# Numbers associated to Symmetric Differential Operators and the Bernoulli Numbers 

By<br>Ruishi Kuwabara<br>Department of Mathematical Sciences, The University of Tokushima, Tokushima 770-8502, JAPAN<br>e-mail: kuwabara@ias.tokushima-u.ac.jp

(Received September 30, 2011)


#### Abstract

By considering a certain symmetric differential operator we introduce a sequence of numbers $\left\{C_{k}\right\}_{k=0}^{\infty}$, and clarify their properties, which are similar to those of the Bernoulli numbers. It is shown that the generating function of $\left\{C_{k}\right\}$ is the hyperbolic tangent function, and some (maybe known) properties of the Bernoulli numbers are derived through those of $C_{k}$.


2010 Mathematics Subject Classification. 11B68, 11B83

## Introduction

This is a continuation of the previous note [4], in which we have considered a certain symmetric differential operator and have derived certain properties or identities concerning the binomial coefficients. On the basis of the results in [4] we introduce in this note a sequence of numbers $\left\{C_{k}\right\}_{k=0}^{\infty}$ associated to the coefficients of the operators, and we clarify that these numbers have properties analogous with the Bernoulli numbers.

After reviewing in $\S 1$ the results on the symmetric differential operators considered in [4], we introduce in $\S 2$ numbers $\left\{C_{k}\right\}$, and investigate their properties. In $\S 3$ through the generating function of $\left\{C_{k}\right\}$ we see the relationship between $C_{k}$ and the Bernoulli numbers, and obtain (maybe rediscover) some properties of the Bernoulli numbers.

## 1 Symmetric differential operators

Let $C_{0}^{\infty}(\mathbb{R})$ denote the space of complex-valued $C^{\infty}$ functions on $\mathbb{R}$ with compact support. Suppose the space $C_{0}^{\infty}(\mathbb{R})$ is endowed with the inner product $(\cdot, \cdot)$ defined by

$$
(f, g):=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x \quad\left(f, g \in C_{0}^{\infty}(\mathbb{R})\right)
$$

Let $D$ denote the differential operator $\frac{1}{i} \frac{d}{d x}(i:=\sqrt{-1})$. Then, $D$ is a symmetric operator, namely,

$$
(D f, g)=(f, D g) \quad\left(f, g \in C_{0}^{\infty}(\mathbb{R})\right)
$$

holds.
We consider the symmetric (or formally self-adjoint) operator whose principal symbol is given by the monomial of degree $n$ given by

$$
p_{n}(x, \xi)=a(x) \xi^{n}
$$

By applying the corresponding rule:

$$
x \mapsto x \cdot, \quad \xi \mapsto D,
$$

we get the $n$-th order differential operator

$$
Q=a(x) D^{n}
$$

corresponding to $p_{n}(x, \xi)$. Then, we have the following.
Lemma 1 The adjoint operator $Q^{*}$ of $Q$ is given by

$$
Q^{*}=D^{n}[\overline{a(x)} \cdot]=\sum_{p=0}^{n}\binom{n}{p}\left(D^{p} \bar{a}(x)\right) D^{n-p} .
$$

Thus $Q$ is not a symmetric operator. As a symmetric operator corresponding to $p_{n}(x, \xi)$ we consider the differential operator

$$
\begin{equation*}
P_{n}=a(x) D^{n}+\sum_{p=1}^{n} c_{p}^{n}\left(D^{p} a(x)\right) D^{n-p} \tag{1}
\end{equation*}
$$

where $a(x)$ is a real-valued function, and $c_{p}^{n}$ 's are complex constants. By virtue of Lemma 1 we have the following.

