
Parallel Implementation Algorithm of Motion Estimation

for GPU Applications
by

Tian Song1,2*, Masashi Koshino2, Yuya Matsunohana2 and Takashi Shimamoto1,2

Abstract

The video coding standard H.264/AVC can achieve higher coding efficiency than previous
standards. However, it comes at the expense of an increased encoding complexity, especially for
motion estimation process which induces very time consuming task even for current central
processing units (CPU). On the other hand, due to the rapid growth of the processing capability of
graphics processing unit (GPU), using GPU as a coprocessor to assist the CPU in computing
massive data becomes essential. In this work, we propose a fast parallel algorithm for motion
estimation (ME) process in H.264/AVC on a computer unified device architecture (CUDA) platform.
The proposed algorithm performs the parallel calculation of the residuals and SAD. Simulation
results show that with the assistance of GPU the processing time is about 2 times faster than that of
using CPU only.

Key words: INTER, INTRA, H.264/AVC, GPU

1. Introduction
H.264/AVC is an outstanding video coding

standard that achieves the higher coding efficiency
than conventional video coding technology. Many
excellent coding algorithms are introduced in
H.264/AVC which makes the process of the
encoding become very complicated to achieve high
coding efficiency. That is the reason why it increases
the implementation cost of H.264/AVC not only for
software but also for hardware implementation. It is
considered very difficult to realize the real time
encoding of H.264/AVC by only using software
implementation especially for high resolution
applications. However, using dedicated hardware
implementation can significantly improve the coding

speed but the implementation cost will be increased.
 On the other hands, with the rapid development of

the multi-core devices especially the development of
graphics processing unit (GPU) in recent years, it is
considered an reasonable tool to realize not only 3D
rendering but also parallel processing of many
applications, such as linear algebra or the other
scientific calculation. Some excellent typical GPU
architectures are provided by NVIDIA and an
appropriate computer unified device architecture
(CUDA) platform is also provided [1]. CUDA is a
programmer's workbench complete set for GPU of
NVIDIA, including a programming model, a
programming language, the compiler and a library
[2]. CUDA brings big improvement in flexibility and
the programmability of GPU.

GPU is used in increasing fields due to its highly
parallel processing ability [3][4]. Some previous
works concerning the fast implementation of the
encoder of H.264/AVC are proposed [5]-[8]. A
previous work is dedicated to the improvement of the
intra coding process on GPU [5]. Another

1 Computer Systems Engineering, Institute of Technology and

Science, Graduate School of Engineering, Tokushima

University, The University of Tokushima
2 Graduate School of Advanced Technology and Science,

The University of Tokushima
* The University of Tokushima, 2-1 Minamijyosanjima,

Tokushima city, 770-0814, Japan

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-58-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tokushima University Institutional Repository

https://core.ac.uk/display/197191356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implementation using GPU architecture is
implemented only from the viewpoint of frame level
parallel encoding [6]. However, it is obvious that the
motion estimation process which accounts for the
highest complexity has the highest priority to be
parallel executed. Related work dedicated to motion
estimation is also proposed for the motion estimation
of H.264/AVC by rearranging the encoding order of
4x4 blocks [7]. However, this approach does not
realize pixel level parallel computation. In another
previous work, a fast GPU based motion estimation
algorithm is proposed in which a small diamond
search is adapted to the programming model of a
GPU to exploit their available parallel computing
power and memory bandwidth [8]. However, this
work also does not concern the pixel level parallel
processing. One more important issue is the fact that
the fast improvement of GPU architecture and
technology always encourages the development of
updated fast algorithm.
In this work, we propose a fast implementation of
motion estimation of H.264/AVC in the pixel level
on GPU.

2. GPU Architecture
Many excellent GPU architectures are available to

support the video coding algorithm of H.264/AVC.
In this work, a typical NVIDIA GPU and CUDA
architecture are used as a platform to realize the
proposed algorithm.

1. Hardware Model

The architecture of GPUs are different depending
on the generation of the cores or the model number
but the basic architecture is compatible. There is a
number of streaming multiprocessor (SM) in the
GPU tip. Furthermore, each SM contains 8 operation
processing units (streaming processor, SP). In GPU,
Single Instruction Multiple Data (SIMD) type
command set carrying out the same order for the 8
SPs in the SM.

2. Programming Model

A programming kernel model of GPU is shown in
Figure 1. Kernel configuration is a multidimensional

structure. Thread is a fundamental element of the
parallel computation. In a parallel programming,
main task is divided into the subtasks and we refer to
them as the threads. Threads are grouped into the
block to share intercommunication and memory
resources. Block can be one, two or three
dimensional structure. Block is possible to be
grouped into a grid. The grid is a one or two
dimensional structure. Because GPU is a single
instruction multiple data (SIMD) hardware
architecture, each thread in the grid will compute the
same kernel function on different part of dataset. The
thread count which will operate simultaneously is
limited by the hardware architecture. The number of
a thread handled at a time is limited and 32 threads
are managed by a unit is called warp. In fact, the
handling of 32 threads is carried out by carrying out
8 threads in 4 cycles because there are only 8 SPs in
a SM.

