# Nimstring Values for $2 \times n$ Rectangular Arrays II

By

Toru Ishihara

Professor Emeritus, The University of Tokushima

e-mail address : tostfeld@mb.pikara.ne.jp (Received September 30, 2011)

### Abstract

In the present paper, succeeding the previous paper [4], we continue to study Nimstring values of  $2 \times n$  rectangular arrays.

2000 Mathematics Subject Classification. Primary 05A99; Secondary 05C99

# Introduction

In this paper, our main purpose is to obtain the value of an array with two arrows like Figure 1. It has m boxes and two arrows, and it is described as  $R_m a^2$ . The arrow is denoted by a.

1

Figure 1



# **1** Arrays of form $R_m cA$

Let A be a graph composed of two arrows a, b and a v-edge connecting them. In this section, we study a graph  $R_m cA$  composed of m boxes and A which is described in Figure 2 below.

## Figure 2



Let both the sizes of a and of b be x and that of c be y. Let B be the rightmost box with size z. Moreover, let the size of the box next of B be w. Put  $G = R_m cA$ 

**Proposition 1.**(1) In the case x = y = 1 and z = 1 or  $z \ge 4$ , the value |G| is 0 (resp \*) if m is odd (resp. even).

(2) In the cases  $(x = 2, 3, y = 2, 3, z \ge 1)$ ,  $(x = 1, 2, 3, y \ge 4, z \ge 1)$ ,  $(x = 3, y = 1, z \ge 1)$ , (x = 2, y = 1, z = 1, 2, 3), the value |G| is \* (resp. 0) if m is odd (resp. even), except the case m = 1, x = 2, y = 1, z = 1, 2, 3 in which its value is \*2.

(3) In the cases  $(x = 1, y = 2, 3, z \ge 1), (x = y = 1, z = 2, 3), (x = 2, y = 1, z \ge 4)$ , the value |G| is \*2 (resp. \*3) if m is odd (resp. even), except the case m = 1, x = 1, y = 1, z = 2, 3 in which its value is 0.

(4) In the case  $x \ge 4$  and y = z = 1 or  $y = 1, 2, 3, z \ge 4$ , the value |G| is \* (resp. 0) if m is odd (resp. even).

(5) In the case  $x \ge 4$  and y = 2, 3, z = 1, 2, 3 or y = 1, z = 2, 3, the value |G| is \*3 (resp. \*2) if m is odd (resp. even).

Proof. Let e be the rightmost inner v-edge of  $R_m$ . By removing an inner h-edge of  $R_m$ , we get a subgraph  $H = R_{n_1} dR_{n_2} cA$ , where  $n_1 + n_2 = m - 1$  and d is a connection of  $R_{n_1}$  and  $R_{n_2} cA$ .

(1) Let *m* be odd. The value |c| (correctly, the value of a proper edge of *c*) is \*. By Proposition 3 in [4], the values |a| and |b| are both \*3 (resp. \*) if z = 1 (resp.  $z \ge 4$ ). If z = 1, the value of a h-edge of *B* is \*3 by induction. The value |e| is \*3 (resp. \*) if z = 1, w = 1, 2 (resp.  $z = 1, w \ge 3$  or  $z \ge 4, w \ge 1$ ). The values of the other inner v-edges are \*. We prove the value |d| in *H* is 0. If both  $n_1$  and  $n_2$  are odd (resp. even), The values  $|R_{n_1}|$  and  $|R_{n_2}cA|$  are both 0 (resp. \*). Hence, the value |H| is not 0. Thus, the value |G| is 0, because the values of all its edges are not 0.

Let *m* be even. The value |c| is 0. The value |a| and |b| are both \*2 (resp. 0) if z = 1 (resp.  $z \ge 4$ ), by Proposition 3 in [4]. If z = 1, the value of a h-edge of *B* is \*2 by induction. The value |e| is \*2 (resp. 0) if z = 1, w = 1, 2 (resp.

 $z = 1, w \ge 3$  or  $z \ge 4$ ). The values of the other inner v-edges are 0. We prove the value |d| in H is \*. If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \* (resp. 0). Hence, the value |H|is not \*. Thus, the value |G| is \*, because G has some edges with value 0 and the values of all its edges are not \*.

