} iFmn

3 e R 8.
gm+1)T Fm+n
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(F£+ FT +f(m+l)kT 1)
] (m+1)
Kt

= (F; -hi km+1fi(m+l) F::)fm o km+ a(m+l)
= A™ 4 AAmTY (4.37)

where
~ T

Ft FT +g(m+1) - + T +\p(m+1)
1+|TFTm+f.m+l 12 if (I = FmFm )fi =0
m %
km-}-l =
(I—F;F£+)fi(m+l)
II-FLFLHHE™ D)2

otherwise

In this way, we can learn an additional sub-prototype f,-('"+1) without affecting the
sub-prototype vectors {f(l) @) .. ,f,-(m)} already learned by the network.

With the equation (4.37), an iterative learning algorithm can be performed to store
all S sub-prototypes as the equilibrium points of the memory networks. It can be
summarized as follows:

Procedure : Iterative Middle Mapping Learning Algorithm
Begin

for i:=1 to M do begin
for j:=1 to N do begin

) .1
Y=gy /05 95)
A =Yty

for m:=1to S —1 do begin
it (1-YEYIhy™Y =0

then Ky = Y+Y$+yfjm+”/(1 + YT y |2
else km+l - (I - Y+YT+)y(m+l)/”(I Y+YT+)y(m+1)”2 :
(m+1) ,_ (m+1) m+1)
AA » k (yu j Y;;ym)a

A(m+1) A(m) P AA(m+l)
end
end

end

End

I T ———————
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4.3.3 Illustration example

To illustrate the associative memory ability of the cellular neural network with the
middle-mapping learning algorithm, three examples are given bellow.

Ezample 1:

Let the network consist of a two-dimensional grid with 5 x 5 neural inner cells and
add a ring of dummy cells. The radius of one neighborhood is 7 = 1, so, the number
of cells in a neighborhood is equal to (2r + 1)2 = 9. The parameters used in our
examples are selected as

R,=100kQ, B=0(kQ)™, and I=0mA

First, 4 prototypes shown as Figure 4.8 are stored into the cellular associative mem-
ory with our learning algorithm.

Figure 4.8: Stored 4 prototypes for Example 1
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The unsymmetric weight matrix is obtained, which includes the information about
the stored prototypes. Figure 4.9 illustrates this weight matrix.

012 000 000 000 000 012 -12 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 014 014 000 000 -14 000 -14 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 012 012 012 000 000 000 -12 012 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 011 011 000 000 000 -11 011 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0.14 000 000 000 000 0.14 -14 000 000 000 014 000 000 000 000 000 000 000 000 000 000 000 000 000 000
-18 -06 -18 000 000 -18 0.18 000 000 000 -18 006 -06 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 -16 -16 -16 000 000 000 016 -16 000 000 000 000 -16 000 000 000 000 000 000 000 000 000 000
000 000 000 012 012 000 000 000 -12 0.2 000 000 000 000 012 000 000 000 000 000 000 000 000 000 0.00
000 000 000 000 000 012 .12 000 000 000 012 000 000 000 000 012 -12 000 000 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 000 100 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 050 050 000 000 000 000 000 000 000 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 000 000 050 050 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 -12 012 000 000 000 000 012 000 000 000 -12 0.2 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 Ol4 000 000 000 000 014 -14 000 000 000 0.14 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 -18 006 -06 000 000 -18 018 000 000 000 -18 -06 -18 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 100 000 000 000 000 000 000 0.0
000 000 000 000 000 000 000 000 000 000 000 000 000 000 -16 000 000 000 016 -16 000 000 -16 -16 -16
000 000 000 000 000 000 000 000 000 000 000 000 000 000 012 000 000 000 -12 012 000 000 000 0.2 0.2
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 012 -12 000 000 000 0.12 000 000 000 0.00
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 100 000 000 0.0
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 -14 000 -14 000 000 000 014 0.14 0.00
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 -12 042 000 000 012 0.2 0.12
L 000 000 000 000D 000 000 000 000 000 000 000 000 000 000 000 000 000 000 -11 011 000 000 000 011 O0.11

Figure 4.9: The feedback coefficients matrix A ( (kQ)7!)

Then, a probe shown in Figure 4.10(a) is input, where m denotes the number of
current operation of this memory, while m = 0 is corresponding with initial state.
After three iterations, the state of memory network is converged to a nearest prototype
shown as Figure 4.10(d). The grey pixel in (b) and (c) of Figure 4.10 is corresponded

to ¥ = 0 which are unstable equilibrium points[w].

In real circuits, they are no
measurable. Since differential operation is not needed in our algorithm, the computing
simulation is very simple and fast.

