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Abstract 

The video coding standard H.264/AVC can achieve higher coding efficiency than previous 
standards. However, it comes at the expense of an increased encoding complexity, especially for 
motion estimation process which induces very time consuming task even for current central 
processing units (CPU). On the other hand, due to the rapid growth of the processing capability of 
graphics processing unit (GPU), using GPU as a coprocessor to assist the CPU in computing 
massive data becomes essential. In this work, we propose a fast parallel algorithm for motion 
estimation (ME) process in H.264/AVC on a computer unified device architecture (CUDA) platform. 
The proposed algorithm performs the parallel calculation of the residuals and SAD. Simulation 
results show that with the assistance of GPU the processing time is about 2 times faster than that of 
using CPU only. 
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1. Introduction 
H.264/AVC is an outstanding video coding 

standard that achieves the higher coding efficiency 
than conventional video coding technology. Many 
excellent coding algorithms are introduced in 
H.264/AVC which makes the process of the 
encoding become very complicated to achieve high 
coding efficiency. That is the reason why it increases 
the implementation cost of H.264/AVC not only for 
software but also for hardware implementation. It is 
considered very difficult to realize the real time 
encoding of H.264/AVC by only using software 
implementation especially for high resolution 
applications. However, using dedicated hardware 
implementation can significantly improve the coding 

speed but the implementation cost will be increased.  
 On the other hands, with the rapid development of 

the multi-core devices especially the development of 
graphics processing unit (GPU) in recent years, it is 
considered an reasonable tool to realize not only 3D 
rendering but also parallel processing of many 
applications, such as linear algebra or the other 
scientific calculation. Some excellent typical GPU 
architectures are provided by NVIDIA and an 
appropriate computer unified device architecture 
(CUDA) platform is also provided [1]. CUDA is a 
programmer's workbench complete set for GPU of 
NVIDIA, including a programming model, a 
programming language, the compiler and a library 
[2]. CUDA brings big improvement in flexibility and 
the programmability of GPU.  

GPU is used in increasing fields due to its highly 
parallel processing ability [3][4]. Some previous 
works concerning the fast implementation of the 
encoder of H.264/AVC are proposed [5]-[8]. A 
previous work is dedicated to the improvement of the 
intra coding process on GPU [5]. Another 
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implementation using GPU architecture is 
implemented only from the viewpoint of frame level 
parallel encoding [6]. However, it is obvious that the 
motion estimation process which accounts for the 
highest complexity has the highest priority to be 
parallel executed. Related work dedicated to motion 
estimation is also proposed for the motion estimation 
of H.264/AVC by rearranging the encoding order of 
4x4 blocks [7]. However, this approach does not 
realize pixel level parallel computation. In another 
previous work, a fast GPU based motion estimation 
algorithm is proposed in which a small diamond 
search is adapted to the programming model of a 
GPU to exploit their available parallel computing 
power and memory bandwidth [8]. However, this 
work also does not concern the pixel level parallel 
processing. One more important issue is the fact that 
the fast improvement of GPU architecture and 
technology always encourages the development of 
updated fast algorithm. 
In this work, we propose a fast implementation of 
motion estimation of H.264/AVC in the pixel level 
on GPU. 
 

2. GPU Architecture 
Many excellent GPU architectures are available to 

support the video coding algorithm of H.264/AVC. 
In this work, a typical NVIDIA GPU and CUDA 
architecture are used as a platform to realize the 
proposed algorithm. 
 
1. Hardware Model 

The architecture of GPUs are different depending 
on the generation of the cores or the model number 
but the basic architecture is compatible. There is a 
number of streaming multiprocessor (SM) in the 
GPU tip. Furthermore, each SM contains 8 operation 
processing units (streaming processor, SP). In GPU, 
Single Instruction Multiple Data (SIMD) type 
command set carrying out the same order for the 8 
SPs in the SM. 
 
2.  Programming Model 

A programming kernel model of GPU is shown in 
Figure 1. Kernel configuration is a multidimensional 

structure. Thread is a fundamental element of the 
parallel computation. In a parallel programming, 
main task is divided into the subtasks and we refer to 
them as the threads. Threads are grouped into the 
block to share intercommunication and memory 
resources. Block can be one, two or three 
dimensional structure. Block is possible to be 
grouped into a grid. The grid is a one or two 
dimensional structure. Because GPU is a single 
instruction multiple data (SIMD) hardware 
architecture, each thread in the grid will compute the 
same kernel function on different part of dataset. The 
thread count which will operate simultaneously is 
limited by the hardware architecture. The number of 
a thread handled at a time is limited and 32 threads 
are managed by a unit is called warp. In fact, the 
handling of 32 threads is carried out by carrying out 
8 threads in 4 cycles because there are only 8 SPs in 
a SM. 

 

 

Figure 1: Programming Model 
 

3. Memory Model 
With the CUDA, six kinds of memories are usable 

(register memory, local memory, shared memory, 
global memory, texture memory, and constant 
memory). A memory model of GPU is shown in 
Figure 2. 

 
a. Register Memory 

Because the register memory is implemented on a 
tip of GPU, it can realize fast access. The value of a 
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variable used by a kernel function is typically stored 
on a register. When there are too many used registers, 
the kernel function can not be carried out.  