(2) Let *m* be odd. The value |c| is 0 (resp. loony) if x = 2, 3 and y = 1, 2, 3 (resp. x = 1, 2, 3 and  $y \ge 4$ ). The value |a| is 0 and |b| is \*3 (resp. 0) if x = 2, y = 1 (resp. x = 2, 3, y = 2, 3 or x = 3, y = 1). If z = 1, 2, 3, the values of outer edges of *B* are 0. The value |e| is 0 (resp. \*3) if  $(x = 2, 3, y = 2, 3), (x = 1, 2, 3, y \ge 4), (x = 3, y = 1)$  or (x = 1, y = 2 and z = 1, w = 1, 2 or z = 2, w = 1) (resp. x = 1, y = 2 and  $(z = 1, w \ge 3), (z = 2, w \ge 2)$  or z = 3). The values of the other inner v-edges are 0. We prove the value |d| in *H* is \* except the case  $n_2 = 1, x = 2, y = 1$  and z = 1, 2, 3. If  $n_1$  and  $n_2$  are odd (resp. even), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \* (resp. 0). When  $n_2 = 1, x = 2, y = 1$  and z = 1, 2, 3, the value of the lower h-edge of *B* in  $H = R_{m-1}dR_1cA$  is \*. Hence, the value |H| is not \*. Thus, the value |G| is \*, because it has some edges with value 0 and the values of all its edges are not \*.

Let *m* be even. The value |c| is \* (resp. loony) if x = 2, 3 and y = 1, 2, 3(resp. x = 1, 2, 3 and  $y \ge 4$ ). The value |a| is \*, and |b| is \*2 (resp. \*) if x = 2, y = 1 (resp.  $(x = 2, 3, y = 2, 3), (x = 1, 2, 3, y \ge 4)$  or (x = 3, y = 1)). If z = 1, 2, 3, the values of outer edges of *B* are \*. The value |e| is \* (resp. \*2) if  $(x = 2, 3, y = 2, 3), (x = 1, 2, 3, y \ge 4), (x = 3, y = 1)$  or (x = 2, y = 1)and z = 1, w = 1, 2 or z = 2, w = 1) (resp. x = 1, y = 2 and  $(z = 1, w \ge 3), (z = 2, w \ge 2)$  or  $(z = 3, w \ge 1)$ ). The values of the other inner v-edges are \*. We prove the value |d| in *H* is 0 except the case  $n_2 = 1, x = 2, y = 1$  and z = 1, 2, 3. If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), the values  $|R_{n_1}|$ and  $|R_{n_2}cA|$  are both 0 (resp. \*). When  $n_2 = 1, x = 2, y = 1$  and z = 1, 2, 3, the value of the lower h-edge of *B* in  $H = R_{m-1}dR_1cA$  is 0. Hence, the value |H| is not 0. Thus, the value |G| is 0, because the values of all its edges are not 0.

(3) Let *m* be odd. The value |c| is \* (resp. 0) if x = 1 (resp. x = 2). The values |a| is 0. The value |b| is \*, if  $z \ge 4$  and x = 1, y = 2 or x = 2, y = 1. This value is 0 (resp. \*3) if  $x = 1, y = 3, z \ge 1$  (resp. x = 1, y = 2, z = 1, 2, 3 or x = 1, y = 1, z = 2, 3). If z = 1, 2, 3, the values of outer edges of *B* are 0 or \*3. The value |e| is \* (resp. \*3) if (x = 1, y = 1) and  $z = 2, w \ge 2$  or  $z = 3, w \ge 1$  (resp.  $(x = 1, y = 2, 3, z \ge 1), (x = 1, y = 1, z = 2, w = 1)$  or  $(x = 1, y = 1, z \ge 4)$ ). The values of the other inner v-edges are \*3. We prove the value |d| in *H* is \*2 except the case  $n_2 = 1, x = y = 1, z = 2, 3$ . If  $n_1$  and  $n_2$  are odd (resp. even), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \*2 (resp. \*3). When  $n_2 = 1, x = y = 1$  and z = 2, 3, the value |d| in  $H = R_{m_1}dR_1A$  is \*2, by Lemma 2 below. Hence, the value |H| is not \*2. Thus, the value |G| is \*2, because *G* has some edges with value 0 and ones with value \*, and the values of its all edges are not \*2.