When all 4 probes shown in the left of Figure 4.11 are input alternatively, they
have distortion about 32% ~ 40%. After 3 ~ 9 times of the associative iterations, we

can obtain the correct memory results shown in the right of Figure 4.11 in which the

complement contents are recovered.
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K= K=1
(a) (b)
K=2 K=3
(c) (d)

Figure 4.10: The retrieval process for one probe

W T ———————
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(a) After 9 times iterations, prototype is recalled

(b) After 3 times iterations, prototype is recalled

( To be Continued )
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(c) After 5 times iterations, prototype is recalled

(d) After 4 times iterations, prototype is recalled

Figure 4.11: 4 probes and associative memory results
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Ezample 2:
In this example, first, 4 prototypes shown in Figure 4.12 are stored and the inter-
connection weigh matrix is produced.

Figure 4.12: 4 prototypes are stored

Then, 4 probes shown in the left of Figure 4.13 are input respectively, whose dis-
tortions are 28% ~ 36%. After some times of the updating, the complement stored

patterns are retrieved which are shown in the right of Figure 4.13.
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(b)

( To be continued )
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()

()

Figure 4.13: The probes and retrieval results

T ——
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Next, 8 prototypes shown in Figure 4.14 are stored.

( To be continued )
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Figure 4.14: 8 prototypes are stored

Then, probes shown in the left of Figure 4.15 are selected respectively as the initial
states of the network. After some times of iterations, we can obtain desired associative
results as the right of Figure 4.15, but the distortions of the probes is reduced into
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12% ~ 24%. It illustrates that the convergent ability gets smaller in this case.

(b)

( To be continued )

93
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(d)

( To be continued )

B —
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(e)

(f)

( To be continued )

B T S—
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(h)

Figure 4.15: Input probes and the associative results

96
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Example 3:

Next, the ability of cellular associative memory with middle- mapping algorithm to
recover prototypes from a probe signal mixed with Gaussian white noises is displayed.
In this case, the network consists of 9 x 9 neural cells, the radius of one neighbor is
still 1. First, 26 upper-case English letters shown in Figure 4.16(a) are stored into the
cellular network. Then, a probe pattern is generated by adding Gaussian white noise
to each pixel in the probe pattern. Hence, zero-mean Gaussian white noise is used but
its mean square deviation are 0.2, 0.3 and 0.4 as shown in Figure 4.16(b), (c) and (d)
respectively. These probes are used as initial values of the state variables v, and input
to the cellular network. Each of the 26 stored pattern is used as an initial condition
twice. The average results of all calculations are illustrated in Table 4.1.

o

(a) Stored prototypes

(b) Probes with noise of o = 0.2

( To be continued )

From these calculation results, it can be found that, there are some spurious states
in a cellular associative memory, while the mean square deviation of noise mixed in
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(d) Probes with noise of o = 0.4

Figure 4.16: Stored prototypes and initial probes with Gaussian noises

Zero-mean Gans- Rate of three type of results

sian white noise with
mean square devia-
tion o

converge to | converge to

; not convergent
the prototype | spurious

states
=105 100.0 0.0 0.0
=03 98.1 1.9 0.0
c=04 T2 28.8 0.0

Table 4.1: The simulation results for 26 English characters storing in a cellular asso-
ciative memory by the middle mapping algorithm

B S—
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probes is larger, it may be possibly to converge to some spurious states.

4.4 Conclusion

In this chapter, first, we describe the outer product learning approach to set up the
weights with suitable values which is related to the object patterns information, it is
called as storing object patterns into a cellular associative memory. Meanwhile, some
analyses about the stationary property of the cellular associative memory with outer
product learning rule are taken. A condition is presented which ensure the stored
patterns as the stable states of a cellular associative memory. After then, a middle-
mapping learning algorithm for cellular associative memory is presented, which makes
full use of the properties of the cellular neural network so that every stored prototype
can be guaranteed as an equilibrium point of our memory. At the same time, it ‘
has ability of iterative learning. This kind of computation is typical of a learning

process: once the synaptic matrix has been computed from a given set of prototype

vectors, the addition of one extra item of knowledge does not require that the whole

computation is performed again. One just has to carry out one iteration, starting from |
the previous matrix, so that the computational efficiency can be improved. Besides,
its implementation with circuits is more feasible because the weight matrix is not
symmetric.

Since the synchronous updating rule is used in both of them, their associative speed
very fast compared to the Hopfield associative memory.

From the simulating results, we can find that, when the number of the stored pro-
totypes is increased or the distortion in a probe is strong, the associative ability is
decreased and the probability of converging to spurious states is increased. It is similar
with the situation in the other types of associative memory networks. But in a cellular
associative memory, it is believable that we can extend the size of a neighborhood of

our cellular associative memory to improve its associative ability. Unfortunately, the
realization of circuits is get more difficult at the same time and the manufacture cost
is risen. Using space-varying method[1] to select suitable neighborhood size meeting
the specific requirement may solve this problem. This is a future problem. More detail
researchs will be taken in the near future.

