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Abstract

In the present paper, succeeding the previous paper [4], we con-
tinue to study Nimstring values of 2 x n rectangular arrays.
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Introduction

In this paper, our main purpose is to obtain the value of an array with two
arrows like Figure 1. It has m boxes and two arrows, and it is described as
R,,a?. The arrow is denoted by a.
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1 Arrays of form R,,cA

Let A be a graph composed of two arrows a, b and a v-edge connecting them.
In this section, we study a graph R,,cA composed of m boxes and A which is
described in Figure 2 below.
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Let both the sizes of a and of b be x and that of ¢ be y. Let B be the
rightmost box with size z. Moreover, let the size of the box next ot B be w.
Put G = R,,cA

Proposition 1.(1) In the case x =y =1 and z = 1 or z > 4, the value
|G| is 0 (resp =) if m is odd (resp. even).

(2) In the cases (x = 2,3,y = 2,3,z > 1),(x = 1,2,3,y > 4,2 > 1), (z =
Jyy=12>1),(x =2,y =1,2=1,2,3), the value |G| is x (resp. 0) if m is
odd (resp. even), except the case m = 1,z = 2,y = 1,z = 1,2,3 in which its
value is *2.

(3) In the cases (x = 1,y =2,3,z>1),(x=y=1,2=2,3),(z = 2,y =
1,z > 4), the value |G| is %2 (resp. *3) if m is odd (resp. even), except the
casem=1,x=1y=1,2z=2,3 in which its value is 0.

(4) In the case x >4 andy=2z=1 ory=1,2,3,z > 4, the value |G| is *
(resp. 0) if m is odd (resp, even).

(5) In the case x > 4 and y = 2,3,z = 1,2,3 ory = 1,z = 2,3, the value
|G| is %3 (resp. x2) if m is odd (resp. even).

Proof. Let e be the rightmost inner v-edge of R,,. By removing an inner
h-edge of R,,, we get a subgraph H = R,,,dR,,,cA, where n; +n2 =m—1 and
d is a connection of R,, and R,,cA.

(1) Let m be odd. The value |c| (correctly, the value of a proper edge of ¢)
is *. By Proposition 3 in [4], the values |a| and |b| are both %3 (resp. *) if z =1
(resp. z > 4). If z = 1, the value of a h-edge of B is x3 by induction. The
value |e| is %3 (resp. *) if z=1,w=1,2 (resp. z=1,w>3or z>4,w>1).
The values of the other inner v-edges are *. We prove the value |d| in H is 0.
If both ny and ng are odd (resp. even), The values |R,,| and |R,,cA| are both
0 (resp. #*). Hence, the value |H]| is not 0. Thus, the value |G| is 0, because
the values of all its edges are not 0.

Let m be even. The value |¢| is 0. The value |a| and |b| are both *2 (resp.
0) if z =1 (resp. z > 4), by Proposition 3 in [4]. If z = 1, the value of a h-edge
of B is #2 by induction. The value |e| is *2 (resp. 0) if z = 1,w = 1,2 (resp.



z=1,w > 3 or z > 4). The values of the other inner v-edges are 0. We prove
the value |d| in H is *. If ny is odd (resp. even) and nsg is even (resp. odd),
The value |R,,, | is 0 (resp. *) and |R,,,cA| is * (resp. 0). Hence, the value |H]|
is not *. Thus, the value |G| is *, because G has some edges with value 0 and
the values of all its edges are not *.