Lemma 2 The operator $P_{n}$ is symmetric, i.e., $P_{n}^{*}=P_{n}$ if and only if the coefficients $c_{p}^{n}(p=1,2, \ldots n)$ satisfy

$$
\begin{align*}
c_{p}^{n}= & (-1)^{p} \bar{c}_{p}^{n}+(-1)^{p-1}\binom{n-p+1}{1} \bar{c}_{p-1}^{n} \\
& +(-1)^{p-2}\binom{n-p+2}{2} \bar{c}_{p-2}^{n}+\cdots-\binom{n-1}{p-1} \bar{c}_{1}^{n}+\binom{n}{p} \tag{2}
\end{align*}
$$

We assume the coefficients $c_{p}^{n}(p=1,2, \ldots, n)$ to be

$$
c_{p}^{n}=\left\{\begin{array}{ll}
\text { a real number } & (p: \text { odd })  \tag{3}\\
0 & (p: \text { even })
\end{array} .\right.
$$

Theorem 3 ([4]) For any $n \in \mathbb{N}$, and any real valued function $a(x)$ there exists an unique $n$-th order symmetric differential operator $P$ of the form (1) satisfying the assumption (3).

Proof. First we show the existence of $P$ (cf. [3, Lemma 4.2]). Let $Q_{0}:=$ $a(x) D^{n}$. Put

$$
Q_{1}:=\frac{1}{2}\left(Q_{0}+Q_{0}^{*}\right)
$$

Then, by means of Lemma $1 Q_{1}$ is a symmetric operator with the $n$-th order term being equal to $Q_{0}$, and the coefficients

$$
\frac{1}{2}\binom{n}{p} D^{p} a(x)
$$

of the $(n-p)$-th order term of $Q_{1}$ are real if $p$ is even. Let $R_{n-2}$ denote the $(n-2)$-th order term of $Q_{1}$, and put

$$
Q_{2}:=Q_{1}-\frac{1}{2}\left(R_{n-2}+R_{n-2}^{*}\right)
$$

Then, $Q_{2}$ is a symmetric operator of the form (1) with $c_{p}^{n}$ being real and $c_{2}^{n}=0$.
Next, let $R_{n-4}$ be the $(n-4)$-th order term of $Q_{2}$, and put

$$
Q_{4}:=Q_{2}-\frac{1}{2}\left(R_{n-4}+R_{n-4}^{*}\right) .
$$

Then, $Q_{4}$ is a symmetric operator of the form (1) with $c_{p}^{n}$ being real and $c_{2}^{n}=c_{4}^{n}=0$. Thus by continuing this process we get $Q_{2}, Q_{4}, Q_{6}, \ldots$, and we obtain the required operator $P_{n}$ as $Q_{n-1}$ if $n$ is odd, or $Q_{n}$ if $n$ is even.

Next, we show that the coefficients $c_{p}^{n}$ is uniquely determined by the condition (2) under the assumption (3).

Suppose $n$ is odd. The condition (2) for $p=1,2, \ldots$ gives a system of linear equations for $c_{1}^{n}, c_{3}^{n}, \ldots, c_{n-2}^{n}, c_{n}^{n}$ as follows:

$$
\left.\begin{array}{rl}
2 c_{1}^{n} & =\binom{n}{1}, \\
\binom{n-1}{1} c_{1}^{n} & =\binom{n}{2}, \\
2 c_{3}^{n}+\binom{n-1}{2} c_{1}^{n} & =\binom{n}{3}, \\
\binom{n-3}{1} c_{3}^{n}+\binom{n-1}{3} c_{1}^{n} & =\binom{n}{4}, \\
\cdots \cdots \cdots & \\
2 c_{n}^{n}+\binom{2}{1} c_{n-2}^{n}+\binom{4}{3} c_{n-2}^{n}+\binom{4}{4} c_{n-4}^{n}+\cdots \cdots+\binom{n-1}{n-2} c_{1}^{n} & =\binom{n}{n-1}, \\
n-1 \\
n-1
\end{array}\right) c_{1}^{n}=\binom{n}{n} .
$$

It is easy to see that the rank of the $(n \times(n+1) / 2)$-matrix of the coefficients of the above linear equations is equal to $(n+1) / 2$. Hence, the solution (if exists) is unique.

