
INTRODUCTION

Type 2 diabetes mellitus is characterized by a
chronic hyperglycemic state due to decreased in-
sulin sensitivity in target tissues, including skele-
tal muscle, adipocytes and the liver, and/or due to
the impairment of insulin secretion (1, 2). Obesity
is a robustly pandemic and pathological disease and
is responsible for type 2 diabetes mellitus, hy-
perlipidemia and hypertension (3). Increased se-
rum levels of free fatty acid (FFA) or triglyceride
(TG) deteriorate hyperglycemia through peripheral

insulin resistance, finally resulting in cerebral in-
farction and cardiovascular disease (4, 5). Thus, in
obese type 2 diabetes patients, treatment of hyper-
lipidemia is clinically important to prevent these
commorbidities.

Hyperbaric oxygen (HBO) therapy is a thera-
peutic procedure that provides tissues with hyper-
oxygenation by inhalation of high oxygen density
at a pressure of more than one atmosphere in a hy-
perbaric chamber (6). HBO has been utilized for the
treatment of various diseases, including gas poison-
ing (7, 8) and autism (9). In diabetic patients, HBO
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is also utilized for therapy of gangrene (10) and ret-
inopathy (11). It has been reported that levels of
blood glucose in patients with hypertension and type
2 diabetes were significantly lowered by exposure
to HBO (12). In animal experiments, HBO treat-
ment prevented an increase in blood glucose level
during growth and changed the muscle type to slow
twitch subtype (13-15). On the other hand, HBO
treatment significantly increased blood glucose lev-
els in type 1 diabetic rats compared with the levels in
non-diabetic controls (16). However, there has been
no investigation of the effects of HBO on lipid me-
tabolism except for decreased oxidized low-density
lipoprotein (17). In contrast to its various beneficial
effects, HBO treatment has been shown to have se-
rious adverse effects, including oxidative stress and
oxygen poisoning, because of high oxygen concen-
trations (18-20).

Hyperbaric air (HBA) therapy is a therapeutic
method for exposing patients to a pressure that ex-
ceeds one atmosphere while maintaining oxygen
density at a normal level. It is thought that HBA
treatment has less adverse effects than those of
HBO treatment. Recently, an HBA chamber has
been used commercial for athletes to recover from
muscle fatigue. However, there have been no benefi-
cial effects of HBA therapy for diseases such as dia-
betes or hyperlipidemina. In this study, using obese
diabetic mice, db/db mice, we examined the effects
of HBA on diabetes and hyperlipidemia.

MATERIALS AND METHODS

Animals and treatments

Six - week - old male db/db diabetic mice (n =
12) and db/+ m non - diabetic mice (n = 12) (Japan
Charles River, Kanagawa, Japan) were randomly as-
signed to HBA groups (n=6) and control groups
(n=6), respectively. Mice in the HBA groups were
exposed to 1.3 atmospheric pressure by a com-
mercially available hyperbaric chamber (Oasis O2,
Nihon Light Service, Inc., Tokyo, Japan) for 6 hours
(10 : 00-16 : 00) per day, and mice in the control
groups were kept in an environment similar to that
for mice in the HBA groups but at normal atmos-
pheric pressure. Food intake and body weight were
measured, and blood samples were collected from
the tip of the tail vein weekly in each group before
HBA exposure at 10 : 00. Blood samples were im-
mediately centrifuged to collect serum supernatant.
Serum samples were stored at -80��until use for

measurement of metabolic parameters. Mice were
sacrificed 8 weeks later to obtain tissue samples of
the liver, soleus muscle and epididymal fat. The tis-
sues were immediately frozen in liquid nitrogen
and stored at -80��until used for RNA preparation.
The mice were housed at a constant room tempera-
ture of 23�2��with a 12-h light/dark cycle and
were fed a normal chow diet (Oriental Yeast, Tokyo,
Japan) with water ad libitum. This study was ap-
proved by the Ethics Committee of the University
of Tokushima for Animal Studies.

Measurement of lipid parameters

Plasma TG and FFA concentrations were meas-
ured by the GPO-DAOS method and ACS-ACOD
method (Wako Pure Chemical Industries, Osaka,
Japan), respectively.