(2) Let m be odd. The value |c| is 0 (resp. loony) if z =2,3 and y =1,2,3
(resp. =z = 1,2,3 and y > 4). The value |a| is 0 and |b| is *3 (resp. 0) if
x=2y=1(resp. x =23,y =23o0ra=3y=1). If z=1,23, the
values of outer edges of B are 0. The value |e| is 0 (resp. *3) if (x = 2,3,y =
2,3),(x =123,y >4),(z=3,y=1or (z=1Ly=2and 2 = 1,w=1,2
or z=2w=1) (resp. x =1y=2and (z=1w > 3),(z =2,w > 2) or
z = 3). The values of the other inner v-edges are 0. We prove the value |d| in
H is x except the case ng = 1,2 = 2,y =1 and z = 1,2,3. If n; and ny are
odd (resp. even), The value |R,,| is O (resp. *) and |R,,cA| is * (resp. 0).
When ny = 1,2 =2,y =1 and z = 1,2, 3, the value of the lower h-edge of B
in H = R,,_1dRicA is *. Hence, the value |H| is not *. Thus, the value |G|
is *, because it has some edges with value 0 and the values of all its edges are
not *.

Let m be even. The value || is * (resp. loony) if x = 2,3 and y = 1,2,3
(resp. = = 1,2,3 and y > 4). The value |a| is *, and || is *2 (resp. x) if
x=2y=1 (resp. (x =2,3,y=2,3),(x=1,2,3,y >4) or (x =3,y =1)).
If z = 1,2,3, the values of outer edges of B are x. The value |e| is * (resp.
x2) if (x = 2,3,y =2,3),(x =1,2,3,y>4),(z=3,y=1) or (z =2,y =1
and z = l,w =1,20r z =2,w =1) (resp. =1,y =2 and (z = L,w >
3),(z=2,w>2)or (z=3,w >1)). The values of the other inner v-edges are
*. We prove the value |d| in H is 0 except the case no = 1,2 = 2,y = 1 and
z=1,2,3. If ny is odd (resp. even) and ng is even (resp. odd), the values | R, |
and |R,,,cA| are both 0 (resp. *). When no = 1,2 =2,y =1 and z = 1,2, 3,
the value of the lower h-edge of B in H = R,,,_1dRicA is 0. Hence, the value
|H| is not 0. Thus, the value |G| is 0, because the values of all its edges are
not 0.

(3) Let m be odd. The value |c| is * (resp. 0) if x = 1 (resp. & = 2). The
values |a| is 0. The value |b| is *, if z >4 and z =1,y =2 or x = 2,y = 1.
This value is 0 (resp. *#3) if z =1,y =3,2> 1 (resp. z =1,y =2,2=1,2,3
orxz =1,y =1,z=23). If 2 =1,2,3, the values of outer edges of B are
0 or 3. The value |e| is * (resp. *3) if (x =1,y = 1) and z = 2,w > 2 or
z=3w>1(resp. (x=1Ly=23,2>1),(x=1Ly=12=2w=1)or
(x =1,y =1,z > 4)). The values of the other inner v-edges are *3. We prove
the value |d| in H is *2 except the case no = 1,2 =y =1,z = 2,3. If n; and
ngy are odd (resp. even), The value |R,, | is 0 (resp. *) and |R,,cA| is *2 (resp.
*3). When ng = 1, =y =1 and z = 2,3, the value |[d| in H = R,,,;dR1 A is
%2, by Lemma 2 below. Hence, the value |H| is not *2. Thus, the value |G|
is %2, because G has some edges with value 0 and ones with value *, and the
values of its all edges are not *2.



Let m be even. The value |¢| is O (resp. *) if x = 1 (resp. = = 2). The
values |a| is *. The value || is 0, if z >4 and z =1,y =2 or x = 2,y = 1.
This value is x (resp. *2) ifz =1,y =3,z > 1 (resp. x =1,y =2,z =1,2,3 or
x=1,y=1,2=2,3). If 2 =1,2,3, the values of outer edges of B are x(resp.
xorx2),ifx=1y=3,2z=1o0r 2=2,3 (resp. x =1,y = 2,2 =1). The value
le] is #2 (resp. 0) if (zx=1,y=2,3,z>1),(z=y=1,z2=2,w=1)or (z =
2;y=1,2>4) (resp. (x=y=1,2=2,w>2)or (z=y=1,2z=3,w>1)).
The values of the other inner v-edges are *2. We prove the value |d| in H is %3
except the case ng = 1,2 =y =1,z = 2,3. If ny is odd (resp. even) and ny is
even (resp. odd), The value |R,,| is 0 (resp. *) and |Ry,,cA| is *3 (resp. *2).
When ne = 1,z =y = 1 and z = 2,3, the value |b| in H = R,,,dR1 A is %3,
by Lemma 2 below. Hence, the value |H| is not *3. Thus, the value |G| is *3,
because G has some edges with value 0, ones with value % and ones with value
%2, and the values of all its edges are not 3.