Figure 1: Programming Model

3. Memory Model
With the CUDA, six kinds of memories are usable

(register memory, local memory, shared memory,
global memory, texture memory, and constant
memory). A memory model of GPU is shown in
Figure 2.

a. Register Memory

Because the register memory is implemented on a
tip of GPU, it can realize fast access. The value of a

Host (CPU)

Kernel 1

Kernel 2

Device (GPU)

Grid1

Block Block Block

Block Block Block

Grid2

Block(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(3,0)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-59-

variable used by a kernel function is typically stored
on a register. When there are too many used registers,
the kernel function can not be carried out.

Figure 2: Memory model

b. Local Memory

Because the local memory is implemented outside a
tip of GPU, access speed is 100 times slower when it
compared with that using a register. When registers
are not enough, local memory is used as an
evacuation place of register data.

c. Shared Memory

Shared memory is memory characterizing the
architecture of GPU of NVIDIA and is provided with
16,384byte in each SM. High-speed access is
possible on equal terms with a register so that there is
on a tip. The thread in the block is carried out in the
same SM and shared memory can read and write
from all threads in the block. In addition, it is used to
store the value of the parameter of the kernel
function.

d. Global Memory

Because the global memory is implemented outside
a tip of GPU, access speed is 100 times slower when
it compared with that using a register or shared

memory. However, the capacity is very big. In
addition, the global memory can read and write from
all thread in all Block.

e. Constant Memory and Texture Memory
In the constant memory and texture memory, cache
is equipped in each SM. Data are temporarily saved
in the memory when memory access occurred.
Therefore, data can be fast hit when it is on the
memory.

3. Proposed Architecture
In ME, it is possible to find a high precision motion

vector if a search range is wide enough. However,
the bigger the search range is the much processing
time is necessary. In this paper, the SAD for each
macroblock is calculated by GPU in parallel to
reduce significant calculation time in the search
range.

At first, the pixels of current block and the
reference frame have to be transferred from the CPU
side to the memory of GPU. Because it will induce
significant overhead of data transmission, an
efficient data transmission approach is necessary.
Next, the SAD for each search point in the search
range is parallel calculated by SMs in GPU.

Figure 3: The proposed architecture

Global memory

Current block

(0,4)

(64,4)

(0,64)

(64,64)

Block 0

Block 64

Block

Grid

6

6

Search Range

Block 4

Reference flame

 (Device) Grid

Constant

Texture

Global

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-60-

The motion estimation process for one macroblock
(MB) can be parallel calculated at each search point.
In addition, the calculated SADs are compared in
parallel and the smallest SAD value is calculated by
threads. This calculation is performed for each MB.
This number of search point is equivalent to the
consumption of SMs in GPU. The processing order
and the distribution of the SMs are shown in Figure
3.

As shown in Figure 3, the calculation of the SAD is
performed in parallel by SMs. These blocks are
equivalent to SMs in GPU. The number of the blocks
have to be set to GPU is the number of the search
point in the search range. In each search point the
SAD of each search point is calculated. The detail
calculation of the 8x8 mode is described in Figure 4.

Figure 4: Difference calculation

As shown in Figure 4, one thread reads two pixel
values at the same position of the current block and
the reference block. Then, the difference of two
pixels value is calculated and the absolute value is
written back to the shared memory. Because these
differences will be read out again to calculate the
sum total of the SAD, the shared memory can realize
fast memory access than other internal memory.
These threads are equivalent to SPs in GPU.

The number of the threads have to be set is the
number of the pixels of the current MB mode. This
calculation of difference can be realized in parallel.
Finally, these calculated differences are accumulated
to calculate the SAD. This process is described in

Figure 5.
As Figure 5 shows, firstly one thread reads and

accumulates two differences in the shared memory.
After that the accumulated sum is wrote back to the
shared memory. If all calculations of the
accumulation finished, the number of sums becomes
half and the accumulation is repeated until the sum
total is calculated. The value which is finally left is
the SAD. The calculated SAD is written back to
global memory at last. When the calculation for all
search points finished, all the SADs are saved on
global memory. Finally it is necessary to choose a
minimum from these SADs. This process is
described in Figure 6.