If $n$ is even, the linear equations for $c_{1}^{n}, c_{3}^{n}, \ldots, c_{n-1}^{n}$ is the following:

$$
\begin{aligned}
2 c_{1}^{n} & =\binom{n}{1}, \\
\binom{n-1}{1} c_{1}^{n} & =\binom{n}{2}, \\
2 c_{3}^{n}+\binom{n-1}{2} c_{1}^{n} & =\binom{n}{3}, \\
\binom{n-3}{1} c_{3}^{n}+\binom{n-1}{3} c_{1}^{n} & =\binom{n}{4}, \\
\cdots \cdots \cdots & \\
2 c_{n-1}^{n}+\binom{3}{2} c_{n-3}^{n}+\cdots \cdots+\binom{n-1}{n-2} c_{1}^{n} & =\binom{n}{n-1}, \\
\binom{1}{1} c_{n-1}^{n}+\binom{3}{3} c_{n-3}^{n}+\cdots \cdots+\binom{n-1}{n-1} c_{1}^{n} & =\binom{n}{n}
\end{aligned}
$$

This system similarly derives the uniqueness of the solution.
From the above system of linear equations for $c_{1}^{n}, c_{3}^{n}, \ldots$ we have the following.

Theorem 4 ([4]) Let $1 \leq k \leq(n+1) / 2$. The following two systems of linear
equations for $c_{n-1}, c_{n-3}, \ldots, c_{n-2 k+1}$ are equivalent each other:

Applying Cramer's formulas for the solution $c_{2 k-1}^{n}$ of (4) and (5), we have the following.

Corollary 5 For $n, k \in \mathbb{N}$ with $1 \leq k \leq(n+1) / 2$ we have

$$
\left.\begin{array}{l}
c_{2 k-1}^{n}=\frac{(-1)^{k-1}}{2^{k}}\left|\begin{array}{ccccc}
\binom{n}{1} & 2 & & 0 \\
\binom{n}{3} & \binom{n-1}{2} & 2 & & \\
\binom{n}{5} & \binom{n-1}{4} & \binom{n-3}{2} & \ddots & \\
\vdots & \vdots & \vdots & & 2 \\
\binom{n}{2 k-1} & \binom{n-1}{2 k-2} & \binom{n-3}{2 k-4} & \cdots & \binom{n-2 k+3}{2}
\end{array}\right| \\
\left.\left.=(-1)^{k-1} \frac{(n-2 k-1)!!}{(n-1)!!} \right\rvert\, \begin{array}{cccc}
n \\
2
\end{array}\right) \\
\binom{n-1}{1} \\
\binom{n}{4}  \tag{7}\\
\binom{n-1}{3} \\
\vdots \\
\binom{n-1}{5} \\
\vdots \\
1
\end{array}\right)
$$

Here the formula means $c_{1}^{n}=\frac{1}{2}\binom{n}{1}=\frac{1}{n-1}\binom{n}{2}$ if $k=1$.

## 2 Sequence of numbers associated to $c_{p}^{n}$

We can calculate $c_{p}^{n}$ by the formula (6) or (7) and get Table 1 for small $n$ and $p$. By observing Table 1 we present and can prove the following proposition.

Proposition 6 We have a sequence of numbers $\left\{C_{k}\right\}_{k=1}^{\infty}$ which satisfies

$$
\begin{equation*}
c_{k}^{n}=\binom{n}{k} C_{k} \tag{8}
\end{equation*}
$$

for $n, k \in \mathbb{N}$ with $1 \leq k \leq n$.