(4) Let m be odd. The value |c| is 0. If z = 1, the value of an outer edge of
B is 0. The value |e| is 0 or #2. The values of the other inner v-edges of R,,
are 0. We prove the value |d| in H is *. If ny and ny are odd (resp. even), the
value |Ry,| is 0 (resp. *) and |R,,cA| is * (resp. 0). Hence, the value |H]| is
not *. Thus, the value |G| is *, because G has some edges with value 0 and the
values of all its edges are not .

Let m be even. The value |¢| is *. If z = 1, the value of an outer edge of B
is . The value |e| is * or *3. The values of the other inner v-edges of R,, are
*. We prove the value |d| in H is 0. If n; is odd (resp. even) and ny is even
(resp. odd), The values |R,, | and |R,,cA| is 0 (resp. *). Hence, the value |H|
is not 0. Thus, the value |G| is 0, because the values of all edges of G are not
0.

(5) Let m be odd. The value |c| is 0. The value of the lower h-edge of B is *
and values of the other outer edges are 0, % or *2. The value |e| is 0 or 2. The
values of the other inner v-edges of R,, are *2. We prove the value |d| in H is
*3 except the case no = 1,y = 1,2,3. If n; and ny are odd (resp. even), The
value |R, | is O (resp. *) and |R,,,cA| is *3 (resp. *2). Whenny =1,y = 1,2,3,
the value of H = R,;,_1dRycA is %2, by Lemma 3 below. Hence, the value |H|
is not x3. Thus, the value |G| is *3, because G has some edges with value 0,
ones withe value * and ones with value *2 and the values of all its edges are
not *3.

Let m be even. The value |c| is *. The value of the lower h-edge of B is 0
and values of the other outer edges are 0, * or *3. The value |e| is * or *3. The
values of the other inner v-edges of R,, are *3. We prove the value |d| in H is
*2 except the case no = 1,y = 1,2,3. If ny is odd (resp. even) and ns is even
(resp. odd), The value |R,, | is O (resp. %) and |R,,cA] is 2 (resp. *3). When
ny = 1,y = 1,2,3, the value of H = R,,_1dR;1cA is %3, by Lemma 3 below.
Hence, the value |H| is not *2. Thus, the value |G| is %2, because G has some
edges with value 0 and ones withe value *, and the values of all its edges are
not *2.



Put G = R,,cAa, where Aa is a box with an arrow a and ¢ is a connection
of R,, and Aa. Let the size of A be 2 or 3, that of a be 2 or 3 and that of ¢ be
1,2 or 3. Let the rightmost box of R,, be B. As in Figure 3, G is described.

Figure 3
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Lemma 2. The value of G = R,,cAa is %2 (resp. *3) if m is odd (resp.
even).

Proof. Let the size of a be z, that of A be y, that of ¢ be z and that of B be
w. By removing an inner h-edge of R,,, we get a subgraph H = R,,,dR,,,cAa,
where ny +ng = m — 1 and d is a connection of R,, and R,,cAa.

Let m be odd. The value |a| is * or *3 by Proposition 2 in[4], |¢| is * and
the value of the lower h-edge of A is 0. The values of h-edges of B are #3 (resp.
Oor *3),if z=1,w=1 (resp. 2z=2,w=1o0r z=1w=2). These values
are 0if z =2,w =2,3 or z = 3,w = 1,2,3. The values of the inner v-edges
of R,, are *3. We show the value |d| in H is *2 to prove |H| is not *2. If ny
and no are odd (resp. even), the value |R,,| is 0 (resp. %) and |R,,cAal is %2
(resp. *3). Thus, the value |G| is *2, because G has some edges with value 0
and ones with value *, and the value of all its edges are not *2.