Let *m* be even. The value |c| is 0 (resp. \*) if x = 1 (resp. x = 2). The values |a| is \*. The value |b| is 0, if  $z \ge 4$  and x = 1, y = 2 or x = 2, y = 1. This value is \* (resp. \*2) if  $x = 1, y = 3, z \ge 1$  (resp. x = 1, y = 2, z = 1, 2, 3 or x = 1, y = 1, z = 2, 3). If z = 1, 2, 3, the values of outer edges of *B* are \*(resp. \* or \*2), if x = 1, y = 3, z = 1 or z = 2, 3 (resp. x = 1, y = 2, z = 1). The value |e| is \*2 (resp. 0) if  $(x = 1, y = 2, 3, z \ge 1), (x = y = 1, z = 2, w = 1)$  or  $(x = 2, y = 1, z \ge 4)$  (resp.  $(x = y = 1, z = 2, w \ge 2)$  or  $(x = y = 1, z = 3, w \ge 1)$ ). The values of the other inner v-edges are \*2. We prove the value |d| in *H* is \*3 except the case  $n_2 = 1, x = y = 1, z = 2, 3$ . If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \*3 (resp. \*2). When  $n_2 = 1, x = y = 1$  and z = 2, 3, the value |b| in  $H = R_{m_1}dR_1A$  is \*3, by Lemma 2 below. Hence, the value |H| is not \*3. Thus, the value |G| is \*3, because *G* has some edges with value 0, ones with value \* and ones with value \*2, and the values of all its edges are not \*3.

(4) Let *m* be odd. The value |c| is 0. If z = 1, the value of an outer edge of *B* is 0. The value |e| is 0 or \*2. The values of the other inner v-edges of  $R_m$  are 0. We prove the value |d| in *H* is \*. If  $n_1$  and  $n_2$  are odd (resp. even), the value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \* (resp. 0). Hence, the value |H| is not \*. Thus, the value |G| is \*, because *G* has some edges with value 0 and the values of all its edges are not \*.

Let *m* be even. The value |c| is \*. If z = 1, the value of an outer edge of *B* is \*. The value |e| is \* or \*3. The values of the other inner v-edges of  $R_m$  are \*. We prove the value |d| in *H* is 0. If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), The values  $|R_{n_1}|$  and  $|R_{n_2}cA|$  is 0 (resp. \*). Hence, the value |H| is not 0. Thus, the value |G| is 0, because the values of all edges of *G* are not 0.

(5) Let *m* be odd. The value |c| is 0. The value of the lower h-edge of *B* is \* and values of the other outer edges are 0, \* or \*2. The value |e| is 0 or \*2. The values of the other inner v-edges of  $R_m$  are \*2. We prove the value |d| in *H* is \*3 except the case  $n_2 = 1, y = 1, 2, 3$ . If  $n_1$  and  $n_2$  are odd (resp. even), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \*3 (resp. \*2). When  $n_2 = 1, y = 1, 2, 3$ , the value of  $H = R_{m-1}dR_1cA$  is \*2, by Lemma 3 below. Hence, the value |H| is not \*3. Thus, the value |G| is \*3, because *G* has some edges with value 0, ones withe value \* and ones with value \*2 and the values of all its edges are not \*3.

Let *m* be even. The value |c| is \*. The value of the lower h-edge of *B* is 0 and values of the other outer edges are 0, \* or \*3. The value |e| is \* or \*3. The values of the other inner v-edges of  $R_m$  are \*3. We prove the value |d| in *H* is \*2 except the case  $n_2 = 1, y = 1, 2, 3$ . If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cA|$  is \*2 (resp. \*3). When  $n_2 = 1, y = 1, 2, 3$ , the value of  $H = R_{m-1}dR_1cA$  is \*3, by Lemma 3 below. Hence, the value |H| is not \*2. Thus, the value |G| is \*2, because *G* has some edges with value 0 and ones withe value \*, and the values of all its edges are not \*2.

Put  $G = R_m cAa$ , where Aa is a box with an arrow a and c is a connection of  $R_m$  and Aa. Let the size of A be 2 or 3, that of a be 2 or 3 and that of c be 1, 2 or 3. Let the rightmost box of  $R_m$  be B. As in Figure 3, G is described.