Table 1: $c_{p}^{n}$

| $n$ | $c_{1}^{n}$ | $c_{2}^{n}$ | $c_{3}^{n}$ | $c_{4}^{n}$ | $c_{5}^{n}$ | $c_{6}^{n}$ | $c_{7}^{n}$ | $c_{8}^{n}$ | $c_{9}^{n}$ | $c_{10}^{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{1}{2}$ |  |  |  |  |  |  |  |  |  |
| 2 | 1 | 0 |  |  |  |  |  |  |  |  |
| 3 | $\frac{3}{2}$ | 0 | $-\frac{1}{4}$ |  |  |  |  |  |  |  |
| 4 | 2 | 0 | -1 | 0 |  |  |  |  |  |  |
| 5 | $\frac{5}{2}$ | 0 | $-\frac{5}{2}$ | 0 | $\frac{1}{2}$ |  |  |  |  |  |
| 6 | 3 | 0 | -5 | 0 | 3 | 0 |  |  |  |  |
| 7 | $\frac{7}{2}$ | 0 | $-\frac{35}{4}$ | 0 | $\frac{21}{2}$ | 0 | $-\frac{17}{8}$ |  |  |  |
| 8 | 4 | 0 | -14 | 0 | 28 | 0 | -17 | 0 |  |  |
| 9 | $\frac{9}{2}$ | 0 | -21 | 0 | 63 | 0 | $-\frac{153}{2}$ | 0 | $\frac{31}{2}$ |  |
| 10 | 5 | 0 | -30 | 0 | 126 | 0 | -255 | 0 | 155 | 0 |
| $\vdots$ |

Proof. We have $C_{2 m}=0(m \in \mathbb{N})$ because $c_{2 m}^{n}=0$. We show (8) for $k=2 m-1$ by induction with respect to $m$. (i) $c_{1}^{n}=\binom{n}{1}(1 / 2)$, i.e., $C_{1}=1 / 2$.
(ii) Suppose

$$
c_{2 j-1}^{n}=\binom{n}{2 j-1} C_{2 j-1}
$$

for $0 \leq j \leq m-1$. It follows from the last equation of the system (4) that

$$
c_{2 m-1}^{n}=-\frac{1}{2} \sum_{j=1}^{m-1}\binom{n-2 j+1}{2 m-2 j} c_{2 j-1}^{n}+\frac{1}{2}\binom{n}{2 m-1} .
$$

Hence

$$
c_{2 m-1}^{n}=-\frac{1}{2} \sum_{j=1}^{m-1}\binom{n-2 j+1}{2 m-2 j}\binom{n}{2 j-1} C_{2 j-1}+\frac{1}{2}\binom{n}{2 m-1} .
$$

Here note that

$$
\begin{aligned}
\binom{n-2 j+1}{2 m-2 j}\binom{n}{2 j-1} & =\frac{(n-2 j+1)!}{(2 m-2 j)!(n-2 m+1)!} \frac{n!}{(2 j-1)!(n-2 j+1)!} \\
& =\frac{n!}{(n-2 m+1)!(2 m-1)!} \frac{(2 m-1)!}{(2 m-2 j)!(2 j-1)!} \\
& =\binom{n}{2 m-1}\binom{2 m-1}{2 j-1},
\end{aligned}
$$

and we have

$$
c_{2 m-1}^{n}=\binom{n}{2 m-1}\left\{\frac{1}{2}-\frac{1}{2} \sum_{j=1}^{m-1}\binom{2 m-1}{2 j-1} C_{2 j-1}\right\}=\binom{n}{2 m-1} C_{2 m-1}
$$

where

$$
\begin{equation*}
C_{2 m-1}=\frac{1}{2}-\frac{1}{2} \sum_{j=1}^{m-1}\binom{2 m-1}{2 j-1} C_{2 j-1} . \tag{9}
\end{equation*}
$$