Let m be even. The value |a| is 0 or *2 by Proposition 2 in [4], |¢| is 0 and
the value of the lower h-edge of A is *. The values of h-edges of B are x2 (resp.
Oor x2),if z=1,w=1 (resp. z=2,w=1o0r z=1,w=2). These values
are x if z =2, w=2,3 or z =3, w = 1,2,3. The values of the inner v-edges of
R, are *2. We show the value |d| in H is %3 to prove |H| is not *3. If ny is
odd(resp. even) and ng is even (resp. odd), the value |R,,| is 0 (resp. *) and
|Ry,cAal| is %3 (resp. #2). Thus, the value |G| is *3, because G has some edges
with value 0, ones with value * and ones with value %2, and the value of all its
edges are not *3.

Lemma 3. Let G be a graph R,,dBcA, where A is the subgraph, ¢ is the
connection given in Proposition 1, B is a box of size z and d is a connection.
Assume z is 2 or 3 and the size of d is 1,2 or 3. Then, the value |G| is *2 (resp.
*3) if m is odd (resp. even).

Proof. By removing an inner h-edge of R,,, we get a subgraph H =
Ry, eR,,dBcA, where ny + ne = m — 1 and e is a connection of R,, and
R,,dBcA.



Let m be odd. The value |c| is * or *3 by Proposition 2 in [4] and |d] is *.
The value of the lower h-edge of B is 0. The values of the inner v-edges of R,
are x3. If we can remove an outer edge of the rightmost box of R,,, its value is
*3 or 0. We prove the value |e| in H is *2. If n; and ng are odd (resp. even),
the value | Ry, | is 0 (resp. *) and |R,,,dBcA]| is 2 (resp. x3). Hence, the value
|H| is not 2. Thus, the value |G| is %2, because G has some edges with value
0 and ones withe value *, and the values of all its edges are not *2.

Let m be even. The value |c| is 0% or *2 by Proposition 2 in [4] and |d| is 0.
The value of the lower h-edge of B is . The values of the inner v-edges of R,
are x2. If we can remove an outer edge of the rightmost box of R,,, its value
is %2 or . We prove the value |e| in H is #3. If ny is odd (resp. even) and ns
is even (resp. odd), The value |R,,| is 0 (resp. %) and |R,,dBcA| is %3 (resp.
*2). Hence, the value of H is not 3. Thus, the value |G| is %3, because G has
some edges with value 0, ones withe value * and ones with value %2 and the
values of all its edges are not *3.

2 Arrays with two arrows

Let G = R,,a? be an array which has m boxes and two arrows. Let the size of
the arrow a be x. Let A be the rightmost box of R,, and B be the box next
to A. Let the sizes of A and B be y and z respectively.

Proposition 4.(1) In the cases x =y = 1,2 = 1,2,3 orz = 1,2,3,y >
4,z > 1 except the case m =2,z =y =1,z = 1,2,3, the value |G| is *2 (resp.
*3), if m is odd (resp. even). When m =2,z =1,y =1 and z = 1,2,3, its
value s *.

(2) In the case x =1,y =1,z > 4,m > 2, the value |G| is 0 (resp. *), if m
is odd (resp. even).

(8) In the cases x = 1,y = 2,3,z > 1 orx =2,3,y =1,2,3,2 > 1 except
m = 1, the value |G| is * (resp. 0) if m is odd (resp. even) except m = 1.
When m = 1, its value is *2.

(4) In the case x > 4,y > 1,z > 1, the value |G| is * (resp. 0) if m is odd
(resp. even)

Proof. When m =1 or m = 2, we can get the results directly in any cases.
By removing an inner h-edge of R,,, we get a subgraph H = R,,, cR,,,a?, where
n1 +ng = m — 1 and c is a connection of R,, and R,, a®. Let the rightmost
v-edge of R,, be denoted by e;, and the v-edge next to e; be denoted by es.