#### Figure 3



**Lemma 2.** The value of  $G = R_m cAa$  is \*2 (resp. \*3) if m is odd (resp. even).

Proof. Let the size of a be x, that of A be y, that of c be z and that of B be w. By removing an inner h-edge of  $R_m$ , we get a subgraph  $H = R_{n_1} dR_{n_2} cAa$ , where  $n_1 + n_2 = m - 1$  and d is a connection of  $R_{n_1}$  and  $R_{n_2} cAa$ .

Let *m* be odd. The value |a| is \* or \*3 by Proposition 2 in[4], |c| is \* and the value of the lower h-edge of *A* is 0. The values of h-edges of *B* are \*3 (resp. 0 or \*3), if z = 1, w = 1 (resp. z = 2, w = 1 or z = 1, w = 2). These values are 0 if z = 2, w = 2, 3 or z = 3, w = 1, 2, 3. The values of the inner v-edges of  $R_m$  are \*3. We show the value |d| in *H* is \*2 to prove |H| is not \*2. If  $n_1$ and  $n_2$  are odd (resp. even), the value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cAa|$  is \*2(resp. \*3). Thus, the value |G| is \*2, because *G* has some edges with value 0 and ones with value \*, and the value of all its edges are not \*2.

Let *m* be even. The value |a| is 0 or \*2 by Proposition 2 in [4], |c| is 0 and the value of the lower h-edge of *A* is \*. The values of h-edges of *B* are \*2 (resp. 0 or \*2), if z = 1, w = 1 (resp. z = 2, w = 1 or z = 1, w = 2). These values are \* if z = 2, w = 2, 3 or z = 3, w = 1, 2, 3. The values of the inner v-edges of  $R_m$  are \*2. We show the value |d| in *H* is \*3 to prove |H| is not \*3. If  $n_1$  is odd(resp. even) and  $n_2$  is even (resp. odd), the value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}cAa|$  is \*3 (resp. \*2). Thus, the value |G| is \*3, because *G* has some edges with value 0, ones with value \* and ones with value \*2, and the value of all its edges are not \*3.

**Lemma 3.** Let G be a graph  $R_m dBcA$ , where A is the subgraph, c is the connection given in Proposition 1, B is a box of size z and d is a connection. Assume z is 2 or 3 and the size of d is 1, 2 or 3. Then, the value |G| is \*2 (resp. \*3) if m is odd (resp. even).

Proof. By removing an inner h-edge of  $R_m$ , we get a subgraph  $H = R_{n_1}eR_{n_2}dBcA$ , where  $n_1 + n_2 = m - 1$  and e is a connection of  $R_{n_1}$  and  $R_{n_2}dBcA$ .

Let *m* be odd. The value |c| is \* or \*3 by Proposition 2 in [4] and |d| is \*. The value of the lower h-edge of *B* is 0. The values of the inner v-edges of  $R_m$  are \*3. If we can remove an outer edge of the rightmost box of  $R_m$ , its value is \*3 or 0. We prove the value |e| in *H* is \*2. If  $n_1$  and  $n_2$  are odd (resp. even), the value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}dBcA|$  is \*2 (resp. \*3). Hence, the value |H| is not \*2. Thus, the value |G| is \*2, because *G* has some edges with value 0 and ones withe value \*, and the values of all its edges are not \*2.

Let *m* be even. The value |c| is 0\* or \*2 by Proposition 2 in [4] and |d| is 0. The value of the lower h-edge of *B* is \*. The values of the inner v-edges of  $R_m$  are \*2. If we can remove an outer edge of the rightmost box of  $R_m$ , its value is \*2 or \*. We prove the value |e| in *H* is \*3. If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), The value  $|R_{n_1}|$  is 0 (resp. \*) and  $|R_{n_2}dBcA|$  is \*3 (resp. \*2). Hence, the value of *H* is not \*3. Thus, the value |G| is \*3, because *G* has some edges with value 0, ones withe value \* and ones with value \*2 and the values of all its edges are not \*3.

## 2 Arrays with two arrows

Let  $G = R_m a^2$  be an array which has m boxes and two arrows. Let the size of the arrow a be x. Let A be the rightmost box of  $R_m$  and B be the box next to A. Let the sizes of A and B be y and z respectively.