By the formula (8) we have $C_{p}=c_{p}^{p}$, and accordingly see $C_{1}, C_{2}, C_{3}, \ldots$ to be diagonal elements of Table 1. We also find from (6) that

$$
C_{2 k-1}\left(=c_{(2 k-1)}^{(2 k-1)}\right)=\frac{(-1)^{k-1}}{2^{k}}\left|\begin{array}{ccccc}
\binom{2 k-1}{1} & 2 & & &  \tag{10}\\
\binom{2 k-1}{3} & \binom{2 k-2}{2} & 2 & & 0 \\
\binom{2 k-1}{5} & \binom{2 k-2}{4} & \binom{2 k-4}{2} & \ddots & \\
\vdots & \vdots & \vdots & & 2 \\
\binom{2 k-1}{2 k-1} & \binom{2 k-2}{2 k-2} & \binom{2 k-4}{2 k-4} & \cdots & \binom{2}{2}
\end{array}\right|
$$

for $k=1,2,3, \ldots$ (Table 2).
As a result we have a representation of the symmetric differential operator $P_{n}$ by means of the numbers $\left\{C_{p}\right\}$ :

$$
P_{n}=a(x) D^{n}+\sum_{p=1}^{n}\binom{n}{p} C_{p}\left(D^{p} a(x)\right) D^{n-p} .
$$

We put $C_{0}=-1$. Then, we have the following theorem concerning the recurrence relation for $C_{p}$.

Table 2: $C_{p}$

| $p$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{p}$ | $\frac{1}{2}$ | $-\frac{1}{4}$ | $\frac{1}{2}$ | $-\frac{17}{8}$ | $\frac{31}{2}$ | $-\frac{691}{4}$ | $\frac{5461}{2}$ | $-\frac{929569}{16}$ | $\frac{3202291}{2}$ |

Theorem 7 (Recurrence relation) The sequence of numbers $\left\{C_{k}\right\}_{k=0}^{\infty}$ is given by the following recurrence relation:

$$
\begin{equation*}
\sum_{j=0}^{k-1}\binom{k}{j} C_{j}+2 C_{k}=0 \quad(k \geq 1), \quad C_{0}=-1 \tag{11}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
C_{k}=-\sum_{j=0}^{k}\binom{k}{j} C_{j} \quad(k \geq 1), \quad C_{0}=-1 \tag{12}
\end{equation*}
$$

Proof. Put $n=2 k$ in the last equation of the system (5), and we obtain

$$
\sum_{j=1}^{k} c_{2 j-1}^{2 k}=1
$$

This derives the relation:

$$
\begin{equation*}
\binom{2 k}{0} C_{0}+\sum_{j=1}^{k}\binom{2 k}{2 j-1} C_{2 j-1}=0 \quad(k \geq 1) \tag{13}
\end{equation*}
$$

On the other hand, from (9) we have

$$
\begin{equation*}
\binom{2 k-1}{0} C_{0}+\sum_{j=1}^{k-1}\binom{2 k-1}{2 j-1} C_{2 j-1}+2 C_{2 k-1}=0 \quad(k \geq 1) \tag{14}
\end{equation*}
$$

We see that the relations (13) and (14) with

$$
C_{2 k}=0(k \geq 1)
$$

are equivalent to the relation (11).
Next we consider the denominator of $C_{p}$, and obtain the following.
Theorem 8 (1) For an integer $k \geq 1$ put $2 k=2^{\alpha} q$ with $q$ being an odd integer. Then, $2^{\alpha} C_{2 k-1}$ is an odd integer, i.e., the denominator of $C_{2 k-1}$ is equal to $2^{\alpha}$.
(2) The coefficients

$$
c_{2 k-1}^{2 m}=\binom{2 m}{2 k-1} C_{2 k-1} \quad(1 \leq k \leq m)
$$

of the differential operator $P_{2 m}$ are integers.
Proof. We see by the formula (10) that the denominator of $C_{k}$ is $2^{\alpha}$ for some non-negative integer $\alpha$. If

$$
\begin{aligned}
2 k & =\binom{2 k}{2 k-1}=\frac{2 k(2 k-1)(2 k-2) \cdots 2}{(2 k-1)!}=2^{\alpha} q, \\
\binom{2 m}{2 k-1} & =\frac{2 m(2 m-1) \cdots(2 m-2 k+2)}{(2 k-1)!}=2^{\beta} q^{\prime} \quad(m>k),
\end{aligned}
$$