 

 

Figure 2: Memory model 
 
b. Local Memory 

Because the local memory is implemented outside a 
tip of GPU, access speed is 100 times slower when it 
compared with that using a register. When registers 
are not enough, local memory is used as an 
evacuation place of register data. 
 
c. Shared Memory 

Shared memory is memory characterizing the 
architecture of GPU of NVIDIA and is provided with 
16,384byte in each SM. High-speed access is 
possible on equal terms with a register so that there is 
on a tip. The thread in the block is carried out in the 
same SM and shared memory can read and write 
from all threads in the block. In addition, it is used to 
store the value of the parameter of the kernel 
function. 
 
d. Global Memory 

Because the global memory is implemented outside 
a tip of GPU, access speed is 100 times slower when 
it compared with that using a register or shared 

memory. However, the capacity is very big. In 
addition, the global memory can read and write from 
all thread in all Block. 
 
e. Constant Memory and Texture Memory 
In the constant memory and texture memory, cache 
is equipped in each SM. Data are temporarily saved 
in the memory when memory access occurred. 
Therefore, data can be fast hit when it is on the 
memory. 
 

3. Proposed Architecture 
In ME, it is possible to find a high precision motion 

vector if a search range is wide enough. However, 
the bigger the search range is the much processing 
time is necessary. In this paper, the SAD for each 
macroblock is calculated by GPU in parallel to 
reduce significant calculation time in the search 
range. 

At first, the pixels of current block and the 
reference frame have to be transferred from the CPU 
side to the memory of GPU. Because it will induce 
significant overhead of data transmission, an 
efficient data transmission approach is necessary. 
Next, the SAD for each search point in the search 
range is parallel calculated by SMs in GPU. 

 

Figure 3: The proposed architecture 
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The motion estimation process for one macroblock 
(MB) can be parallel calculated at each search point. 
In addition, the calculated SADs are compared in 
parallel and the smallest SAD value is calculated by 
threads. This calculation is performed for each MB. 
This number of search point is equivalent to the 
consumption of SMs in GPU. The processing order 
and the distribution of the SMs are shown in Figure 
3. 

As shown in Figure 3, the calculation of the SAD is 
performed in parallel by SMs. These blocks are 
equivalent to SMs in GPU. The number of the blocks 
have to be set to GPU is the number of the search 
point in the search range. In each search point the 
SAD of each search point is calculated. The detail 
calculation of the 8x8 mode is described in Figure 4. 

 

 

Figure 4: Difference calculation 
 

As shown in Figure 4, one thread reads two pixel 
values at the same position of the current block and 
the reference block. Then, the difference of two 
pixels value is calculated and the absolute value is 
written back to the shared memory. Because these 
differences will be read out again to calculate the 
sum total of the SAD, the shared memory can realize 
fast memory access than other internal memory. 
These threads are equivalent to SPs in GPU. 

The number of the threads have to be set is the 
number of the pixels of the current MB mode. This 
calculation of difference can be realized in parallel. 
Finally, these calculated differences are accumulated 
to calculate the SAD. This process is described in 

Figure 5.  
As Figure 5 shows, firstly one thread reads and 

accumulates two differences in the shared memory. 
After that the accumulated sum is wrote back to the 
shared memory. If all calculations of the 
accumulation finished, the number of sums becomes 
half and the accumulation is repeated until the sum 
total is calculated. The value which is finally left is 
the SAD. The calculated SAD is written back to 
global memory at last. When the calculation for all 
search points finished, all the SADs are saved on 
global memory. Finally it is necessary to choose a 
minimum from these SADs. This process is 
described in Figure 6. 

 

 

Figure 5: The calculation of the sum total 
 

 

Figure 6: SAD comparison 
 

As shown in Figure 6, this comparison is performed 
with the same algorithm as calculating the sum total. 
However, the comparison uses subtraction process 
instead of accumulation process. These comparisons 
are also performed in GPU in parallel. First, one 
thread compares two SADs and saves the smaller one 
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in the shared memory. If all comparisons finished the 
number of SAD becomes half and the comparison is 
repeated until the remainder becomes 1. Finally, the 
selected smallest SAD is transferred to the memory 
of CPU side. 

 
4. Simulation Results 

Simulation is performed at the following 
conditions: (1) AMD Athlon 64 X2 Dual Core 
2.6GHz (2) 2048MB memory, (3) NVIDIA GeForce 
GTX 285 with 1024MB memory, (4) Microsoft 
Windows XP 32bit sp3. The proposed algorithm is 
implemented using reference software JM14.2. 
Sequence sizes are QCIF and CIF, respectively. 
Frame number is 50 and search range is set to 32. 
Table 1 shows the simulation results. 

 
Table 1: Comparison of encoding time 

Sequences Enc. Time 
CPU (sec) 

Enc. Time 
GPU (sec) 

Carphone (QCIF) 140.958  81.122
Container (QCIF) 135.264  81.266
Foreman (QCIF) 171.174  82.666
Coastguard (CIF) 901.732  335.805
Container (CIF) 558.657  325.485
Flower (CIF) 697.650  337.231
Football (CIF) 735.355  321.310
Foreman (CIF) 587.286  325.422
Mobile (CIF) 845.419  342.799
 
As Table 1 shows, the proposed algorithm succeeds 

in reducing run time of 40～60% compared to the 
single CPU implementation. These results show the 
possibility to achieve fast implementation in the 
pixel level. However, as also mentioned in previous 
works the overhead for loading the reference data 
restricts the performance of the GPU. 
 

5. Conclusion 
In this paper we proposed a fast parallel algorithm 

for ME of H.264/AVC for GPU implementation. 
Simulation results show that our proposal succeeds 
in reducing run time of 40～60%. Combining the 
proposed algorithm to some previous work which 

realizes the parallel processing in macroblock level 
and frame level, faster implementation is expectable.  
We can not ignore the overhead of reference data 
loading from memory. However, this is unavoidable 
as far as the implementation is on the scope of 
H.264/AVC because of the correlation between the 
adjacent MBs. 
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