Quantitative real-time RT-PCR

Total RNA was extracted from the liver, soleus
muscle and epididymal fat by using an RNeasy kit
(Qiagen, Valencia, CA), and then total RNAs were
reverse-transcribed using a Takara PrimeScript RT
reagent kit (Takara, Kyoto, Japan). Quantitative real-
time PCR was performed with the LightCycler sys-
tem (Roche Diagnostics, Switzerland) using Takara
SYBR Premix Ex Taq II (Takara, Kyoto, Japan). The
following gene-specific primers were used : CPT-1a
(sense : 5’ -cttccatgactcggctcttc-3’ ; antisense : 5’ -
agcttgaacctctgctctgc-3’), CPT-1b (sense : 5’ -cccat-
gtgctcctaccagat-3’ ; antisense : 5’ -ccttgaagaagcgac-
ctttg-3’), PPARα (sense : 5’ -agaccctcggggaacttaga-
3’ ; antisense : 5’ -cagagcgctaagctgtgatg-3’), PGC-
1α (sense : 5’ -tcacaccaaacccacagaaa-3’ ; antisense :
5’ -tctggggtcagaggaagaga-3’), TNF-α (sense : 5’ -
atggcctccctctcatcagtt-3’ ; antisense : 5’ -acaggcttgt-
cactcgaattttg-3’), MCP-1 (sense : 5’ -cccaatgagtag-
gctggaga-3’ ; antisense : 5’ -tctggacccattccttcttg-3’)
and 18S ribosomal RNA (sense : 5’ -aaacggctaccac-
atccaag-3’ ; antisense : 5’ -ggcctcgaaagagtcctgta-3’).
After the PCR reaction, each PCR product was con-
firmed for its single amplification by analyzing a
melting curve of the PCR products.

Statistical analysis

Data are expressed as means�SEM. Data were
analyzed by ANOVA or unpaired Student’s t-test. A
p -value�0.05 was accepted as statistically signifi-
cant.
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RESULTS

Serum FFA and TG concentrations were decreased
in db/db mice after HBA treatment but not in db/+m
mice.

To determine the effects of HBA on lipid and
glucose metabolism in obese diabetic mice, db/db
mice were exposed to HBA for 6 hours, which is
the same duration as that used in a previous study
in which diabetic rats were exposed to HBO (14).
The food intake in the db/db mice groups was
much higher than that in the db/+m mice groups.
Change in body weight during a period of 8 weeks
was not altered by HBA exposure in either the db/
db mice groups or db/+m groups (Figure 1A). The
food intake, however, was significantly increased
by HBA exposure in the db/db mice but not in the
db/+m mice (Figure 1B).

The weights of the slow twitch muscle : soleus
muscle, liver and fat tissues were not significantly
altered by HBA exposure either in the db/db or
db/+m mice (not shown). The concentration of fast-
ing blood glucose and insulin sensitivity assessed
by an oral glucose tolerance test and insulin toler-
ance test, respectively, were not altered significantly
by HBA exposure either in the db/db or db/+m
mice (Figure 2A, 2B and not shown). Interestingly,
the concentrations of serum FFA and TG were sig-
nificantly decreased by HBA exposure in the db/db
mice but not in the db/+m mice (Figure 2C, 2D).

The mRNA expression levels of factors involved in
lipid homeostasis were increased after HBA treat-
ment.

To clarify the mechanism underlying the effect
of HBA on lipid metabolism, mRNA expression of
CPT-1, a rate-limiting enzyme for β-oxidation mainly
in the soleus muscle and liver, was quantified by
real-time RT-PCR. As shown in Figures 3A and 3D,
the mRNA expression of CPT-1 (a of liver type and
b of skeletal muscle type), but not that of CPT-2

Figure 1. Body weights and food intakes of control groups or
HBA groups.
The body weight (A) of db/db mice was greater than that of
db/+m mice, and HBA treatment did not alter the body weight
during a period of 8 weeks. Food intake (B) of db/db mice was
greater than db/+m mice, and it was increased after HBA treat-
ment.�control group of db mice,�HBA group of db mice, con-
trol group of +m mice, HBA group of +m mice. Data are
means�SEM (n=6). * : p�0.05 , # : P�0.01 . N.S. : no significant
difference.

