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ORIGINAL

Skipping of an alternative intron in the srsf7 3’ untrans-
lated region increases transcript stability
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Abstract : The srsfl gene encodes serine/arginine-rich splicing factor 1 (SRSF1) that par-
ticipates in both constitutive and alternative splicing reactions. This gene possesses two
ultraconserved elements in the 3’ untranslated region (UTR). Skipping of an alternative
intron between the two elements has no effect on the protein-coding sequence, but it gen-
erates a premature stop codon (PTC)-containing mRNA isoform, whose degradation is
considered to depend on nonsense-mediated mRNA decay (NMD). However, several cell
lines (HCT116, RKO, HeLa, and WI38 cells) constitutively expressed significant amounts
of the srsfl PTC variant. HCT116 cells expressed the PTC variant nearly equivalent to the
major isoform that includes the alternative intron in the 3’ UTR. Inhibition of NMD by si-
lencing a key effecter UPF1 or by treatment with cycloheximide failed to increase amounts
of the PTC variant in HCT116 cells, and the PTC variant was rather more stable than the
major isoform in the presence of actinomycin D. Our results suggest that the original stop
codon may escape from the NMD surveillance even in skipping of the alternative intron.
The srsfl gene may produce an alternative splice variant having truncated 3’ UTR to re-
lief the microRNA- and/or RNA-binding protein-mediated control of translation or deg-
radation. J. Med. Invest. 58 : 180-187, August, 2011
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INTRODUCTION

In the human genome, >90% of primary tran-
scripts undergo alternative splicing, which is a com-
mon mechanism for regulating the transcription of
mRNA and increasing protein diversity (1, 2). The
family of serine/arginine-rich splicing factor (SRSF)
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comprising at least 12 RNA-binding proteins (SRSF1
to SRSF12) has diverse roles in RNA processing in-
cluding control of export, translation, stability, and
constitutive and alternative splicing (3). Another in-
teresting feature of the SRSF family is that every
member possesses ultraconserved elements longer
than 200 base pairs that are absolutely conserved
between orthologous regions of the human, rat,
and mouse genomes (4, 5). The ultraconserved ele-
ments are also alternatively spliced, either as alter-
native ‘poison cassette exons’ containing early in-
flame stop codons or as alternative introns in the
3’ untranslated region (UTR) (4, 5).
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SRSF1, originally named as ASF/SF2, is a well-
studied member of the SRSF family participating in
both constitutive and alternative splicing reactions
(6, 7). Several recent studies have disclosed wide-
ranging roles of SRSF1 in the regulation of tran-
scription and mRNA metabolism, such as export (8),
translation (9), and degradation (10). Since SRSF1
exerts these functions in a concentration-dependent
manner, its expression should be kept in an appro-
priate level. Moderate (two- to threefold) overex-
pression of SRSF1 is sufficient to transform immor-
tal rodent fibroblasts, rapidly forming sarcoma in
nude mice (11). SRSF1 also shows abnormal ex-
pression in many tumors (11). Knockdown of SRSF1
resulted in genomic instability, cell-cycle arrest, and
apoptosis (12), and mice deficient of SRSF1 showed
the defective postnatal heart remodeling due to in-
correct gene splicing (13).

The srsfl gene possesses two ultraconserved ele-
ments in the 3° UTR (4). Skipping of an alternative
intron sandwiched between the elements in the 3’
UTR generates a premature stop codon (PTC)-
containing mRNA isoform whose degradation is con-
sidered to depend on nonsense-mediated mRNA
decay (NMD) (4). NMD is one of the key RNA sur-
veillance mechanisms to specifically degrade abnor-
mal mRNA with PTC and prevent the harmful trans-
lation of truncated proteins from nonsense mutation,
frameshift mutation, or aberrantly spliced mRNA
(14). Expression of the srsfl PTC variant was esti-
mated to be suppressed around 7% of all srsf! tran-
scripts (4). However, we found that several cell lines
expressed significant amounts of this PTC variant.

Table 1. List of primer sets used.

In the present study, using a colon cancer cell line
(HCT116), we examined the mechanism for expres-
sion of the srsfl PTC variant and the physiological
significance of alternative splicing in the 3° UTR.