**Proposition 4.**(1) In the cases x = y = 1, z = 1, 2, 3 or  $x = 1, 2, 3, y \ge 4, z \ge 1$  except the case m = 2, x = y = 1, z = 1, 2, 3, the value |G| is \*2 (resp. \*3), if m is odd (resp. even). When m = 2, x = 1, y = 1 and z = 1, 2, 3, its value is \*.

(2) In the case  $x = 1, y = 1, z \ge 4, m \ge 2$ , the value |G| is 0 (resp. \*), if m is odd (resp. even).

(3) In the cases  $x = 1, y = 2, 3, z \ge 1$  or  $x = 2, 3, y = 1, 2, 3, z \ge 1$  except m = 1, the value |G| is \* (resp. 0) if m is odd (resp. even) except m = 1. When m = 1, its value is \*2.

(4) In the case  $x \ge 4, y \ge 1, z \ge 1$ , the value |G| is \* (resp. 0) if m is odd (resp. even)

Proof. When m = 1 or m = 2, we can get the results directly in any cases. By removing an inner h-edge of  $R_m$ , we get a subgraph  $H = R_{n_1}cR_{n_2}a^2$ , where  $n_1 + n_2 = m - 1$  and c is a connection of  $R_{n_1}$  and  $R_{n_2}a^2$ . Let the rightmost v-edge of  $R_m$  be denoted by  $e_1$ , and the v-edge next to  $e_1$  be denoted by  $e_2$ .

(1) Let *m* be odd. By Proposition 3 in [4], we have |a| = \*. By induction, we get  $|e_1| = 0$ , and  $|e_2| = 0$  (resp.  $|e_2| = *3$ ) if x = y = 1, z = 1, 2 (resp. x = y = 1, z = 3 or  $x = 1, 2, 3, y \ge 4$ ). The values of the other v-edges of  $R_m$ 

are \*3 (resp. \* or \*3) if  $y \ge 4$  (resp. x = y = 1). The value of a h-edge of A is \* (resp. \*3), if x = y = z = 1 (resp. x = y = 1, z = 2, 3), by Proposition 1. We show the value |c| in H is \*2 except the case  $m_2 = 2, x = y = 1, z = 1, 2, 3$ . If  $m_1$  and  $m_2$  are odd (resp. even), we have  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a_2| = *2$  (resp.  $|R_{m_2}a_2| = *3$ ). When  $m_2 = 2, x = y = 1, z = 1, 2, 3$ , the value of a h-edge of A in H is also \*2. Hence, we get  $|H| \neq *2$ . Thus |G| = \*2, because G has some edges with value 0 and ones with value \*, and the values of all its edges are not \*2.

Let *m* be even. By Proposition 3 in [4], we have |a| = 0. By induction, we get  $|e_1| = *$ , and  $|e_2| = *$  (resp.  $|e_2| = *2$ ) if x = y = 1, z = 1, 2 (resp. x = y = 1, z = 3 or  $x = 1, 2, 3, y \ge 4$ ). The value of the v-edge next to  $e_2$  is \*2(resp. 0 or \*2) if  $y \ge 4$  (resp. x = y = 1). The value of the other v-edges of  $R_m$  are \*2. The value of a h-edge of A is 0 (resp. \*2), if x = y = z = 1 (resp. x = y = 1, z = 2, 3), by Proposition 1. We show the value |c| in H is \*3 except the case  $m_2 = 2, x = y = 1, z = 1, 2, 3$ . If  $m_1$  is odd (resp. even) and  $m_2$  is even (resp. odd), we get  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a^2| = *3$  (resp.  $|R_{m_2}a^2| = *2$ . When  $m_2 = 2, x = y = 1, z = 1, 2, 3$ , the value of a h-edge of Ain H is also \*3. Hence, we get  $|H| \neq *3$ , Thus |G| = \*3, because G has some edges with value 0, ones with value \* and ones with value \*2, and the values of all its edges are not \*3

(2) Let *m* be odd. By Proposition 3 in [4], we have |a| = \*. By induction, we get  $|e_1| = |e_2| = *3$ . The values of the other v-edges of  $R_m$  are \*. The value of a h-edge of *A* is \*, by Proposition 1. We show the value |c| in *H* is 0. If  $m_1$  and  $m_2$  are odd (resp. even), we have  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a^2| = 0$  (resp.  $|R_{m_2}a^2| = *$ ). Hence, we get  $|H| \neq 0$ . Thus |G| = 0, because the values of all edges of *G* are not 0.