where $q$ and $q^{\prime}$ are odd integers, then we have

$$
\begin{align*}
\binom{2 m}{2 k-1} & /\binom{2 k}{2 k-1}=2^{\beta-\alpha} \cdot \frac{q^{\prime}}{q} \\
= & \frac{2 m(2 m-1) \cdots(2 m-2 k+2)}{2 k(2 k-1)(2 k-2) \cdots 2} \\
= & \frac{2^{k} \cdot m(m-1) \cdots(m-k+1) \cdot q_{1}}{2^{k} \cdot k(k-1) \cdots 1 \cdot q_{2}}=\binom{m}{k} \cdot \frac{q_{1}}{q_{2}}, \tag{15}
\end{align*}
$$

where $q_{1}, q_{2}$ are odd integers. Since $\binom{m}{k}$ is an integer, $\beta \geq \alpha$ holds. Hence, the fact that $\binom{2 m}{2 k-1} C_{2 k-1}$ to be an integer follows from the fact that $2^{\alpha} C_{2 k-1}$ is an (odd) integer, namely the assertion (2) follows from the assertion (1).

We obtain from (15) that

$$
\binom{2 m}{2 k-1} C_{2 k-1}=\binom{m}{k} \cdot \frac{q_{1}}{q_{2}} \cdot\binom{2 k}{2 k-1} C_{2 k-1}=\binom{m}{k} \cdot \frac{q_{1}}{q_{2}} \cdot 2^{\alpha} q C_{2 k-1},
$$

and accordingly find that

$$
\begin{equation*}
\binom{2 m}{2 k-1} C_{2 k-1} \text { is odd (resp. even) } \Longleftrightarrow\binom{m}{k} \text { is odd (resp. even) } \tag{16}
\end{equation*}
$$

for $1 \leq k<m$ if $2^{\alpha} C_{2 k-1}$ is an odd integer.
We will show by induction with respect to integers $k$ that $2^{\alpha} C_{2 k-1}=$ $\binom{2 k}{2 k-1} C_{2 k-1}$ is odd. (i) For $k=1$ the assertion holds as $2 C_{1}=1$. (ii) Suppose $2^{\beta} C_{2 l-1}\left(2 l=2^{\beta} \times(\right.$ an odd integer $\left.)\right)$ is odd for $1 \leq l<k$. Notice the formula

$$
\binom{2 k}{2 k-1} C_{2 k-1}=1-\binom{2 k}{1} C_{1}-\binom{2 k}{3} C_{3}-\cdots-\binom{2 k}{2 k-3} C_{2 k-3},
$$

and we have to show that

$$
\binom{2 k}{1} C_{1}+\binom{2 k}{3} C_{3}+\cdots+\binom{2 k}{2 k-3} C_{2 k-3}
$$

is even. This is shown by virtue of (16) and the fact that $\sum_{l=1}^{k-1}\binom{k}{l}$ is even $\left(=2^{k}-2\right)$.

Review on Bernoulli numbers (see [1], [2, §6.5], for example).
Let us consider the sum of $k$ th powers

$$
S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}
$$

By summing the formulas:

$$
(m+1)^{k+1}-m^{k+1}=\sum_{j=0}^{k}\binom{k+1}{j} m^{j}
$$

for $m=1,2, \ldots, n$, we get

$$
(n+1)^{k+1}-1=\sum_{j=0}^{k}\binom{k+1}{j} S_{j}(n)
$$

namely,

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1}\left\{(n+1)^{k+1}-1-\sum_{j=0}^{k-1}\binom{k+1}{j} S_{j}(n)\right\} \tag{17}
\end{equation*}
$$

Noticing $S_{0}(n)=n$ we see by induction that $S_{k}(n)$ is given as

$$
S_{k}(n)=\sum_{j=0}^{k} s_{j}^{k} n^{k+1-j} \quad \text { with } \quad s_{0}^{k}=\frac{1}{k+1}
$$

