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Abstract

The famous one-dimensional nonlinear heat equation is considered.
To this equation a numerical method for distinction between blow-up
and global solutions is proposed. Difficulty is in the treatment of the
global solution which is defined in the infinite interval. The bounding
transform is used to overcome this difficulty. Numerical experiments
show the validity of our method.
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Introduction

Following the unique paper|7] there have been a lot of preceding researches
on blow-up solutions for nonlinear heat equations. In the paper, the initial and
boundary value problem governed by the famous one-dimensional nonlinear
heat equation as follows:

Problem 1 For two parameters a 2 0, and T > 0, find u(¢, z) such that

Ut = Ugy + U2, O<t<T, O0<x<1,
u(t,0) =0, 0<t<T,
u(t,1) =0, 0st<T,
u(0,x) = asin7z, 0<zx<l.

Numerical methods have been proposed to such a problem with the blow-up
solution [14, 3, 9, 4]. They adopt the adaptive control on the time increment, i.e.
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the time increment varies depending on the solution. This technique is useful
for the computation of the blow-up time. The blow-up time 7T} in Problem 1
with a = 100 was computed to be approximately 0.01098[9].

By the way, it is well-known that Problem 1 has global solutions for small
initial data and blow-up solutions for large initial data[7, 5, 6, 12, 13]. Numer-
ical results by FDM@EE mentioned in §1 shows these situations(Fig.1).
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(b) No blow-up (a = 1).

Fig. 1. Solution profiles.

For oo = 100 overflow easily occurs beyond ¢ = 0.0109, so Fig.1(a) is recog-
nized to show the profile of the blow-up solution. On the other hand, without
any theoretical results it is vague that Fig.1(b) show the profile of the global
decreasing solution because numerical computation is local.

In the paper a numerical method for distinction between blow-up and global
solutions is proposed. Difficulty is global computation in time. To overcome
this difficulty the bounding transform[10] is adopted. For precise numerical
computation spectral collocation method is adopted. This method may offer
new possibility of computation of the blow-up time.

1 Owur numerical method

We consider the more complicated problem which is derived from Problem
1 by using the following transformations:

T=t/8, 4(r,z)=Pu(t,)

where [ is a positive constant. Then, Problem 2 is obtained.
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Problem 2  For three parameters « 2 0, 8 > 0, and T > 0, find 4(7, z) such
that

ﬂ7=ﬁﬂm+ﬁ2, 0<7<T/B, 0<z<1,
u(r,0) = 0=7<T/B,

u(r, 1) = 0s7<T/B,

4(0,z) = Basinnz, 0<z<l1.

If 8 = 1 Problem 2 is equivalent to Problem 1. For small 4 the blow-up time
To(= Tp/B) becomes large. In this case numerical distinction that the solution
is the global one or the blow-up one becomes difficult. For example, T, = 0.11
in Problem 1 corresponds to 7, = 0.11 x 108 in Problem 2 with 3 = 10~8. The
following bounding transform on 7 is introduced for the treatment of the global
solution[10].

s <() 27 )
T = S(7) = ————} .
1— s 1+ V1 + 472

The interval [0,00) on 7 is mapped onto the interval [0,1) on s. From this
transform Problem 2 becomes the following Problem 3.

Problem 3  For three parameters & 2 0, 8 > 0, and T > 0, find @(7,x) such
that

. 1482 Y

uS:(l—_SQ—)E(,Bum+u), 0<s<s(T/B), 0<z<1,
u(s,0) =0, 0= s<s(T/B),

u(s,1) =0, 0 < s<s(T/B),

(0,z) = Basinwz, 0<zx<l1.

This problem is defined in the bounded domain and s(7/3) = 1 means T' = oo.
Thus, the global solution in Problem 2 can be computed by solving Problem 3.

Our method for distinction between blow-up and global solutions is as fol-
lows.