MATERIALS AND METHODS

Cell culture

Human colon cancer cell lines (HCT116 and
RKO) were cultured in McCoy’s 5A medium sup-
plemented with 5% (v/v) heat-inactivated fetal calf
serum and antibiotics at 37°C in 5% CO.. Dulbecco’s
modified Eagle medium and Eagle’s minimum es-
sential medium were used for cultivation of HeLa
and WI38 cells, respectively.

Extraction of RNA and quantitative real-time re-
verse transcription PCR (qPCR)

Total RNA was isolated using Trizol reagent
(Invitrogen). Contaminating DNA was removed
with deoxyribonuclease (Ambion, Austin, TX). The
quantity was measured by ND-1000 (Nanodrop,
Wilmington, DE). cDNA was synthesized from 1
ug of total RNA with a PrimeScript RTase Synthe-
sis kit (Takara, Shiga, Japan) using random and
oligo (dT) primers. Target mRNA levels were meas-
ured by qPCR using power SYBR green PCR mas-
ter mix (Applied Biosystems, Foster City, CA). Each
PCR reaction was performed using the ABI 7500
real time PCR system (Applied Biosystems) with
specific primer sets (Table 1), and data were ana-
lyzed using SDS 2.2 software (Applied Biosystems).

Targets

Sequences (5°-3")

Constitutive srsfl transcripts

srsfl Reference isoform

srsfl PTC isoform

srsfl 3* UTR

upfl

gapdh

AGGGAACAACGATTGCCGCATCTAC (forward)
ATGTCGCGGATAGCGCCGTATTTGT (reverse)
ACAGATGAAATTGGCAGTATTGACC (forward)
ATTTTGCCACAATTGCCAAGGTTTA (reverse)
ATAATGGAGGCAATGGTTTGGATTG (forward)
TAAAAAAATCCACACGAATGCGGTT (reverse)
GTGGTTATCTTACCTGGGGAAGTTC (forward)
TAAAAAAATCCACACGAATGCGGTT (reverse)
GCTGAAGGAGTCCCAGACTCAA (forward)
CCCTTTGTACCGCAGGCATATC (reverse)
AGCCACATCGCTCAGACAC (forward)
GCCCAATACGACCAAATCC (reverse)
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Glyceraldehyde- 3 - phosphate dehydrogenase (gapdh)
mRNA (NM_002046.3) was used as an endogenous
quantity control. All PCR reactions were performed
in the linear amplification range and in triplicate.

For measurement of microRNAs (miRNAs), stem-
loop quantitative reverse transcription (RT) was per-
formed with a TagMan microRNA RT kit (Applied
Biosystems), and then quantitative PCR for mature
miRNAs was done with TagMan microRNA assays
(Applied Biosystems). The PCR primers for miR-7
(AB assay ID ; 000386), miR-200c (000505), and
miR-214 (000517) were purchased from Applied
Biosystems. Since we could not obtain any appro-
priate endogenous quantity control for miRNAs,
amounts of miRNAs were expressed their thresh-
old cycles (Ct values). Lower Ct values indicate
higher expression levels.

RNA interference

For RNA interference, RNAIMAX (Invitrogen,
Carlsbad, CA) was used to transfect cells with
Stealth small interference RNA (siRNA) (Invitrogen)
targeting upfl (NM_002911.3) or a control siRNA.
We used two siRNAs targeting different sites of
upfl mRNA. Sequences of these siRNAs are fol-
lows : UPF1 siRNA #1, 5’-GAGACAGUCCUGGA-
GUGCUACAACU-3’ (exon 9-10 junction) ; UPF1
siRNA #2, 5 -UGACAGGAUGCAGAGCGCAUUG-
AAA-3’ (exon 23). HCT116 cells were treated with
20 nM of each siRNA for the indicated times.

Anti-miR-200c (AM17000, ID AM11714), anti-
miR-7 (ID AM10047), and a negative control (AM
17010) were purchased from Ambion (Austin, TX).
HCT116 cells were transfected with one of these an-
tisenses using Lipofectamine RNAIMAX (Invitrogen,
Carlsbad, CA) following the manufacturer’s protocol.