For the coefficients $s_{n}^{k}$ there exists a sequence of numbers $\left\{B_{j}\right\}_{j=0}^{\infty}$ such that

$$
s_{j}^{k}=\frac{(-1)^{j}}{k+1}\binom{k+1}{j} B_{j} \quad(0 \leq j \leq k)
$$

The numbers $B_{j}$ are called Bernoulli numbers. Hence, we have

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j}\binom{k+1}{j} B_{j} n^{k+1-j} \tag{18}
\end{equation*}
$$

By virtue of (17) we find that $\left\{B_{k}\right\}_{k=0}^{\infty}$ satisfy the recurrence relation

$$
\begin{equation*}
B_{k}=\sum_{j=0}^{k}\binom{k}{j} B_{j}(k \geq 2) \quad \text { with } \quad B_{0}=1, B_{1}=-1 / 2 \tag{19}
\end{equation*}
$$

Comparing (12) and (19) we remark that $\left\{C_{k}\right\}$ and $\left\{B_{k}\right\}$ are closely related.

## 3 Generating function - Relationship with Bernoulli numbers

We consider the generating function for the sequence $\left\{C_{k}\right\}$, which gives the explicit relationship with the Bernoulli numbers.

Proposition 9 (Exponential generating function) We have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{C_{k}}{k!} z^{k}=-\frac{2}{e^{z}+1}=\tanh \left(\frac{z}{2}\right)-1 \quad(|z|<\pi) \tag{20}
\end{equation*}
$$

Proof. Put

$$
F(z):=\sum_{k=0}^{\infty} \frac{C_{k}}{k!} z^{k} .
$$

Then, we have formally

$$
\begin{aligned}
e^{z} F(z)= & \left(\sum_{j=0}^{\infty} \frac{1}{j!} z^{j}\right)\left(\sum_{k=0}^{\infty} \frac{C_{k}}{k!} z^{k}\right) \\
= & C_{0}+\left(C_{0}+C_{1}\right) z+\cdots \\
& +\left(\frac{C_{0}}{0!(2 k-1)!}+\frac{C_{1}}{1!(2 k-2)!}+\frac{C_{3}}{3!(2 k-2)!}+\cdots+\frac{C_{2 k-1}}{(2 k-1)!0!}\right) z^{2 k-1} \\
& +\left(\frac{C_{0}}{0!(2 k)!}+\frac{C_{1}}{1!(2 k-1)!}+\frac{C_{3}}{3!(2 k-3)!}+\cdots+\frac{C_{2 k-1}}{(2 k-1)!1!}\right) z^{2 k} \\
& +\cdots \\
= & -1-\frac{1}{2} z+\cdots \\
& +\frac{1}{(2 k-1)!}\left\{\binom{2 k-1}{0} C_{0}+\binom{2 k-1}{1} C_{1}+\cdots+\binom{2 k-1}{2 k-1} C_{2 k-1}\right\} z^{2 k-1} \\
& +\frac{1}{(2 k)!}\left\{\binom{2 k}{0} C_{0}+\binom{2 k}{1} C_{1}+\cdots+\binom{2 k}{2 k-1} C_{2 k-1}\right\} z^{2 k} \\
& +\cdots \\
= & -2-F(z) .
\end{aligned}
$$

Here the last equality follows form the formulas (13) and (14). As a consequence we get the assertion.

Corollary 10 For any $n \geq 2$, we have

$$
\begin{equation*}
\sum_{j=1}^{n}\binom{n}{j} C_{j} B_{n-j}=0 \tag{21}
\end{equation*}
$$

Particularly, we have

$$
\begin{equation*}
\sum_{j=0}^{m}\binom{2 m+1}{2 j+1} C_{2 j+1} B_{2 m-2 j}=0 \quad(m \geq 1) \tag{22}
\end{equation*}
$$

Proof. We have only to show (21) for odd $n$, that is the formula (22), because $C_{j} B_{n-j}=0$ for any $j \geq 1$ if $n$ is even. Note that

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k}
$$

and

$$
\left(-\frac{2}{e^{z}+1}\right)\left(\frac{z}{e^{z}-1}\right)=-\frac{2 z}{e^{2 z}-1}
$$