Numerical computation is carried out by two types of discretization. One
is FDM@EE(second order finite difference method in space and first order ex-
plicit Euler method in time) and another is SCM(spectral collocation method)
which is easily applicable to nonlinear problems|[2]. In SCM Chebyshev-Gauss-
Lobatto(CGL) collocation points are used in space, and Chebyshev-Gauss-
Radau(CGR) collocation points or CGL points are used in time. Discretized
equations by SCM are nonlinear, so Newton method is used for solving them. If
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exponential convergence of numerical solutions by SCM is obtained, then (con-
verged) numerical solutions are very accurate and reliable[2, 11]. In FDM®EE
the adaptive control on the time increment is not used for global computing.
FDM@EE is so simple that it is firstly applied for rough numerical computa-
tion.

Concrete procedure is as follows:
0) Set s; = 0 and choose the time increment As(> 0) for EE adequately.

1) For s; £ s compute the solution profile by using FDM@EE. If necessary
As may be varied or multiple precision is adopted. (If overflow occurs at
5 = S¢(< 1) then the solution is probably of the blow-up type. If numerical
computation works well until s = s, = 1 then the solution is probably of
the global type.)

2) Referring the solution profile obtained for s; < s < s, in the above step 1),

choose the interval [s;, s.](s, £ s.) where the profile seems to be smooth

and carry out numerical computation by SCM in this interval. s,.(< s.)
should be chosen for realizing exponential convergence. In this interval
there is no blow-up solution. In the case where s, < 1 and Newton method
does not converge determination of the blow-up solution is done referring

the solution profile.

3) If distinction between blow-up and global solutions can not be clear in the
above step 2), set s; = s, and go to the step 1) with the initial data at
s = s, that is computed in the step 2).

The above procedure is not rigorous. In the practical situation trial and error
is inevitable.

We should remark that our method is not perfect. For example, the grow-up
solution in Problem 2 becomes the discontinuous solution at s = 1 in Problem
3. Numerical computation to such a solution is very difficult[16]. However, our
method can realize global numerical computation and it may offer a new field
of numerical analysis.

2 Numerical results

Numerical computation is basicly carried out in double precision. However,
some results are computed in multiple precision[8].

In SCM N;, N, denote approximation orders on the time and space vari-
ables, respectively. In FDM@®EE N,, N, denote devision numbers on the time
and space variables, respectively. As =2/N,;, Az = 2/N,. Moreover, N, = 20
in FDM®EE because FDM®&EE is used only for rough computation of the



Distinction between Blow-up and Global Solutions 31
solution profile. The following Erry is used for checking the convergence of
solutions by SCM.

oSAX lun (85, 2i) — vN+10(85, Ti)]

Erry =

b
ognz‘l,?gso luN+10(85, Ti)|

11:2/50, s = (se—sl)j/50+s[’ Z,]:O, 750

where vy (s;, ;) is the interpolant for the data 4(s;,z;) which is computed in
0<z=1, s; £s< s, by SCM with N = N, = N,. s; is the CGL or CGR
points. z; is the CGL points. In SCM discretized equations are nonlinear, so
Newton method is used. The convergence of Newton method is determined
whether the absolute relative difference of numerical solutions is smaller than
£(e = 10713 in double precision, € = 10747 in 50 digits) or not in 20 iterations.

(i) In the case of 8 = 1.
Numerical results for « = 1 by FDM@&EE are shown in Fig.2 and Table 1.

1.6e+120
11 1.2e+120
8e+119
4e+119

Table 1. Overflow time
(B=1, a=1, N, = 20).
As time
5x 1074 | 0.6235
10~4 0.8269
107° 0.94328

10-© 0.981787

Fig. 2. Solution profile by FDM®EE
(B=1, a=1, N, =20, As =5 x 107%).

Table 1 shows that the overflow time approaches to 1 as As becomes small.
So, the solution profile in Fig.2 seems not to be one of the blow-up solution.
Then, numerical computation by SCM with CGL points on z and CGR points
on s is carried out for 0 < s < 1(Fig.3).