Immunoblot analysis

Whole-cell lysates were prepared in RIPA buffer
(Thermo Scientific, Rockford, IL) containing a pro-
tease and phosphatase inhibitor mixture (Roche
Applied Science, Indianapolis, IN). The extracted
proteins (10-40 pg per lane) were separated by
sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and then transferred onto
a polyvinylidenedifluoride membrane (Bio-Rad,
Hercules, CA). The membrane was blocked for 1 h
at room temperature with 5% non-fat skim milk
(Cell Signaling Technology, Danvers, MA) or 1%
Block Ace powder (DS Pharma Biomedical, Osaka,
Japan), and then incubated overnight at 4'C with
an antibody against SRSF1 (1:500; Santa Cruz

Biotechnology, Santa Cruz, CA), UPF1 (1:500;
Bethyl, Montgomery, TX), or B-actin (1:5000;
Abcam, Cambridge, MA). B-actin was used as a
loading control.

Assessment of stability of srsfl mRNA isoforms in
HCT116 cells

We assessed the half-life of srsf/ mRNA isoforms
in the presence of a de novo gene transcription in-
hibitor, actinomycin D, and the rate of each mRNA
decay was monitored by qPCR measurement. After
HCT116 cells were treated with 5 pg/ml actinomy-
cin D for the indicated times, total RNA was ex-
tracted, and srsfI mRNA isoform levels were meas-
ured by qPCR using the gene-specific primer pairs
(Table 1). gapdh mRNA levels were measured as
an endogenous quantity control. The levels of srsfI
mRNA isoforms standardized by gapdh mRNA lev-
els were plotted as the percentage of mRNA remain-
ing, compared with the levels of the same mRNA
at time zero.

RESULTS AND DISCUSSION

Various types of cells express an alternative splice
isoform of srsfl having a short 3’ UTR

As shown in Fig. 1a, the srsfl gene contains 217-
and 188-nucleotide (nt) ultraconserved elements in
the 3’ UTR (indicated by gray boxes). The major
isoform, indicated as ‘Reference isoform’, encodes
full-length SRSF1 and has a long 3’ UTR (Fig. 1a).
In the 3’ UTR, an alternative intron (921 nt) is sand-
wiched between the two ultraconserved elements,
and the srsfl gene produces an alternative splice
isoform skipping this intron. In association with this
alternative splicing event, the introduction of a new
exon junction complex (EJC) > 50 nucleotides down-
stream of the original stop codon marks it as a pre-
mature stop codon (PTC) and targets the transcript
for NMD. Therefore, we refer here this isoform har-
boring a short 3° UTR as ‘PTC variant’ (Fig. 1a).

It was reported that expression of the srsfl PTC
variant was suppressed around 7% of all srsfl tran-
scripts (4). However, several cell lines including
colon cancer cells (HCT116 and RKO cells), HeLa
cells, and human lung fibroblasts (WI38) expressed
significant amounts of the srsfI PTC variant, which
were detected by RT-PCR (Fig. 1b) and qPCR (Fig.
1c). In particular, HCT116 cells expressed the PTC
variant nearly equivalent to the Reference isoform
(Fig. 1¢).
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Fig. 1. Expression of srsfl mRNA isoforms.

(a) The srsfl gene contains two ultraconserved elements in the
3’ UTR (indicated by gray boxes) and generates the major mRNA
isoform (srsfl Reference) and a premature stop codon (PTC)-
containing isoform (srsfI PTC) lacking an alternative intron be-
tween the two elements. A newly added exon junction complex
(EJC) associated with this skipping marks the original stop co-
don (STOP) as PTC. The PTC variant is believed to be decom-
posed by NMD. (b) Total RNA was prepared from HCT116,
RKO, HeLa, and WI38 cells. The alternative intron-containing
Reference isoform and PTC isoform in these cells were detected
using the specific primer sets. Forward and reverse primers are
indicated by arrows in the right panel (primer sequences are
shown in Table 1). (c) Levels of all transcripts (Constitutive),
Reference isoform, and PTC isoform were also measured by
qPCR using primer sets shown in the right panel. The sequences
of those primers are listed in Table 1. Expression levels of Ref-
erence and PTC isoforms are shown in the left panel. Values are
means® SD, n=3.