Figure 2. Serum levels FBS, Insulin, FFA and TG after HBA
treatment.
Serum concentrations of FBS (A), Insulin (B), FFA (C) and TG
(D) of db/db mice were greater than that of db/+m mice and
these values were decreased by HBA treatment for 8 weeks. Data
are means�SEM (n=6). * : p�0.05. N.S. : no significant differ-
ence .
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(not shown), was increased significantly by HBA
exposure both in the soleus muscle and liver of db/
db mice. CPT-1 mRNA expression in the soleus
muscle and liver was not altered by HBA exposure
in db/+m mice.

The mRNA expressions of the transcription fac-
tors PPARα and PGC-1α were examined since the
former was reported to control lipid metabolism
(21, 22) and the latter was reported to increase β -
oxidation in brown adipocytes (23) or in skeletal
muscle with enhanced mitochondria function coordi-
nated with exercise (24), even though PGC-1α usu-
ally has roles in glucose metabolism to attribute a
gluconeogenesis and mitochondria biosynthesis
(25). Moreover, it has been shown that PGC-1α
can cooperate with PPARα to express the genes of
mitochondrial fatty acid oxidation enzymes such as
CPT-1 in a hepatoma cell line (26). In the soleous
muscle, mRNA expression of PPARα and PGC-1α
in db/db mice was decreased significantly compared
to that in db/+m mice. The mRNA expression of

PPARα was increased after HBA treatment in the
skeletal muscle of both db/db and db/m mice
(Figure 3B). In the liver, however, the mRNA ex-
pression of PPARα was increased after HBA treat-
ment only in db/db mice (Figure 3E). HBA treat-
ment enhanced the mRNA expression of PGC-1α
in db/+m and db/db mice (Figure 3C). On the
other hand, the mRNA expression of PGC-1α was
significantly greater in the liver of db/db mice than
in the liver of db/+m mice. Exposure to HBA sig-
nificantly enhanced the mRNA expression of PGC-
1α only in db/db mice (Figure 3F).

mRNA expression levels of TNFα and MCP-1 were
decreased after HBA treatment.

In adipocytes, lipolysis from fat droplets rather
than β -oxidation contributes to the development
of hyperlipidemia. On the other hand, adipocytes
become larger by accumulating TG and become
smaller by lipolysis via output of FFA. In this study,
however, the weight of adipose tissue with HBA

Figure 3. mRNA expression of factors involved in lipid homeostasis.
The soleus muscle and liver were obtained from db/db and db/+m mice with or without HBA exposure for 8 weeks. Total RNA iso-
lated from these tissues was subjected to quantitative real - time RT-PCR with primers specific for CPT-1a/b (A, D) PPARγ (B, E)
and PGC-1α (C, F) as described in the Materials and Methods section. Data were normalized by 18S ribosomal RNA (* : P�0.05 and
# : P�0.01). Data are means�SEM (n=6).
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exposure, as mentioned previously, did not differ
from that without HBA exposure in db/db mice
(not shown). Recently, it has been reported that adi-
pocyte inflammation in obesity causes insulin resis-
tance and subsequently type 2 diabetes or hyperlipi-
demia (27, 28). HBO treatment decreases lipopoly-
saccharide-induced production of proinflammatory
adipokines production such as TNFα and IL6 (29)
without changing body weight. Therefore, we stud-
ied the mRNA expression of adipokines. As shown
in Figure 4, the mRNA expression levels of TNFα
and MCP-1 were significantly decreased after HBA
exposure in db/db mice. The mRNA expression
level of adiponectin tended to decrease after HBA
exposure in db/db mice, although it did not reach
a level of statistical significance (not shown).