Hideo Sakaguchi and Hitoshi Imai

le-005
2,
~
LS 1¢-006
1e-007
le-008
20 30 40 50 60 70
N
(a) Solution profile(N = 80). (b) Behavior of Erry.
oy 1e-005
g
= 1e-006
z
=2
Z;, 1e-007
x
c\S\LH
E\/” 1e-008
[=]

Le-009
20 30 40 50 60 70 80

(c) Behavior of max lun(1,z:)], x;: CGL points.
0o

=t1=INVg

Fig. 3. Numerical results by SCM with CGL&CGR(8 =1, a = 1).

Fig.3(b) shows exponential convergence of numerical solutions. So, the con-
verged numerical solution is recognized to be reliable. Fig.3(c) shows that
values of numerical solutions at s = 1(T = oo in Problem 1 or 2) converge to 0,
then it suggests the existence of the global decreasing solution for 3 =1, a = 1.

Numerical results for @ = 100 by FDM@&EE are shown in Fig.4 and Table
2. From Table 2 the overflow time approaches to a constant s, < 1 as As
becomes small. This suggests the existence of the blow-up solution with the
blow-up time sp. Thus, numerical computation by SCM with CGL points is
carried out for 0 < s < 0.0109(Fig.5). The interval on s is divided in numerical
computation for realizing exponential convergence(Figs.5(a-2),(b-2)). Fig.5(c)
is obtained by joining Figs.5(a) and (b).
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Table 2. Overflow time
4e+279 (ﬂ = 17 = 1005 NI = 20)
i j‘”izz As time
1er279 5x 1074 0.0175
0 10-4 0.0124
. 107° 0.01113
1076 0.010983
1077 0.0109666
Fig. 4. Solution profile by FDM®EE
(=1, a =100, N, =20, As =5 x 107%).
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(a-1) Solution profile(N = 80) (a-2) Behavior of Erry
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(b) 0.01 < s < 0.0109.
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(c-1) Solution profile(N = 80)
(c) 0 < s £0.0109.
Fig. 5. Numerical results by SCM(8 =1, a = 100).

(ii) In the case of 3 = 1078,
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Numerical results for & = 1 by FDM®EE are shown in Fig.6. Fig.6(a) with
As =5 x 107 suggests the global solution. From Fig.6(b) values of solutions
at s = 1(T = oo) converge to 0 as As becomes small. Thus, the solution profile
in Fig.6(a) is not precise. The solution profile with As = 10~7 in Fig.6(c) may
be precise and it suggests the existence of the global decreasing solution. In
Fig.6(c) the view angle is different from that in Fig.6(a).
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(a) Solution profile(As = 5 x 1074).
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(c) Solution profile(As = 10~7).
Fig. 6. Solution profiles by FDM@EE(8 =108 a=1, 0<s <1).

For more precise numerical computation SCM is applied in divided intervals for
0 £ s < 1 referring rough numerical results by FDM®EE in Fig.6. Numerical
results are shown in Fig.7. Solution profiles for 0 £ s < 0.9999 by SCM in
Figs.7(a-1),(a-3) are reliable because Figs.7(a-2),(a-4) show exponential con-
vergence in each interval. For patching data across the interval CGL points are
used on s. Fig.7(b-1) shows the rough solution profile for 0.9999 < s < 1 by
FDM@®EE. From Fig.7(b-1) the solution is smooth for 0.9999 < s < 0.999999.
Then, SCM is applied in this interval and it gives the solution profile in Fig.7(b-
2) which is reliable due to exponential convergence in this interval(Fig.7(b-3)).
Rough numerical computation for 0.999999 < s < 1 by FDM®EE is shown in
Fig.7(c-1). Multiple precision is used because double precision induces oscil-
lation. Referring this solution profile SCM in multiple precision is applied in
divided intervals for 0.999999 < s < 1(Figs.7(c-2)~(c-5)). Values of solutions
at s = 1 in Fig.7(c-6) show the existence of the global decreasing solution for
B =10"8, a = 1. Fig.7(d) is obtained by joining Figs.7(a)~(c).
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(a-1) Solution profile by SCM (a-2) Behavior of Erry
(0<5<0.99, N = 80). (0 < s <0.99).
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(b-1) Solution profile by FDM&EE(0.9999 < s <1, As =5 x 1078).