PTC-containing srsflsplice variant is resistant to
NMD

Using HCT116 cells, we tested whether the alter-
native splicing event could be escaped from the
NMD surveillance. We introduced siRNAs targeting
two different sites of upfI mRNA that encodes a
key effecter molecule of the NMD machinery, and
examined whether NMD actively decomposed the
PTC variant. Both UPF1 siRNAs #1 and #2 effec-
tively down-regulated expression of upfl mRNA
(Fig. 2a) and UPF1 protein (Fig. 2b). UPF1 siRNA
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0 |
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Fig. 2. Effects of UPF1 siRNAs on srsfl mRNA isoform expres-
sion.

After HCT116 cells were treated with 20 nM of UPF1 siRNA #1,
UPF1 siRNA #2, or control siRNA for 72 h, total RNA was ex-
tracted and upfl mRNA levels were measured by qPCR using
gapdh mRNA as an endogenous quantity control. Values are
means T SD, n=3. *Significantly decreased compared with con-
trol siRNA-treated cells (P<0.05 by ANOVA and Scheffé’s test).
(b) Whole-cell proteins were prepared from HCT116 cells after
treatment with 20 nM of UPF1 siRNA #1, UPF1 siRNA #2, or
control siRNA for 72 h. Amounts of UPF1 were measured by
Western blot analysis using B-actin as a loading control. (c) To-
tal RNA was extracted from HCT116 cells treated with 20 nM
of UPF1 siRNA #1, UPF1 siRNA #2, or control siRNA for 72 h,
and amounts of all srsf1 transcripts (Constitutive), Reference iso-
form, and PTC isoform in these cells were assayed by gPCR
using the primer sets shown in Fig. 1c and gapdh mRNA as an
endogenous quantity control. Values are means= SD, n=3. *Sig-
nificantly different compared with control siRNA-treated cells
(P<0.05 by ANOVA and Scheffé’s test).

#1 significantly increased the PTC variant, while
UPF1 siRNA #2, which was more effective for re-
duction of UPF1 levels (Fig. 2b), failed to increase
the PTC isoform levels (Fig. 2c). Next, NMD was
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indirectly inhibited by treatment with 100 ug/ml
cycloheximide, while any concomitant increase in
the PTC variant levels was not observed (Fig. 3).
These results suggest that the srsfI PTC variant is
likely to escape from the NMD system.

Splicing and EJC components are involved in the
mammalian NMD mechanism. EJCs are pointed
out as the “marks” used to discriminate premature
from normal termination. Several lines of evidence
indicate that mammalian NMD is triggered during
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Fig. 3. Effects of cycloheximide on srsf1 mRNA isoform expres-
sion.

After HCT116 cells were untreated or treated with 100 pg/ml cy-
cloheximide for the indicated h, total RNA was extracted, and
amounts of all srsf] transcripts (Constitutive), Reference isoform,
and PTC isoform in these cells were assayed by qPCR as de-
scribed in the legend to Fig. 2. Values are means * SD, n=3.

what has been called “the pioneer round of trans-
lation”. During this initial round, EJCs are elimi-
nated by translating ribosomes, and mRNAs with
no remaining EJCs are free to undergo multiple
rounds of translation (14). In the case of PTC lo-
cated more than 50-54 nt upstream of the final EJC,
the EJC will remain associated with the transcript,
and a series of enzymes including UPF1/Rentl
helicase is recruited to decompose mRNA having
PTC (14). Although the alternative splicing in the
srsfl 3° UTR has no effect on the protein-coding
sequence, it is conceivable that the introduction of a
new EJC> 50 nt downstream of the original stop co-
don marks the stop codon as premature and targets
the transcript for NMD. However, recent data sug-
gest that NMD can occur in the absence of down-
stream EJCs (14). A positional effect of PTC in NMD
triggering is generally observed in all organisms :
the closer the PTCs are to the 3’ end of the mRNA,
the lesser the sensitivity of the transcript to NMD.
Moreover, it has been suggested that NMD is trig-
gered as a consequence of two antagonistic signals
that can act on the translation termination event :
UPF1 promotes NMD activation and cytoplasmic
poly(A)-binding protein 1 (PABPC1) promotes a
normal termination event, acting as an NMD re-
pressor (14). If PABPC1 is favorably located to inter-
act with the termination complex, it impairs the asso-
ciation of UPF1, repressing NMD triggering. Thus,
multiple mechanisms are likely to be involved in
PTC definition. Our results suggest that the origi-
nal stop codon, marked as PTC by the downstream
EJC, is likely not to become a target for NMD.