(1) Let m be odd. By Proposition 3 in [4], we have |a| = *. By induction,
we get ler] = 0, and |ea] = 0 (resp. |ea| = *3) if ¢ =y =1,z = 1,2 (resp.
z=y=1z=30rz=1,2,3,y >4). The values of the other v-edges of R,,



are #3 (resp. * or x3) if y > 4 (resp. © =y = 1). The value of a h-edge of A
is * (resp. *3),if x =y =2z=1 (resp. x =y =1,z = 2,3), by Proposition 1.
We show the value |¢| in H is %2 except the case moy =2, 2 =y=1,2=1,2,3.
If my and mgy are odd (resp. even), we have |R,,| = 0 (resp. |R,,| = %) and
|Rim,az| = %2 (resp. |Rpm,az| = *3). When mg = 2,2 =y =1,z = 1,2,3, the
value of a h-edge of A in H is also 2. Hence, we get |H| # *2. Thus |G| = %2,
because G has some edges with value 0 and ones with value %, and the values
of all its edges are not *2.

Let m be even. By Proposition 3 in [4], we have |a] = 0. By induction,
we get |e1] = * , and |ea| = * (resp. |ex] = #2) if x =y = 1,2 = 1,2 (resp.
x=y=1,z=3o0rxz=1,2,3,y > 4). The value of the v-edge next to ey is *2
(resp. 0 or %2) if y > 4 (resp. * = y = 1). The value of the other v-edges of
R, are 2. The value of a h-edge of A is 0 (resp. *2), if v =y = z =1 (resp.
x=y=1,2=2,3), by Proposition 1. We show the value |¢| in H is *3 except
the case mg = 2,2 =y = 1,z = 1,2,3. If my is odd (resp. even) and mq is
even (resp. odd), we get |R,,| = 0 (resp. |R,n| = *) and |R,,,a?| = *3 (resp.
|R,,a%| = #2. When mo = 2,2 =y =1,z = 1,2, 3, the value of a h-edge of A
in H is also #3. Hence, we get |H| # %3, Thus |G| = %3, because G has some
edges with value 0, ones with value * and ones with value %2, and the values
of all its edges are not %3

(2) Let m be odd. By Proposition 3 in [4], we have |a| = *. By induction,

we get |er| = |ea] = *3. The values of the other v-edges of R,, are *. The
value of a h-edge of A is *, by Proposition 1. We show the value |c| in H is
0. If m; and mq are odd (resp. even),we have |R,,| = 0 (resp. |R,,| = %)

and |R,,,a?| = 0 (resp. |R,a?| = *). Hence, we get |[H| # 0. Thus |G| = 0,
because the values of all edges of G are not 0.

Let m be even. By Proposition 3 in [4], we have |a| = 0. By induction, we
get |ei| = |e2| = *2. The values of the other v-edges of R, are 0. The value
of a h-edge of A is 0, by Proposition 1. We show the value |c| in H is *. If
mq is odd (resp. even) and my is even (resp. odd), we have |R,,| = 0 (resp.
|R,,| = *) and |R,,,a?| =  (vesp. |Rpy,a?| = 0). Hence, we get |H| # *. Thus
|G| = *, because G has some edges with value 0, and the values of all its edges
are not .

(3) Let m be odd. By Proposition 3 in [4], we have |a| = *3. By induction,
we get |e1| = 0 (resp.|er| = %3), if (z =2,3,y=2,3,z2>1),(x=3,y=1,2>
), (z=1Ly=3,z2>1),(z=1Ly=2,2=1,23)or(z =2,y =1,z = 1,2,3)
(resp. (x =1,y =2,z>4) or (x =2,y =1,z > 4)). We also have |ez] =0
(resp. lea| = x3), if (x = 2,3,y = 1,2 = 1,2),(x = 2,3,y = 2,z = 1) or
(x=1y=2,2=1) (resp. (x =2,3,y=1,23,y+z>4)or (z =1,y =
2,3,y 4+ z > 4)). The values of the other v-edges of R,, are 0. The value of a
h-edge of A is 0 (resp. *3) if (x =2,3,y=2,3,z2>1),(x=3,y=1,z>1) or
r=2,y=1,2=1,2,3) (resp. (z=2,y=1,z>4)orz=1,y=2,3,z2> 1)),
by Proposition 1. We show the value |c| in H is * except the case np = 1. If
my and my are odd (resp. even), |R,,| = 0 (resp. |R,,| = *) and |R,a%| = *