Figure 5: The calculation of the sum total

Figure 6: SAD comparison

As shown in Figure 6, this comparison is performed
with the same algorithm as calculating the sum total.
However, the comparison uses subtraction process
instead of accumulation process. These comparisons
are also performed in GPU in parallel. First, one
thread compares two SADs and saves the smaller one

Shared Memory (SAD value)

Thread

6 3 4 7 3 7 8 1 8 9 4 3 6

13 8 5 16 7 10 14 4 7 5 1 12 9 4 3 6

20 18 19 7 3 3 6 4 7 5 1 28 9 4 3 6

4 7 5

― ― ――――――

― ―――

――

Reference Block

Current Block

Global Memory

Thread

Thread

Thread

Difference

Difference

Difference

Shared memoryThread

Shared Memory (Difference)

Thread

6 3 4 7 3 7 8 1 8 9 4 3 6

13 8 5 16 7 10 14 4 7 5 1 12 9 4 3 6

20 18 19 7 3 3 6 4 7 5 1 28 9 4 3 6

4 7 5

+ + + + + + + +

+ + + +

+ +

Thread Block

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-61-

in the shared memory. If all comparisons finished the
number of SAD becomes half and the comparison is
repeated until the remainder becomes 1. Finally, the
selected smallest SAD is transferred to the memory
of CPU side.

4. Simulation Results

Simulation is performed at the following
conditions: (1) AMD Athlon 64 X2 Dual Core
2.6GHz (2) 2048MB memory, (3) NVIDIA GeForce
GTX 285 with 1024MB memory, (4) Microsoft
Windows XP 32bit sp3. The proposed algorithm is
implemented using reference software JM14.2.
Sequence sizes are QCIF and CIF, respectively.
Frame number is 50 and search range is set to 32.
Table 1 shows the simulation results.

Table 1: Comparison of encoding time

Sequences Enc. Time
CPU (sec)

Enc. Time
GPU (sec)

Carphone (QCIF) 140.958 81.122
Container (QCIF) 135.264 81.266
Foreman (QCIF) 171.174 82.666
Coastguard (CIF) 901.732 335.805
Container (CIF) 558.657 325.485
Flower (CIF) 697.650 337.231
Football (CIF) 735.355 321.310
Foreman (CIF) 587.286 325.422
Mobile (CIF) 845.419 342.799

As Table 1 shows, the proposed algorithm succeeds

in reducing run time of 40～60% compared to the
single CPU implementation. These results show the
possibility to achieve fast implementation in the
pixel level. However, as also mentioned in previous
works the overhead for loading the reference data
restricts the performance of the GPU.

5. Conclusion
In this paper we proposed a fast parallel algorithm

for ME of H.264/AVC for GPU implementation.
Simulation results show that our proposal succeeds
in reducing run time of 40～60%. Combining the
proposed algorithm to some previous work which

realizes the parallel processing in macroblock level
and frame level, faster implementation is expectable.
We can not ignore the overhead of reference data
loading from memory. However, this is unavoidable
as far as the implementation is on the scope of
H.264/AVC because of the correlation between the
adjacent MBs.

References
1. NVIDIA, NVIDIA CUDA Compute Unified

Device Architecture Programming Guide
Version 2.3, 2009.

2. W. N. Chen, and H.M. Hang, "H.264/AVC

motion estimation implementation on Compute
Unified Device Architecture (CUDA)," IEEE
International Conference on Multimedia,
pp.697-700, june 2008

3. N. Seiller, N. Singhal, and I. K. Park, "Object

oriented framework for real-time image processing
on GPU," IEEE 17th International Conference
on Image Processing, pp.4477-4480, Sep. 2010

4. Y. Sun, X. Sun and H. Zhang, "Research on

parallel cone-beam CT image reconstruction on
CUDA-Enabled GPU," IEEE 17th International
Conference on Image Processing, pp.4501-4504,
Sep. 2010

5. N. M. Cheung, O. C. Au, M. C. Kung, P.H.W.

Wong, and C. H. Liu, "Highly parallel
rate-distortion optimized intra-mode decision on
multicore graphics processors," IEEE
Transactions on Circuits and Systems for Video
Technology, pp.1692-1703, nov. 2009

6. C. Y. Lee, Y. C. Lin, C. L. Wu, C. H. Chang,

Y. M. Tsao, and S. Y. Chien, "Multi-Pass and
Frame Parallel Algorithm of Motion Estimation
in H.264/AVC for Generic GPU," IEEE Int'l
Conf. on Multimedia and Expo, pp. 1603-1606,
July 2007

7. C. W. Ho, et al.,Motion Estimation for

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-62-

H.264/AVC Using Programmable Graphics
Hardware, IEEE Int'l Conf. on Multimedia and
Expo, pp. 2049-2052, July 2006

8. M. C. Kung, O. Au, P. Wong and C.H. Liu,

"Block based parallel motion estimation using
programmable graphics hardware," International
Conference on Audio, Language and Image
Processing, 2008

9. M. Schwalb, R. Ewerth, and B. Freisleben, "Fast

Motion Estimation on Graphics Hardware for
H.264 Video Encoding," IEEE Transactions on
Multimedia, pp.1-10, Jan. 2009

徳島大学大学院ソシオテクノサイエンス研究部研究報告
BULLETIN OF INSTITUTE OF TECHNOLOGY AND SCIENCE THE UNIVERSITY OF TOKUSHIMA

-63-