PTC-containing srsfl mRNA isoform is more stable
than a major mRNA isoform

The srsf1 3° UTR encodes several elements tar-
geted by miRNAs and RNA-binding proteins, both
of which can regulate translation and stability. To
understand the physiological significance of the
PTC-containing srsfI isoform harboring a short 3’
UTR, we first compared stability between the Ref-
erence and PTC isoforms.

The stability of srsfI Reference and PTC variant
isoforms was estimated by measuring these mRNA
levels after treatment with 5 ug/ml actinomycin D
for the indicated times by qPCR using gapdh mRNA
an endogenous quantity control. As shown in Fig. 4,
the PTC variant was more stable than the Reference
isoform having a long 3’ UTR. Thus, the skipping
of the alternative intron in the srsfl 3° UTR rather
increased the transcript stability.
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Fig. 4. Comparison of stability between srsfl Reference and
srsfl PTC isoforms. HCT116 cells were treated with 5 pg/ml
actinomycin D for the times indicated. Amounts of srsfl Refer-
ence and srsfl PTC isoforms remained in these cells were meas-
ured by qPCR using gapdh mRNA as an endogenous quantity
control. Using a semilogarithmic scale, the half-lives were cal-
culated as the time required for each mRNA decrease to 50% of
its initial abundance (discontinuous horizontal line). The half lives
of srsfl Reference and srsfl PTC isoforms were determined to
be around 8 and 15 h, respectively. The results represent from
duplicate experiments.

Alternative intron in the srsfl 3’ UTR contains tar-
get sequences for miRNAs

Next, we investigated possible interactions be-
tween the alternative intron in the srsfl 3°UTR and
miRNAs responsible for the decreased stability of
the major (Reference) mRNA isoform harboring a
long 3° UTR. The sequence of the 921 nt region
and putative miRNA target sites identified using
TargetScanHuman 5.1 (http : //www.targetscan.
org/) are shown in Fig. 5. TargetScanHuman 5.1
software picked up target sites for miR-200c, miR-
7, and miR-214. Each target motif is underlined.
miRNAs either inhibit translation of target mRNAs
or facilitate deadenylation and subsequent degrada-
tion, and the level of miRNA-mediated repression
depends on the ratio of a particular mRNA target
relative to miRNA (15, 16).

Based on the above information, we measured
expression levels of these 3 miRNAs by qPCR.

alternative

intron

J'UTR

miR-7

GTATGACTCCAAGTGCTATTGTCACAGATGAAATTGGCAGTATTGACCTTATACTAAAAGGCAGGGGTTAAAAAT
miR-200c
GATTATATACATTTTCCTTAAAACACTTGCAAACATTTTATTCAGTTGTCTTTAGCTACAATTGCTTTGCTTTTTAAACCT
TGGCAATTGTGGCAAAATTATATTGCCCATTTTGTAGCAACTTATTTTGCTCCCTTCCCCCCATTTTTGTTTTAATAGG
GACTAATGTGGGAAGAACTGGCTAATTTGTCACAGTGCTTAGTTACAACTGTTAATGTGTGACCTGCTGTTGGT
GTACATGTGGGTACAGGGTGTTTTTAAATCCAACAAGATAGAGTATAATATCAATACTGCTAAATCTGCATGTCCTCT
GTGTGACTGATAGAGCGTTGCTATTTCATTTTTTTAAGACAAAATGAAAGCAAAATATAGAGTTCCAATGTATTGGTGT
AGATAATCTAGTTGGGAATACTTTTAAGTCTCACCTTCCCCTTTAAACTAATATTCATAATTGGTTCATATGTTTAAAAG
ACTTTAATTTACAAATTAAATTGCAAATGGGAGCATTAGATTTAGTTTTAGACTTAGGTGGGTAGCAATGCCAGTAAAC
TTAAATTACGTAACTTCTTGCAACCACGAAACCTGTAATACGCTGTACAGTAACAAGTGTTGGCATTATCAGTTGAAC
TGTAAATACAAAATGCTTCTTCCAATTAGTCTCTATGATGATTAAGTTTCTAAAATTTATCTGAACACCATTCAGA