B
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Chapter 5

Applications in Image Processing

5.1 Introduction

In previous chapter, we apply our discrete-time cellular neural network to associative
memory, which is a problem to find the connection weights so that a given set of

prototypes o', 0%, ---, o°

are the stable fixed points bedded in our discrete-time
associative memory network with prescribed size of basins of attraction. That is a
fixed-point programming problem.

Differing from it, in this chapter, we will apply our DTCNN to image processing with
another view point. It is to consider DTCNN as a spatial operator. With appropriate
choice of the connecting weights, the network can operate as a differentiator, an inte-
grator or even more complexer operator, which include the cooperative operation, the
competitive operation and the mixed operation. Although many similar tasks can be
performed by current digital image processing techniques, DTCNN will operate faster
than the former, generally, since it is a parallel operator.

We list the state equation of our DTCNN as follows:

’U,‘(k -+ 1) = R,,.[Z A,‘j sat(vj(k)) + Z B,'j u; + I; ] (5.1)
j=1 j=1
k=0,1,2,--, Vie{l,2-,n}

This equation can be interpreted as a two-dimensional operator to map an image,
described by v(k) into another one, represented by v(k + 1). Obviously, this operator
is nonlinear since sat(v(k)) in (5.1) is a nonlinear function. In general, some times

recursive operations are required to get a desired result after an initial probe is inputted
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to the network. The operator for mapping an image does not achieve at once, but takes
some times of iterations so it is a space-time operator really.

Based on experiences and theorem analyses, it is known that, the more elements
a template has, the complexer operation it can perform. But VLSI realization and
template design or learning approach of the network will become difficult for larger
neighborhood. From the practical point of view, the neighborhood is always chosen
to be as small as possible. The typical radius for a neighborhood is 1 or 2, which is
corresponding to 3 x 3 neighborhood or 5 x 5 neighborhood, respectively.

Since each cell just connects directly its near cells in a discrete-time cellular neural
network, the A matrix in Equation (5.1) is a sparse matrix, 4;; = 0, V¢; &N.(3).
Hence, for one updating, it can only make use of the local image information. When
the global character of an image is required, our DTCNN can be updated n times to
obtain the global information from the image. It is well-known propagation property,
which means that the pixel value of the output object image can be indirectly affected
by a large neighbor region of the input image after n times updatings. This property
can be illustrated by replacing v;(k) in (5.1) iteratively down to v;(k —1). Then we get

wk+1) = RS Agsat{R. > Agsat(u(k — 1)) + 5] + I, (5.2)
=1 1=1

Vie{1,2,---,n}

It is easy to see that the state value v;(k + 1) is not only affected by the value
v; though the no-zero weight coefficients A;; Ve(j) € N,(i) directly, but also affected
indirectly by the value v; in previous updating moment because of the no-zero weight
coefficients Aj Ve(l) € Ni(j) and Ve(j) € N.(i). In this way, the radius of receiving
information region for the cell ¢(7) is wided to two times of the original radius of the
neighborhood in the network. When we iterative down k times down to v;(0), which
coincides with the input image, we have

wk) = Y g5(v(0) (5.3)
c(5)E Nk (3)
Vie{1,2,---,n}

where g,’Fj is a nonlinear function, related with connection coefficients of the cells be-
tween c(i) and c(j). Here, we can find that the neighborhood Ni(i) is & times larger
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than N,(¢). Of course, when the updating times k is large enough, the neighborhood
Nir(7) will eventually cover the entire image. Therefore, the propagation property of
DTCNN makes it possible to make use of some global features of the input image. On
the other hand, the local properties are still preserved with the closer neighbors having
more effects than those farther away.

5.2 Feature extraction

Feature extraction is an important problem in image processing. In this section, we
illustrate the ability to realize the edge extraction of hand-writing Chinese characters
and pictures with our DTCNN. By the edge extraction, we get and remain the main
information coved in original messages, but the data volume and stored space size have
been reduced. On the other hand, it is available in the recognition of hand-writing
Chinese characters.

First, a 48x64 image composed by a diamond shape element and four square shape
elements is illustrated in Figure 5.1.

The circuit parameter R, = 100 k2 and 1-neighborhood are used, the template Ty
T and T} are chosen in which both the feedback and control operators are non zerolll.

0.0]0.0]0.0 -0.51-0.5]-0.5
T,=|0.0]20]0.0 Tg =|-0.5] 1.0 | -0.5 T = -1.50
0.0{0.0]0.0 -0.5 [ -0.5 | -0.5

Table 5.1: The Template for the edge extraction

Using the input image in Figure 5.1 both as the input signal and the initial state of
DTCNN, after 3 times iterative updatings, the result is obtained as shown in Figure
5.2, which is just that we want to get.