(resp. |Rp,a®| = 0). Hence, we get |H| # *. When ny = 1, we can show H # *
in Lemma 6 below. Thus |G| = *, because G has some edges with value 0, and
the values of all its edges are not *.

Let m be even. By Proposition 3 in [4], we have |a| = *2. By induction,
we get |e1]| = * (resp.|er| = x2), if (x =2,3,y=2,3,2>1),(z=3,y=1,2 >
Dyz=1Ly=32>1),(z=1Ly=2,2=1,23)or (z =2,y =1,2=1,2,3)
(resp. (z =1,y=2,z>4)or (zr =2,y =1,z > 4)). We also have |eg| = *
(resp. |ea| = %2), if (x = 2,3,y = 1,z = 1,2),(z = 2,3,y = 2,z = 1) or
(x=1y=2,2=1) (resp. (x =2,3,y=1,2,3,y+z>4)or (z =1y =
2,3,y + 2z > 4)). The values of the other v-edges of R,, are *. The value of a
h-edge of A is * (resp. x2) if (x =2,3,y=2,3,2>1),(x=3,y=1,2>1) or
r=2y=1,2=1,2,3) (resp. (x=2,y=1,z>4)or (zx=1,y=2,3,2> 1)),
by Proposition 1. We show the value |c| in H is 0 except the case ny = 1. If
mq is odd (resp. even) and mgy is even (resp. odd), we get |R,,| = 0 (resp.
|R,| = %) and |R,,,a?%| = 0 (resp. |Ry,a?| = *). Hence, we get |H| # 0. When
ng = 1, we can show H # 0 in Lemma 6 below. Thus |G| = 0, because the
values of all edges of G are not 0.

(4) Let m be odd. By induction, we get |e1| = |e2| = 0. The values of the
other v-edges of R,, are also 0. If z = 1,2, 3, the value of a h-edge of A is 0
or %2, by Proposition 1. We show the value |¢| in H is *. If m; and my are
odd (resp. even), we have |R,,| = 0 (resp. |R;| = * and |R,,,a%| = * (resp.
|Rn,a?| = 0. Hence, we get |H| # *. Thus |G| = x, because G has some edges
with value 0, and the values of all its edges are not .

Let m be even. By induction, we get |e;| = |es| = *. The values of the
other v-edges of R,, are also . If z = 1,2, 3, the value of a h-edge of A is * or
*3, by Proposition 1. We show the value |c| in H is 0. If m4 is odd (resp. even)
and my is even (resp. odd), we get |R,,| = 0 (resp. |R,,| = * and |Ry,,a%| =0
(resp. |Rm,a?| = ). Hence, we get |H| # 0. Thus |G| = 0, because the values
of all edges of G are not 0.

Lemma 5 Let H = R,,_3cRsa? be the graph given in the proof of Propo-
sition 4(1) for the case mo =2, =y =1,z = 1,2,3, where Ry = AB. Then,
we have |H| # %2 (resp. |H| # *3) if m is odd (resp. even).

Proof. Let by (resp. b2) be the upper (resp. lower) h-edge of A. By removing
the edge by (resp. by) from H, we get a subgraph K; = R,, 3cBbsa? (resp.
Ky = R,,_3cBbia?). We prove |K;| = |Ka| = #2 (resp. |Ki| = |Ka| = *3),
if m is odd (resp. even). This shows our desired result. Let the size of the
rightmost box D of R,,_3 be w. By removing an inner h-edge of R,,_3, we get
a subgraph Hy; = R,,,dR,,cBbsa?, where nj +ns = m—4 and d is a connection
of Ry, and RchanQ.