AACTTGTTTTGGGGAATTTGATAGTTATTGATGTGCATCTGTTAAACTGATGACAGACATAACTCATCATTCCCCAGAA

ACCTTTTTTGATTACAGTATCTAACATTTTGCCTCCTCTTTTTTGGTTTTGCTGGTTATAAAG

miR-214

Fig. 5. Expression of miRNAs targeting an alternative intron in the srsf/ 3> UTR.
Nucleotide sequence of the alternative intron in the srsfI 3° UTR. Putative target sites for miRNAs are identified using
TargetScanHuman 5.1 (http : //www.targetscan.org/) and underlined. Conserved nucleotides are indicated in bold.
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HCT116 cells contained relatively abundant miR-
200c with Ct values of 26.35+0.01 (mean=SD, n=
3) and miR-7 (Ct values, 28.62+0.07), while only a
small amount of miR-214 (Ct values, 33.18+0.01)
was expressed in these cells. We therefore focused
on miR-200c and miR-7 and introduced an anti-miR-
200c or anti-miR-7. As shown in Fig. 6, anti-miR-
200c could reduce miR-200c levels to below 30%
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B 60 nM anti-miR-200c
o M 90 nM anti-miR-200c
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©
e * *
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Fig. 6. Effects of miR-200c silencing on srsfl isoform expres-
sion.

HCT116 cells were treated with different concentrations of anti-
miR-200c or control siRNA for 48 h or 72 h. Total RNA were ex-
tracted, and srsfI mRNA levels were measured by qPCR using
gapdh mRNA as an endogenous quantity control. Values are
means * SD, n=3. *Significantly different compared with control
siRNA-treated cells (P<0.05 by ANOVA and Scheffé’s test). (b)
(c) Amounts of all srsfl transcripts (Constitutive), Reference iso-
form, and PTC isoform in HCT116 cells treated with different
concentrations of anti-miR-200c or control siRNA for 48 h (b) or
72 h (c) were assayed by qPCR using gapdh mRNA as an endo-
genous quantity control. Values are means* SD, n=3.

(Fig. 6a), while treatment with 30-90 nM of anti-
miR-200c for 48 h (Fig. 6b) or 72 h (Fig. 6¢) did
not increase the major isoform (Reference) having
along 3’ UTR. We also examined the effect of anti-
miR-7, but it was not effective to inhibit miR-7 (data
not shown). These results indicate that miR-200c
may not be involved in the regulation of the stabil-
ity of the major srsfI mRNA isoform, and suggest
the possible involvement of RNA-binding proteins
as well as the other miRNAs in the stability. Fur-
ther studies are necessary to address this issue.

The regulation of mRNA stability is one of the
important steps for controlling gene expression at
the posttranscriptional level. The 3 UTR encodes
several elements targeted by miRNAs and RNA-
binding proteins, both of which play crucial roles
in the regulation of translation and stability. It is
possible to speculate that the srsfl gene may pro-
duce an alternative splice variant having the trun-
cated 3° UTR to relief miRNA-mediated translational
repression or degradation. SRSF1 is overexpressed
in many tumors (12), and proliferating cells ex-
press mRNAs with shortened 3° UTRs and fewer
miRNA target sites (17). These reports together
with our finding suggest an important role of the
srsfl splice isoform with a short 3> UTR in tumor
growth.
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