Let *m* be even. By Proposition 3 in [4], we have |a| = 0. By induction, we get  $|e_1| = |e_2| = *2$ . The values of the other v-edges of  $R_m$  are 0. The value of a h-edge of *A* is 0, by Proposition 1. We show the value |c| in *H* is \*. If  $m_1$  is odd (resp. even) and  $m_2$  is even (resp. odd), we have  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a^2| = *$  (resp.  $|R_{m_2}a^2| = 0$ ). Hence, we get  $|H| \neq *$ . Thus |G| = \*, because *G* has some edges with value 0, and the values of all its edges are not \*.

(3) Let *m* be odd. By Proposition 3 in [4], we have |a| = \*3. By induction, we get  $|e_1| = 0$  (resp.  $|e_1| = *3$ ), if  $(x = 2, 3, y = 2, 3, z \ge 1)$ ,  $(x = 3, y = 1, z \ge 1)$ ,  $(x = 1, y = 3, z \ge 1)$ ,  $(x = 1, y = 2, z \ge 1, 2, 3) or(x = 2, y = 1, z = 1, 2, 3)$  (resp.  $(x = 1, y = 2, z \ge 4)$  or  $(x = 2, y = 1, z \ge 4)$ ). We also have  $|e_2| = 0$  (resp.  $|e_2| = *3$ ), if (x = 2, 3, y = 1, z = 1, 2), (x = 2, 3, y = 2, z = 1) or (x = 1, y = 2, z = 1) (resp. (x = 2, 3, y = 1, z = 1, 2), (x = 2, 3, y = 2, z = 1) or (x = 1, y = 2, z = 1) (resp.  $(x = 2, 3, y = 1, 2, 3, y + z \ge 4)$ ). The values of the other v-edges of  $R_m$  are 0. The value of a h-edge of A is 0 (resp. \*3) if  $(x = 2, 3, y = 2, 3, z \ge 1)$ ,  $(x = 3, y = 1, z \ge 1)$  or x = 2, y = 1, z = 1, 2, 3) (resp.  $(x = 2, y = 1, z \ge 4)$  or  $x = 1, y = 2, 3, z \ge 1$ ), by Proposition 1. We show the value |c| in H is \* except the case  $n_2 = 1$ . If  $m_1$  and  $m_2$  are odd (resp. even),  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a^2| = *$ 

(resp.  $|R_{m_2}a^2| = 0$ ). Hence, we get  $|H| \neq *$ . When  $n_2 = 1$ , we can show  $H \neq *$  in Lemma 6 below. Thus |G| = \*, because G has some edges with value 0, and the values of all its edges are not \*.

Let *m* be even. By Proposition 3 in [4], we have |a| = \*2. By induction, we get  $|e_1| = *$  (resp. $|e_1| = *2$ ), if  $(x = 2, 3, y = 2, 3, z \ge 1)$ ,  $(x = 3, y = 1, z \ge 1)$ ,  $(x = 1, y = 3, z \ge 1)$ ,  $(x = 1, y = 2, z \ge 4)$  or  $(x = 2, y = 1, z \ge 4)$ ). We also have  $|e_2| = *$  (resp.  $|e_2| = *2$ ), if (x = 2, 3, y = 1, z = 1, 2), (x = 2, 3, y = 2, z = 1) or (x = 1, y = 2, z = 1) (resp. (x = 2, 3, y = 1, z = 1, 2), (x = 2, 3, y = 2, z = 1) or (x = 1, y = 2, z = 1) (resp.  $(x = 2, 3, y = 1, 2, 3, y + z \ge 4)$  or  $(x = 1, y = 2, 3, y + z \ge 4)$ ). The values of the other v-edges of  $R_m$  are \*. The value of a h-edge of A is \* (resp. \*2) if  $(x = 2, 3, y = 2, 3, z \ge 1)$ ,  $(x = 3, y = 1, z \ge 1)$  or x = 2, y = 1, z = 1, 2, 3) (resp.  $(x = 2, y = 1, z \ge 4)$  or  $(x = 1, y = 2, 3, z \ge 1)$ ), by Proposition 1. We show the value |c| in H is 0 except the case  $n_2 = 1$ . If  $m_1$  is odd (resp. even) and  $m_2$  is even (resp. odd), we get  $|R_m| = 0$  (resp.  $|R_m| = *$ ) and  $|R_{m_2}a^2| = 0$  (resp.  $|R_{m_2}a^2| = *$ ). Hence, we get  $|H| \neq 0$ . When  $n_2 = 1$ , we can show  $H \neq 0$  in Lemma 6 below. Thus |G| = 0, because the values of all edges of *G* are not 0.