Hence, we have

$$
\left(\sum_{j=0}^{\infty} \frac{C_{j}}{j!} z^{j}\right)\left(\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k}\right)=-\sum_{n=0}^{\infty} \frac{B_{n}}{n!}(2 z)^{n} .
$$

If $n(\geq 2)$ is odd, i,e, $n=2 m+1$, then $B_{n}=0$, hence we have

$$
\sum_{j=0}^{n} \frac{C_{j} B_{n-j}}{j!(n-j)!}=0
$$

which leads the formula (21).
Corollary 11 We have

$$
\begin{equation*}
C_{k}=\frac{2}{k+1}\left(2^{k+1}-1\right) B_{k+1} \quad(k \geq 0) \tag{23}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
-\frac{2}{e^{z}+1} & =-2\left(\frac{1}{e^{z}-1}-\frac{2}{e^{2 z}-1}\right) \\
& =-\frac{2}{z}\left\{\left(1+\sum_{k=1}^{\infty} \frac{B_{k}}{k!} z^{k}\right)-\left(1+\sum_{k=1}^{\infty} \frac{B_{k}}{k!}(2 z)^{k}\right)\right\} \\
& =-1+\sum_{k=2}^{\infty} 2\left(2^{k}-1\right) B_{k} \frac{z^{k-1}}{k!}
\end{aligned}
$$

Therefore we obtain the formula (23).
From (21) and (23) we can derive the following relation between Bernoulli numbers by using the identity $\frac{1}{j+1}\binom{n}{j}=\frac{1}{n+1}\binom{n+1}{j+1}$.
Proposition 12 For $n \geq 4$ we have

$$
\begin{equation*}
\sum_{j=2}^{n}\binom{n}{j}\left(2^{j}-1\right) B_{j} B_{n-j}=0 \tag{24}
\end{equation*}
$$

By combining this theorem with the formula (23) we obtain the following property concerning the Bernoulli numbers.

Proposition 13 Let $n(\geq 2)$ be an even integer, and given by $n=2^{\alpha} q$ with $q$ being an odd integer. Then,

$$
\begin{equation*}
\frac{2\left(2^{n}-1\right)}{q} B_{n} \tag{25}
\end{equation*}
$$

is an odd integer. Moreover,

$$
\begin{equation*}
\binom{2 m}{n-1} \frac{2\left(2^{n}-1\right)}{n} B_{n} \tag{26}
\end{equation*}
$$

is an integer for any $m \geq n / 2(\geq 1)$.
Remark. The first part of this proposition has been shown by Worpitzky [5, p.232].

## 4 Concluding Remark

Similarly to the Bernoulli polynomial we define a polynomial

$$
C_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} C_{k} x^{n-k}=-x^{n}+\sum_{j=1}^{n} c_{j}^{n} x^{n-j}
$$

Then, we have $C_{k}=C_{k}(0)$ and see that

$$
\sum_{n=0}^{\infty} C_{n}(x) \frac{z^{n}}{n!}=-\frac{2 e^{x z}}{e^{z}+1}
$$

from Proposition 9. On the other hand, the polynomials $E_{n}(x)$ defined by

$$
\frac{2 e^{x z}}{e^{z}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{z^{n}}{n!}
$$

are called Euler polynomials (cf. [2, pp.573-574]). Thus we have

$$
C_{n}(x)=-E_{n}(x), \quad C_{k}=-E_{k}:=-E_{k}(0) .
$$

## References

[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions (Japanese), Makino Shoten, Tokyo, 2001.
[2] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Co., 1994.
[3] R. Kuwabara, Lax-type isospectral deformations on nilmanifolds, Ann. Global Anal. Geom. 14(1996), 193-218.
[4] R. Kuwabara, A Note on symmetric differential operators and binomial coefficients, J. of Math. Univ. of Tokushima 42(2008), 1-8.
[5] J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math. 94 (1883), 203-232.