Let m be odd. We get |¢| = *, and |b] = % or |b] = *3. The value of the
lower (resp. upper) h-edge of B is 0 (resp. 0 or x3). If w = 1,2,3, then the



values of the outer edges of D are 0 or *3. The values of the inner v-edges
of R,,—3 is x3. We show |d| in Hy is *2. If ny is odd (resp. even) and ns is
even (resp. odd), we have |R,,| = 0 (resp. |R,,| = %) and |R,,,cBbsa?| = %2
(resp. |Rn,cBbaa?| = x3). Hence, we get |H;| # *2. We will show later that
the values of arrows in Ky are #3 (resp. *2) if m is odd (resp. even). Thus,
when m is odd, we get |K7| = %2, because K7 has some edges with value 0 and
ones with value %, and the values of all its edges are not %2. Similarly, we can
prove |Ks| = %2.

Let m be even. We get |c| = 0, and |b] = 0 or |b] = 2. The value of the
lower (resp. upper) h-edge of B is * (resp. 0 or *2). If w = 1,2,3, then the
values of the outer edges of D are * or *2. The values of the inner v-edges of
R,,—35is x2. We show |d| in H; is 3. If nq and ng are odd (resp. even), we have
|Rn,| =0 (resp. |Rn,| = ) and |R,,cBbsa?| = %3 (resp. |R,,cBbaa?| = *2).
Hence, we get |H;| # *3. We will show later that the values of arrows in K are
*3 (resp. %2) if m is odd (resp. even). Thus, when m is even, we get |K7| = %3,
because K; has some edges with value 0, ones with value * and ones with value
*2, and the values of all its edges are not 3. Similarly, we can prove |Ks| = 3.

Now, We show that the values of arrows in K; are %3 (resp. *2) if m is
odd (resp. even). By removing one of arrows form Kj, we get a subgraph
L = R,,_3¢Ba’, where ' is an arrow of size 2 or 3. We will show |L| = %3
(resp. |L| = %2), if m is odd (resp. even).

Let m be odd. We have |c| = 0 and the values of h-edges of B are x. We
also get |a’| = 0 or |a’| = %2 by Lemma 2. If w = 1,2, 3, the values of the outer
edges of D are x or *2. The values of the inner v-edges of R,,_3 are *2. By
removing an inner h-edge of R,,_3, we can show the values of inner h-edges are
not 3. Thus, we obtain |L| = %3.

Let m be even. We have |c| = % and the values of h-edges of B are 0. We
also get |a’| = % or |a’| = *3 by Lemma 2. If w = 1,2, 3, the values of the outer
edges of D are 0 or *3. The values of the inner v-edges of R,,_3 are *3. By
removing an inner h-edge of R,,,, we can show the values of inner h-edges are
not *2. Thus, we obtain |L| = *2.

Lemma 6 Let H = R,,,_scAa® be the graph given in the proof of Proposi-
tion 4(3) for the case mo = land z =1,2,3,y =2,3,2=1,2,30orz = 2,3,y =
1,2 =1,2,3, where the size of ¢ is z. Then, we have |H| # x (resp. |H| # 0),
when m is odd (resp. even).

Proof. Let m be odd. By Proposition 1, the value of the right v-edge of A
is x when z = 1,2,3 and x = 1,y = 2 or x = 2,y = 1. The value of the lower
h-edge of A is x when y = 1,2,3 and ¢ = 1,2,3,z = 2,3 or z = 2,3,z = 1.
When z = 1,y = 3,z = 1, the value of the upper h-edge of A is x. Hence, in
any cases, we have |H| # .

Let m be even. By Proposition 1, the value of the right v-edge of A is 0



when z =1,2,3and x — 1,y = 2 or x = 2,y = 1. The value of the lower h-edge
of Ais 0 when y = 1,2,3 and x = 1,2,3,z = 2,3 or x = 2,3,z = 1. When
x = 1,y = 3,z = 1, the value of the upper h-edge of A is 0. Hence, in any
cases, we have |H| # 0.
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