0.001

0.0001

Erry

le-005

1e-006

1e-007
el 30 40 50 60 70

N

(b-2) Solution profile by SCM (b-3) Behavior of Erry
(0.9999 < s < 0.999999, N = 80). (0.9999 < s < 0.999999).
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(c-1) Solution profile by FDM®EE(0.999999 < s <1, As =5 x 10710,
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(d-1) Solution profile by SCM (d-2) Behavior of Erry
(0<s<1). (0Ss<1).
Fig. 7. Numerical results(3 = 1078, a = 1).

Numerical results for @ = 100 by FDM@EE are shown in Fig.8. Fig.8(a) is
obtained with As(= 5 x 10™%) which is not so small and it suggests that the
solution is global. However, Fig.8(b) shows that the value of the solution at
s = 1{T = oo) grows as As becomes small. Fig.8(c) shows the solution profile
with As = 107 and it suggests the existence of the blow-up solution.
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Fig. 8. Solution profiles by FDM@&EE(3 = 1078, a =100, 0 <5 < 1).

For more precise numerical computation SCM is applied in divided intervals for
0 < s < 1 referring rough numerical results by FDM®EE in Fig.8. Numerical
results are shown in Fig.9. The procedure is same as in Fig.7. Solution profiles
for 0 £ s £ 0.99999954 by SCM in Figs.9(a-1, 3, 5, 7, 9) are reliable because
Figs.9(a-2, 4, 6, 8, 10) show exponential convergence in each interval. Fig.9(b)
is obtained by joining Fig.9(a). Here, s = 0.99999954 corresponds to 7 =
0.10869563 x 107. This means that numerical computation about the blow-up
time is satisfactory.
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(a-7) Solution profile by SCM
(0.999995 < s < 0.9999995, N = 80).

(a-9) Solution profile by SCM

(0.9999995 < s < 0.99999954, N = 80).

(b-1) Solution profile by SCM
(0 £ 5 £0.99999954).
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Fig. 9. Numerical results(3 = 1078, a = 100).
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(iii) Blow-up time and complex Newton method

Former numerical methods([9, 14] for computing the blow-up time used the
adaptive control on the time increment depending on the solution. From the
view point of the solution profile we may propose the different idea for com-
puting the blow-up time as follows. The profile of the blow-up solution has
singularity in the bounded domain. On the other hand, the numerical method
SCM determines the solution profile and it is very sensitive to singularity even if
singularity exists outside the domain[15]. These suggest that SCM can feel the
blow-up time as singularity. Together with numerical continuation[11]. SCM
may offer a new approach for computing the blow-up time.

The solutions of problems considered here do not exist beyond the blow-up
time[1]. This suggests that SCM fails in the time-space domain including the
blow-up time. Problem 2 with 8 = 1, a = 100 has the blow-up time 7, ~
0.0109(9]. In the time-space domain as 0 < 7 < 0.013 discretized equations by
low order SCM(N, = N, = 4) can be solved by Newton method. The solution
profile is shown in Fig.10(a). On the other hand, discretized equations by higher
order SCM cannot be solved by Newton method. If Newton method does not
converge it gives apprehension rather than no information. Thus, application of
complex Newton method is considered. It works well and it gives the solution
profiles as Fig.10(b). From these numerical results and Fig.5(c) the blow-up
time 7 of Problem 2 with 8 = 1, a = 100 is estimated as 0.010901 --- < 7, <
0.013. Tt is interesting that estimation from above is numerically obtained.

(a) Real Newton method, N, = N, = 4.
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(b) Complex Newton method, N, = N, = 30.
Fig. 10. Solution profiles by SCM(8 =1, a = 100,0 < 7 £ 0.013).

3 conclusion

In the paper a numerical method for distinction between blow-up and global
solutions is proposed. It consists of finite difference method, explicit Euler
method, spectral collocation method, bounding transform, Newton method
and multiple precision arithmetic. Our method is applied to a famous one-
dimensional nonlinear heat equation. Numerical results are satisfactory. More-
over, the blow-up time is estimated from above in some case. In the paper
complex Newton method is also used. Its new applicability is our future work.
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