(4) Let *m* be odd. By induction, we get  $|e_1| = |e_2| = 0$ . The values of the other v-edges of  $R_m$  are also 0. If z = 1, 2, 3, the value of a h-edge of *A* is 0 or \*2, by Proposition 1. We show the value |c| in *H* is \*. If  $m_1$  and  $m_2$  are odd (resp. even), we have  $|R_m| = 0$  (resp.  $|R_m| = *$  and  $|R_{m_2}a^2| = *$  (resp.  $|R_{m_2}a^2| = 0$ . Hence, we get  $|H| \neq *$ . Thus |G| = \*, because *G* has some edges with value 0, and the values of all its edges are not \*.

Let *m* be even. By induction, we get  $|e_1| = |e_2| = *$ . The values of the other v-edges of  $R_m$  are also \*. If z = 1, 2, 3, the value of a h-edge of *A* is \* or \*3, by Proposition 1. We show the value |c| in *H* is 0. If  $m_1$  is odd (resp. even) and  $m_2$  is even (resp. odd), we get  $|R_m| = 0$  (resp.  $|R_m| = *$  and  $|R_{m_2}a^2| = 0$  (resp.  $|R_{m_2}a^2| = *$ ). Hence, we get  $|H| \neq 0$ . Thus |G| = 0, because the values of all edges of *G* are not 0.

**Lemma 5** Let  $H = R_{m-3}cR_2a^2$  be the graph given in the proof of Proposition 4(1) for the case  $m_2 = 2, x = y = 1, z = 1, 2, 3$ , where  $R_2 = AB$ . Then, we have  $|H| \neq *2$  (resp.  $|H| \neq *3$ ) if m is odd (resp. even).

Proof. Let  $b_1$  (resp.  $b_2$ ) be the upper (resp. lower) h-edge of A. By removing the edge  $b_1$  (resp.  $b_2$ ) from H, we get a subgraph  $K_1 = R_{m-3}cBb_2a^2$  (resp.  $K_2 = R_{m-3}cBb_1a^2$ ). We prove  $|K_1| = |K_2| = *2$  (resp.  $|K_1| = |K_2| = *3$ ), if m is odd (resp. even). This shows our desired result. Let the size of the rightmost box D of  $R_{m-3}$  be w. By removing an inner h-edge of  $R_{m-3}$ , we get a subgraph  $H_1 = R_{n_1}dR_{n_2}cBb_2a^2$ , where  $n_1 + n_2 = m - 4$  and d is a connection of  $R_{n_1}$  and  $R_{n_2}cBb_2a^2$ .

Let *m* be odd. We get |c| = \*, and |b| = \* or |b| = \*3. The value of the lower (resp. upper) h-edge of *B* is 0 (resp. 0 or \*3). If w = 1, 2, 3, then the

values of the outer edges of D are 0 or \*3. The values of the inner v-edges of  $R_{m-3}$  is \*3. We show |d| in  $H_1$  is \*2. If  $n_1$  is odd (resp. even) and  $n_2$  is even (resp. odd), we have  $|R_{n_1}| = 0$  (resp.  $|R_{n_1}| = *$ ) and  $|R_{n_2}cBb_2a^2| = *2$  (resp.  $|R_{n_2}cBb_2a^2| = *3$ ). Hence, we get  $|H_1| \neq *2$ . We will show later that the values of arrows in  $K_1$  are \*3 (resp. \*2) if m is odd (resp. even). Thus, when m is odd, we get  $|K_1| = *2$ , because  $K_1$  has some edges with value 0 and ones with value \*, and the values of all its edges are not \*2. Similarly, we can prove  $|K_2| = *2$ .