It is known that the same tasks have been performed by the continuous-time CNN
[1], there a continuous-time CNN is used for extracting the edges of a 16x16 diamond
image or a 16x16 square image, but the differential operations are carried, in addition
of that, the iterations number is about 57. For out DTCNN, the complicated and time
consumed differential operation is avoided, the iteration number is 3, it is only about
5% of the continuous-time CNN. Therefore, it is found that, when we realize a CNN
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Figure 5.1: An image composed by one diamond and four squares

L L
| e

Figure 5.2: The extracted edge from the input image in Fig. 5.1
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by a software simulation programs, in some cases of image processing, DTCNN is more
powerful and advantageous than the continuous-time CNN.

After then, a picture of hand-writing Chinese characters shown in Figure 5.3 is chosen
as both as the input signal and the initial state of DTCNN.

Figure 5.3: A picture of Chinese characters (Zhou SHEN 1427 - 1509 )

Using the same circuit parameters and the templates T4 T and T mentioned above,
after 3 times iterative updatings, the precise result is shown in Figure 5.4.

T ' |
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Figure 5.4: The extracted edge from the input image in Fig. 5.3

Moreover, using the same circuit parameters and the same template in Table 5.2,
but using the Chinese picture in Figure 5.5 as the input signal and the initial state,
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just taking 3 times updates, the desired result is derived successfully and, is shown as
Figure 5.6.

5.3 Noise removal

Beside of feature detection, the noise removal is also one of the most important problems
in image processing. Since a input image coming from the real world are usually
superimposed by some noises. For a example, a artificial satellite takes a photograph
and send it back to the earth. When this photograph is received by the ground station,
in general, its detail part can not be directly recognized, because there exist a lot of hot
noises and other interference sources when taking the photograph and transmitting it
through long distance. For another example, after long time storing and displaying, a
famous art picture will be smeared because of air and steam effects. In order to recove
the original information from a picture mixed by some noises, the image processing of
the noise removal is required. In fact, the noise removal technique by digital filter, or
digital image processing with digital computers, was been developed some years ago
and has been widely applied until now. But our DTCNN will be more powerful to the
noise removal image processing, because it is a parallel array with faster calculating
speed and, can realize real time processing. In this section, we concentrate on the noise
removal for an artificial satellite photocopy and a Chinese picture by DTCNN.

The input image with 180x260 pixels shown in Figure 5.7 is a " Sikoku” monochromi-
cal photograph which is scanned from a color photocopy taken by the artificial satellite
”Landsat” and to been processed perfectly, and then adding o = 0.8 and m = 0 Gaus-
sian white noise. After then, the noise removal template[ll list in Table 5.3 is used,
other circuit parameters are the same as the prior section. Using this image as the in-
put signal and the initial state of a discrete-time cellular neural network with 180x260
cells and making 6 times iterative operations, the result is derived as Figure 5.8. The
big block region can be found on the upper part and the right part in the result image,
which are corresponding the plain lying in " Kagawa” prefecture and round " Yoshino”
river, respectively.

In the next example of noise removal, the same circuit parameters and the noise
removal template are chosen, but the input image is a Chinese picture ” Yellow Moun-
tain” with 380x200 pixels and adding ¢ = 0.7 m = 0 Guassian white noise shown as in
Figure 5.9. After 6 times iterative operations, the result can be gotten as Figure 5.10.
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Figure 5.5: A Chinese picture ”Listening Bamboo” ( Zhen-ming Wen 1470 - 1560 )

D I —r



‘ CHAPTER 5. APPLICATIONS IN IMAGE PROCESSING 109

Figure 5.6: The extracted edge from the input image in Fig. 5.5
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Figure 5.7: A photocopy by the satellite "Landsat” with ¢ = 0.8 m = 0 Gaussian
white noise

1010 (1.0 0.0]0.0]|0.0
T4=|10(80]|1.0 Tg =|00(0.01]0.0 Ty = 0.00
1.0(1.0(1.0 0.0{0.0]0.0

Table 5.2: The Template for the noise removal
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I Figure 5.8: Result image from Fig. 5.7 after noise removing
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Figure 5.9: A Chinese picture ”Yellow Mountain”( Zhou SHEN 1427 - 1509 ) with
o = 0.7 and m = 0 Gaussian white noise




CHAPTER 5. APPLICATIONS IN IMAGE PROCESSING 113

Figure 5.10: Result image from Fig. 5.9 after noise removing
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Finally, using the same circuit parameters and the templates, we make noise removal
processing to a 16x16 character image with ¢ = 0.2 m = 0 Guassian white noise shown
as in Figure 5.11(a). After 3 times iterations, the precise result is obtained as in Figure
5.11(b).