DISCUSSION

In previous studies, HBO treatment could de-
crease blood glucose levels in humans (12) and rat
(13, 14), but investigations with HBO were not done
for hyperlipidemia. In addition, the effects of HBA
on diabetes and hyperlipidemia have not been stud-
ied, either. Therefore, in the present study, obese
diabetic mice, db/db mice, were used to investigate
the effects of HBA on diabetes and hyperlipidemia.
The results showed that HBA treatment decreased
serum FFA (Figure 2C) and TG (Figure 2D) con-
centrations and increased mRNA expression levels
of CPT-1 enzyme (Figure 3A, 3D), PPARα (Figure
3B, 3E) and PGC1-α (Figure 3C, 3F) in the liver
and muscle of db/db mice. We also found that HBA
treatment decreased mRNA expression levels of
the proinflammatory adipokines, TNFα and MCP-1
in db/db mice (Figure 4).

The food intake was significantly increased by
HBA exposure in the db/db mice (Figure 1A), but
HBA had no effect of body weight in db/db mice
(Figure 1B). The weight of liver, soleus muscle or
epididymal fat was not changed in db/db mice with
or without HBA though it was not examined the
body composition of total fat or fat free mass. The
mRNA of UCPs, which are important for energy
expenditure, was not changed in these mice (not
shown). Until now, it has been still not clear that
the discrepancy of body weight and food intake.

FFA is metabolized by β -oxidation, the rate-lim-
iting enzyme of which is CPT-1, mainly in the skele-
tal muscle and liver. PGC-1α with PPARα or either
of them alone transcripts CPT-1 in the muscle and
liver as mentioned in the results section. PPARα as
a molecular target of fibrates also improves hyper-
triglyceridemia. Chronic adipocyte inflammation is
modulated by TNFα, which increases lypolysis, fi-
nally resulting in increased level of serum FFA (28).
Therefore, HBA treatment not only up-regulated
mRNA of CPT-1, PGC-1α and PPARα but also de-
creased TNFα expression, which might conse-
quently decrease the serum levels of FFA and TG.

HBA increases oxygen contents of the blood by
about 2.5%, much less than the increase induced by
HBO (30). A previous study using microarray analy-
sis of neurons showed that HBA increases the ex-
pression levels of more genes than does normo-
baric oxygen (31). The genes include genes for
transporters, signal transduction, growth and me-
tabolism. Interestingly, HBA also increases the ex-
pression levels of more genes than does HBO. The

Figure 4. mRNA expression of TNFα and MCP-1 after HBA
treatment.
Epidydimal fat was obtained from db/db mice with or without
HBA exposure for 8 weeks. Total RNA isolated from these tissues
was subjected to quantitative real - time RT-PCR with primers spe-
cific for TNFα (A) and MCP-1 (B) as described in the Materials
and Methods section. Data were normalized by 18S ribosomal
RNA (* : P�0.05 and # : P�0.01). Data are means�SEM (n=6).
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expression levels of some genes, such as C/EBP
family genes, which are increased by hyperbaric air
are decreased by exposure to HBO. The effects of
HBA on cells are complicated and might not be the
same as the effects of HBO. It is speculated that
high pressure of HBA may influence the lipid me-
tabolism. On the other hand, HBO increased para-
sympathetic activities in healthy volunteers (32-34)
and significantly decreased cortisol levels (35).
Dominance of sympathetic activities causes high
FFA, because β receptor signal stimulates lypolysis.
Moreover, stimulation of parasympathetic activities
attenuates the increase in TNFα responded in re-
sponse to inflammation (36, 37). These findings sug-
gest that HBA increases parasympathetic activities,
leading to lipid homeostasis.

Different from the results of previous studies
showing that HBO had an effect on glucose me-
tabolism (12-15), HBA treatment did not influence
glucose metabolism in our experiments (Figure 2A,
2B and not shown). Tissue hypoxia (38, 39) and
TNFα (40) or MCP-1 (41) induce insulin resis-
tance, and high pressure up-regulates glycolytic
genes (31). The db/db mice have a profile of se-
vere insulin resistance with obesity unlike the GK
rats used in previous studies. We speculate that
HBA treatment in our experiments could not over-
come the phenotype of db/db mice even though
HBA might decrease insulin resistance. To clarify
this possibility, effects of HBA on glucose metabo-
lism should be tested using mice having mild phe-
notypes of diabetes or using a combination of anti-
diabetic drugs or exercise.

Taken together, the results indicate that HBA
treatment might have beneficial effects on lipid me-
tabolism in type 2 diabetes mellitus patients.
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