Let *m* be even. We get |c| = 0, and |b| = 0 or |b| = \*2. The value of the lower (resp. upper) h-edge of *B* is \* (resp. 0 or \*2). If w = 1, 2, 3, then the values of the outer edges of *D* are \* or \*2. The values of the inner v-edges of  $R_{m-3}$  is \*2. We show |d| in  $H_1$  is \*3. If  $n_1$  and  $n_2$  are odd (resp. even), we have  $|R_{n_1}| = 0$  (resp.  $|R_{n_1}| = *$ ) and  $|R_{n_2}cBb_2a^2| = *3$  (resp.  $|R_{n_2}cBb_2a^2| = *2$ ). Hence, we get  $|H_1| \neq *3$ . We will show later that the values of arrows in  $K_1$  are \*3 (resp. \*2) if *m* is odd (resp. even). Thus, when *m* is even, we get  $|K_1| = *3$ , because  $K_1$  has some edges with value 0, ones with value \* and ones with value \*2, and the values of all its edges are not \*3. Similarly, we can prove  $|K_2| = *3$ .

Now, We show that the values of arrows in  $K_1$  are \*3 (resp. \*2) if m is odd (resp. even). By removing one of arrows form  $K_1$ , we get a subgraph  $L = R_{m-3}cBa'$ , where a' is an arrow of size 2 or 3. We will show |L| = \*3 (resp. |L| = \*2), if m is odd (resp. even).

Let *m* be odd. We have |c| = 0 and the values of h-edges of *B* are \*. We also get |a'| = 0 or |a'| = \*2 by Lemma 2. If w = 1, 2, 3, the values of the outer edges of *D* are \* or \*2. The values of the inner v-edges of  $R_{m-3}$  are \*2. By removing an inner h-edge of  $R_{m-3}$ , we can show the values of inner h-edges are not \*3. Thus, we obtain |L| = \*3.

Let *m* be even. We have |c| = \* and the values of h-edges of *B* are 0. We also get |a'| = \* or |a'| = \*3 by Lemma 2. If w = 1, 2, 3, the values of the outer edges of *D* are 0 or \*3. The values of the inner v-edges of  $R_{m-3}$  are \*3. By removing an inner h-edge of  $R_{m_1}$ , we can show the values of inner h-edges are not \*2. Thus, we obtain |L| = \*2.

**Lemma 6** Let  $H = R_{m-2}cAa^2$  be the graph given in the proof of Proposition 4(3) for the case  $m_2 = 1$  and x = 1, 2, 3, y = 2, 3, z = 1, 2, 3 or x = 2, 3, y = 1, z = 1, 2, 3, where the size of c is z. Then, we have  $|H| \neq *$  (resp.  $|H| \neq 0$ ), when m is odd (resp. even).

Proof. Let *m* be odd. By Proposition 1, the value of the right v-edge of *A* is \* when z = 1, 2, 3 and x = 1, y = 2 or x = 2, y = 1. The value of the lower h-edge of *A* is \* when y = 1, 2, 3 and x = 1, 2, 3, z = 2, 3 or x = 2, 3, z = 1. When x = 1, y = 3, z = 1, the value of the upper h-edge of *A* is \*. Hence, in any cases, we have  $|H| \neq *$ .

Let m be even. By Proposition 1, the value of the right v-edge of A is 0

when z = 1, 2, 3 and x - 1, y = 2 or x = 2, y = 1. The value of the lower h-edge of A is 0 when y = 1, 2, 3 and x = 1, 2, 3, z = 2, 3 or x = 2, 3, z = 1. When x = 1, y = 3, z = 1, the value of the upper h-edge of A is 0. Hence, in any cases, we have  $|H| \neq 0$ .

## References

- [1] E. R. Berlecamp, The Dot and Boxes Game, A K Perters Ltd, MA 2001.
- [2] E. R. Berlecamp, J. H. Conway and R. K. Guy, Winning Ways for Your Mathematical Games, Second edition, A K Perters Ltd, MA 2001.
- [3] J. C. Holladay, A note on the game of dots, American Mathematical Monthly, 73, (1966), 717-720.
- $\left[ \begin{array}{c} 4 \end{array} \right]$  T. Ishihara, Nimstring values for  $2 \times n$  rectangular arrays I, J. of Math., The University of Tokushima, 44, (2010), 47-52.