(a) A 16x16 probe image with 0 =0.2  (b) Result image after noise removing
and m = 0 Gaussian white noise

Figure 5.11: The noise removing for a 16x16 Chinese character with ¢ = 0.2 and m =0
Gaussian white noise

In this section, we give three examples to apply our DTCNN for noise removal image
processing. Although the some examples of noise removal for Chinese characters with
16x16 pixels are illustrated in Ref. [1], but their processing is available just for o < 0.4.
In the case of ¢ > 0.6, the result is a full block picture. In addition of it, for getting
desired results when o < 0.2, the differential calculations had to be carried and about
30 times of iterative operations are required. For our DTCNN, the times of iteration
is less, for example, for the same 16x16 image, the number of iteration is only 3. Even
though an input image is composed by 320x200 pixels superimposed o = 0.7 Gaussian
white noise, just 6 iteration operations are carried. Since no differential calculation is

required in the iterations, the calculating speed is more faster than that of continuous-
time CNN.
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5.4 Visual pattern recognition

Pattern recognition, naturally, is based on patterns. It comes as little surprise that
much of the information that surrounds us manifests itself in the form of patterns.
A pattern can be as basic as a set of feature measurements or observations, perhaps
represented in two-dimensional geometric description, vector or matrix notation(!1]. In
this study, we just consider the case of two-dimensional graphic patterns, and classify
some specific patterns from a background. The similar pattern recognition techniques
have been widely used for computer vision!%. The ease with which humans classify and
describe patterns often leads to the incorrect assumption that this capability is easy to
automate. Sometimes the difference between some patterns are immediately apparent,
whereas in other instances they are not. Some research in geometric description have
revealed that, human vision system can almost instantaneously detect differences in a
few local conspicuous features without the need of complex familiarity cues. These fea-
tures are called as textons[m], which include elongated blobs as rectangles, ellipses or
line segments with specific color, angular orientation, width, length, binocular, move-
ment disparity and flicker rate. The terminators and crossings of line segments also are
textons. For examples, Figure 5.12 and Figure 5.13 show two testing pictures. Each of
them consists of 64 x 96 pixels.

The textures in Figure 5.12 are composed of ” " and ” /” shaped elements with

i

rotated orientations. The differences between ” ” shaped element and ” /” shaped
element are very obvious so that it is rather easy to pick ” /” shaped pattern out from
this background. But in Figure 5.13, it will take considerable time and effort to look
out the ” T” shaped patterns from the background, since the ” T” shaped pattern and
” ” shaped pattern are belong to one type of texton, they are similar with each other.

Because the geometric descriptions are such different, it is easy to find that the ” 7
shaped element and " T” shaped element are belong to two distinct types of textons or
patterns. It is nature to have to design two distinct templates to recognize them from

the same background respectively. We give the templates as follows.

The template 1 is used to each cell in DTCNN with 7 = 1. The elements in the
weight matrix A of (5.1) are decided by T4, B by Tp and I by T;. Inputting the
probe image shown as Figure 5.12 to the DTCNN with the weight matrixes A B and
I coming from the template 1, after 4 times iterations, the " /" shaped elements are
classified from the background shown as Figure 5.14.
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Figure 5.13: A probe pattern composed by 7  and " T shaped elements
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0.0({05]0.0 051]-05] 0.5
T4=|05]20]05 Tg={-05] 2.0 |-0.5 Ty = -2.50
0.0]0.5]0.0 051]-05] 0.5

Table 5.3: Template 1 for pattern recognition

0.00 { 0.00 { 0.00 | 0.00 | 0.00 0005|000 05|00
0.00 | 0.25 | 1.50 | 0.25 | 0.00 05|05 |-1.0| 0.5 [ 0.5
T4=|0.00|1.50 | 8.00 | 1.50 | 0.00 Tg=|00|-1.0| 1.0 | -1.0 [ 0.0
0.00 | 0.25 | 1.50 | 0.25 | 0.00 05|05 ([-1.0[ 05 [0.5
0.00 { 0.00 | 0.00 | 0.00 | 0.00 000500/ 0.5 (0.0

T =-2.50

Table 5.4: Template 2 for pattern recognition

Figure 5.14: Classified result for the probe image in Fig. 5.12
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Similarly, by the weight matrixes coming from the template 2 with the neighbor
radius r=2, inputting the probe image shown as Figure 5.13, the ” T” shaped pattern
are picked up. Figure 5.15 shows the desired result.

Figure 5.15: Classified result for the probe image in Fig. 5.13 :

5.5 Multiple visual pattern recognition

In prior section, the capability to recognize a pattern from the background with uniform
DTCNN is demonstrated. But in some cases, it is needed to extract some distinct types
of patterns from a two-dimensional image. Since the character of distinct types of
patterns are not like in geometric description, it is difficult or impossible for a uniform
DTCNN. A non-uniform or variable-space DTCNN is needed for these tasks, but before
that, the guarantee of the convergence for a non-uniform DTCNN is important. The
theorems in Chapter 2 provide us with the convergence conditions for a non-uniform
DTCNN. Based on those analyses, we can design some non-uniform DTCNNs for

multiple distinct patterns recognition.
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Figure 5.16: A probe pattern composed by three types of elements
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Figure 5.16 is composed of the ” ”,” T” and ” x” three types of elements. Assuming
the ” T” shaped elements only appear in the left half plane and the ” x” shaped elements
the right half plane. Then, for each cell lying in the left half plane, the template 3 is
used. But for other cells, the template 4 are used. Each template makes a contribution
to weight matrixes A, B and I by itself. In this way, we obtain a non-uniform DTCNN
which template for every cell are variable with the space. This non-uniform property
results in non reciprocal weight matrixes. After some times iterations, it is successful
to recognize two distinct types patterns shown as Figure 5.17.

0.50 | 0.00 | 0.50 | 0.00 | 0.50 00|05]00(05]0.0
0.00 | 1.00 | 0.00 | 1.00 | 0.00 05|05 |-1.0| 05 |0.5
T4=|0.50 | 0.00 | 8.00 | 0.00 | 0.50 Tp=|00|-1.0| 1.0 | -1.0| 0.0
0.00 | 1.00 | 0.00 | 1.00 | 0.00 05]05|-1.0] 0.5 | 0.5
0.50 | 0.00 | 0.50 | 0.00 | 0.50 00| 05100 |05 ]0.0

Tr = -2.50

Table 5.5: Template 3 for multiple visual pattern recognition

0.00 | 0.00 { 0.00 | 0.00 | 0.00 0005|001 05]0.0
0.00 | 0.25 | 1.50 | 0.25 | 0.00 05105 |-1.0]| 0.5 [0.5
T4=|0.00]|1.50 | 8.00 | 1.50 | 0.00 Tp=|00|-1.0( 1.0 {-1.0| 0.0
0.00 | 0.25 | 1.50 | 0.25 | 0.00 05|05 (|-1.0] 0.5 [0.5
0.00 | 0.00 | 0.00 | 0.00 | 0.00 00/05|00] 0.5 (0.0

Ty =-2.50

Table 5.6: Template 4 for multiple visual pattern recognition

In previous example, we show that a non-uniform DTCNN has ability to recognize
two types distinct visual patterns lying in the left half plane and the right half plane of
a probe image at the same time. Next. we want to give another example to recognize
two types distinct visual patterns lying in the upper part and the down part of a probe
image at the same time. An image shown in Figure 5.17 is used as a probe image. It
is similar with a reflection graph obtained by a laser radar, in which the upper part is
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Figure 5.17: Two types of textons are picked out
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supposed to be sky region so that the elements in this part is composed by the plane
shaped reflect pixel and the noise reflect pixel, but the down part is sea region so the
elements is composed by the shop shaped reflect pixel and the noise reflect pixel. What
we want to do is to detect the plane shaped reflect pixel and the shop shaped reflect
pixel at the same time. In order to do so, two templates listed in Table 5.7 and Table
5.8 are used for the cells lying the upper part and down part, respectively. Using the
probe image shown in Figure 5.18 as both input signal and the initial state of DTCNN,

after 11 times iterative operations, a result is derived successfully , shown as Figure
5.19.

Figure 5.18: A probe image composed by three types elements
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Figure 5.19: Two distinct types of elements are picked out
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0.00 { 0.00 | 0.50 | 0.00 | 0.00 1.00 | 0.50 | 0.00 | 0.50 | 1.00
0.00 | 0.50 | 0.50 | 0.50 | 0.00 0.50 | -0.50 | 0.00 | -0.50 | 0.50
T4 =|0.50 | 0.50 | 8.00 | 0.50 | 0.50 T =|0.00| 0.00 [ 1.00 | 0.00 | 0.00
0.00 | 0.50 | 0.50 | 0.50 | 0.00 0.50 | -0.50 | 0.00 | -0.50 | 0.50
0.00 | 0.00 | 0.50 | 0.00 | 0.00 1.00 | 0.50 | 0.00 | 0.50 | 1.00
Tr = 0.50

Table 5.7: Template 5 for multiple visual pattern recognition

0.50 { 0.00 | 0.00 | 0.00 | 0.50 0.00 | 0.00 { 0.00 | 0.00 | 0.00
0.00 [ 0.50 |{ 0.50 | 0.50 | 0.00 0.00 | 0.50 | 0.00 | 0.50 | 0.00
T4={0.00]0.50 | 8.00 | 0.50 | 0.00 Tp=|0.00 | 0.00 | 1.00 | 0.00 | 0.00
0.50 | 0.50 | 0.50 | 0.50 | 0.50 0.00 | 0.50 | 0.50 | 0.50 | 0.00
0.50 | 0.00 | 0.00 | 0.00 | 0.50 0.00 | 0.00 | 0.50 | 0.00 | 0.00

T =-2.50

Table 5.8: Template 6 for multiple visual pattern recognition

5.6 Conclusion

In this chapter, first, we apply our DTCNN to the feature extraction and the noise
removal for the image processing. Some real image are chosen as our processing object
and then, input to DTCNN as both input signals and initial states. After a few times
iterative operations, desired results are obtained. Although the same function can
also be carried by continuous-time CNN, time consuming differential operations are
taken during the procedure and more iterative operations are required, Contrasting
it, our DTCNN realized by software simulation can do them only with 5% or 10%
computing cost, so it is faster and efficienter than continuous-time CNN in this case.
After then, we illustrate the potential of DTCNN for the visual pattern recognition.
From a prototype composed by two or more types of elements, we can detect desired
visual patterns successfully. When there exist obvious differences between these two
types of elements, it is easily recognized by human vision system. But for some similar
composed elements, it is said to be very difficult and time consuming for human vision
system. For our DTCNN, after suitable template is designed, it is easily and quickly

=
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to pick out our desired patterns from a prototype in both cases. This technique can be
applied for robot vision. Finally, based on our convergent analysis result in Chapter 2,
we design space-varying non-uniform DTCNN for multiple visual patterns recognition.
In a non-uniform DTCNN, two or more templates are used for the cells lying in different
region of 2-D processing array. Two examples are given to show the ability of non-
uniform DTCNN to detect multiple visual patterns from a prototype at the same time,

which have distinct geometrical character so they can not be picked out by unique
template at once. It extented the application region of our DTCNN more over. Since
the weight matrix A and B contributed by two or more distinct templates are not
symmetrical matrixes, or, A;; # A;i and Bj; # Bj; generally, the stability analysis of
unsymmetric continuous-time CNN is still open problem and dose not been solved, the
similar application by continuous-time CNN has not been reported until now.
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Chapter 6

Overall Conclusion

As one point of our research, we presented a model of discrete-time cellular neural net-
work in 2th chapter, and analyzed its stability property with uniform or nun-uniform,
symmetric or unsymmetric weight coefficients matrix. First, we showed the cell model )
of the continuous-time CNN, and some typical types of 2-D array structures briefly.

After introducing a two phases synchronous-updating signal into a continuous-time
CNN, we obtained a synchronous-updating CNN, we called it as SCNN. By sampling
the values of state variations v; and output variations y; at the updating moments
t=kT, k=0,1,2.--., we derived a discrete-time CNN which topology and output
function are distinct from the DTCNN presented by Harrer and Nossek. In general,
the output of this DTCNN is a variable value during (—1, +1), so that it can be
used to image processing in which the output is a multiple grey level image. in or-
der to guarantee the output as a binary value to meet some special applications, a

sufficient condition and a necessary condition are presented here, which provide the
design requirement for the matrix A and the matrix B. Moreover, in order to analyze
convergence condition of this DTCNN, the generalized energy functions for our SCNN
and DTCNN are defined respectively. Here, we don’t directly compare the value of

the energy function of DTCNN at two sequent of updating moments, which method
is used by N.Fruehauf, L.O.Chua and E.Lueder for reciprocal DTCNN with the same
output function. We analyze the energy function of SCNN during a clock period and
around a updating moment, because the energy function is not continuous at those
| moments, which impact must be considered carefully. Two theorems about the conver-
gence condition of nonreciprocal and nonuniform SCNN are described first. Meanwhile,
since the energy function of DTCNN is sampled and discreted from that of SCNN, two
convergence conditions are also available to nonreciprocal and nonuniform DTCNN.

127

T et



CHAPTER 6. OVERALL CONCLUSION 128

The result covers the reciprocal DTCNN as a special case, and provide the potential
to apply our DTCNN more widely, for examples, associative memories, multiple visual
pattern recognitions and others.

Owing to the piecewise linear character of the non-linearities, cellular neural net-
works depend crucially their nonlinear dynamics. Proper operation often requires the
existence of multiple equilibrium points or DC operating points. Therefore, it is impor-
tant to have an efficient analysis method for obtaining a global picture of the dynamic
behavior, the equilibrium pattern and the basins of attraction in a given network. It is
a problem to find equilibrium points in CNN described by the state equation and the
output equation.

In the chapter 3, we present a modified BDF curve tracing method for this problem.
The result shows this algorithm could be used efficiently to trace those solution curve
with some sharp turning points. Specially, we want to point out that the Brown method
is a kind of the Gauss-Seidel algorithm to be used for nonlinear algebraic functions. It
is known that the convergence ratio is second order near to the solution. Furthermore,
a number of the function evaluations is (N? + 3/N)/2 when the function consists of N
functions. Observe that that the Newton method takes N? evaluations of the partial
derivatives and N evaluations of functions. Thus, the Brown method is efficiently
applied to trace solution curve, such that the approximate solution is obtained by
Hermite polynomial.

The algorithm presented here can be useful in the analysis of neural networks, e.g.
during the design of templates for cellular neural networks. It can be applied to large
networks provided that the extreme sparity and the structure of the coefficients are
exploited. The method can be applied for some types of neurons with smooth non-
linear output functions or piecewise linear output functions. In general, there does not
seem to be much hope for an efficient way to find all equilibrium points in a given
neural network unless appropriate guidelines are followed during the synthesis process.

The artificial realization for the associative memory is one of the important prob-
lems on the neural network applications. In several books and papers, the ability of
neural networks to implement associative memories has been discussed. First, the in-
formation of several prototypes are stored into a neural network and then, a signal is
inputted to the network where some information from a prototype is lossed because
of the distortions and noises during the signal transmission and processing. Then, all
or most of original information can be recovered with the associative memory. The
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researches on the associative memory can be directly applied to pattern recognitions
and classifications.

In the chapter 4, first, we describe the outer product learning approach to set up
the weights with suitable values which is related to the object patterns information,
it is called as storing object patterns into a cellular associative memory. Meanwhile,
some analyses about the stationary property of the cellular associative memory with
outer product learning rule are taken. A condition is presented which ensure the stored |
patterns as the stable states of a cellular associative memory. After then, a middle-
mapping learning algorithm for cellular associative memory is presented, which makes l
full use of the properties of the cellular neural network so that every stored prototype
can be guaranteed as an equilibrium point of our memory. At the same time, it
has ability of iterative learning. This kind of computation is typical of a learning ﬁ
process: once the synaptic matrix has been computed from a given set of prototype
vectors, the addition of one extra item of knowledge does not require that the whole |
computation is performed again. One just has to carry out one iteration, starting from
the previous matrix, so that the computational efficiency can be improved. Besides,
its implementation with circuits is more feasible because the weight matrix is not |
symmetric.

Since the synchronous updating rule is used in both of them, their associative speeds
are very fast compared to the Hopfield associative memory.

From the simulating results, we can find that, when the number of the stored pro-
totypes is increased or the distortion in a probe is strong, the associative ability is
decreased and the probability of converging to spurious states is increased. It is similar
with the situation in the other types of associative memory networks. But in a cellular
associative memory, it is believable that we can extend the size of a neighborhood of
our cellular associative memory to improve its associative ability. Unfortunately, the
realization of circuits is get more difficult at the same time and the manufacture cost
is risen.

Differing with prior chapter, in the chapter 5, we apply our DTCNN to image pro-
cessing with another view point. It is to consider DTCNN as a spatial operator. With
appropriate choice of the connecting weights, the network can operate as a differen-
tiator, an integrator or even more complexer operator, which include the cooperative
operation, the competitive operation and the mixed operation. Although many sim-
ilar tasks can be performed by current digital image processing techniques, DTCNN

B S—




CHAPTER 6. OVERALL CONCLUSION 130

will operate faster than the former, generally, since it is a parallel operator. First, we
apply our DTCNN to the feature extraction and noise removal for the image process-
ing. Some real image are chosen as our processing object and input to DTCNN as
both input signals and initial states. After a few times iterative operations, desired re-
sults are obtained. Although the same function can also be carried by continuous-time
CNN, more iterative operations are required and, moreover, time consuming differen-
tial operations are taken during each iterative. Contrasting it, our DTCNN by software
simulation is faster and efficienter than continuous-time CNN in this case. After then,
we illustrate the potential of DTCNN for the visual pattern recognition. From a proto-
type composed by two or more types of elements, we can detect desired visual patterns
successfully. When there exist obvious differences between these two types of elements,
it is easily recognized by human vision system. But for some similar composed ele-
ments, it is said to be very difficult and time consuming for human vision system. For
our DTCNN, after suitable template is designed, it is easily and quickly to pick out
our desired patterns from a prototype in both cases. This technique can be applied for
robot vision. Finally, based on our convergent analysis result in Chapter 2, we design
space-varying non-uniform DTCNN for multiple visual patterns recognition. In a non-
uniform DTCNN, two or more templates are used for the cells lying in different region
of 2-D processing array. Two examples are given to show the ability of non-uniform
DTCNN to detect multiple visual patterns from a prototype at the same time, which
have distinct geometrical character so they can not be picked out by unique template
at once. It extented the application region of our DTCNN more over. Since the weight
matrix A and B contributed by two or more distinct templates are not symmetrical
matrixes, or, A;; # Aj and B;; # Bj; generally, the stability analysis of unsymmet-
ric continuous-time CNN is still open problem and dose not been solved, the similar

application by continuous-time CNN has not been reported until now.
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