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Abstract

In our previous papers [12] and [13], we have exhibited the structure
of certain real bicyclic biquadratic fields and as a byproduct solved
the simultaneous Fermat-Pell equations 2% — 3y% = 1, 32 — 222 = —1
have only one non-negative integer solution: (z,y,2) = (2,1,1). In this
paper, we shall investigate similar simultaneous Fermat- Pell equations
and solve them by several different methods.

1991 Mathematical Subject Classification. Primary 11D25; Secondary 11J86
Introduction

In our papers [12] and [13], we have investigated Hasse’s unit indices of certain
family of real bicyclic biquadratic fields S;. Here the real bicyclic biquadratic field
K € S, is parameterized by the positive integer n and the odd positive integer
M. Let K be arbitrary real bicyclic biquadratic field and k; (1 < 1 < 3) be its
three subfields. Let Ex be the unit group of K and ¢; be the fundamental unit
of k;. Put E =< —1,e1,€2,€3 >. Then the group index Qx = [Ek : E] is called
Hasse’s unit index of K/Q and known to be 1,2, or 4 in general (see e.g. [14], [15]
or [26]). In our papers [12] and [13], we have shown Qk = 1 except for finitely
many indices n and Qg = 2 for the exceptional n and M. We note that one of
the exceptional cases Qx = 2 occurs when the following simultaneous Fermat-Pell

equations have positive integer solution (z,y, z)
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22 -3y =1
ye —22¢ = -1.

In [12], we have solved the above diophantine equations using practical algorithms
developed in Section 4.6 of W. S. Anglin’s textbook [1]. On the other hand, in
[13], we have solved the same equations with the help of J. H. Rickert’s results on
the simultaneous Padé approximation to hypergeometric functions [23].

In this paper, we shall also treat the following Fermat-Pell equations similarly

22 -3y =1
® T

z4 =2y =1,

2 -3y =1

x4 -2z = -1,

2 -3y2 =1

yc — 22 = 1,_

where the diophantine equations (2) are the example treated in [23] and the dio-
phantine equations (3) are the example treated in [3] and the diophantine equations
(4) are obtained in the investigations of the Hasse’s unit index Qg of K € S,.
Here K € S5 is the real bicyclic biquadratic field parameterized by the positive

integer n and the " even” positive integer M.

In the following, we shall introduce three general methods which are applicable
for all the equations (1),(2),(3) and (4). Moreover we shall introduce one more
elementary method which is applicable for the cases (3) and (4). In Section 1, we
shall introduce the most general method to solve the above simultaneous Fermat-
Pell equations based on Baker’s theory on linear forms in logarithms which was
developed in {1]. In Section 2, we shall show that one can see the above equations

as the special cases of J. H. Rickert’s results in [23]. In Section [3], we shall re-
duce the problem of solving the above diophé.ntine equations to the problem to
determine all the integer points on certain modular elliptic curves. With the help
of the arithmetic of the modular elliptic curves (see e.g. [9], [10] or [24]), Wwe can
determine all the integer points on the corresponding elliptic curves. In Section
4, we shall show (3) and (4) can be solved by using the elementary properties of

square terms in some non-degenerate binary recurrence sequences.
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1. Baker-Davenport’s method

Firstly, we will show the simultaneous Fermat-Pell equations

{x2—3y2 =1

1
(1) y?—222 =-1

have only one positive integer solution (z,y,2) = (2,1,1) and no others.

In the following, instead of (1), we will consider the following equivalent equations

5) 2 -3y? =1
5 ,
w2 —2y2 =2

and show the equations (5) have only one positive integer solution (z,y,w) =
(2,1,2).

Here we shall quote some lemmas of Waldschmidt and Baker-Davenport.

Lemma 1-1 (Waldschmidt [27]).
Let A, A’ and E be nonzero, non-negative algebraic numbers, each of degree > 2
and < 4. Let H H', H" be their heights. Suppose

V > max(1 +log H,1+log H',1 + log H", | log A|, |log A'|, | log E).

Let m and n be positive integers, and let W = max(logm,logn). Put L =
mlog A—nlog A’ +log E. Then if L #0,

|L| > exp(=21°2V3(W + log(64eV)) log(64eV)).
Lemma 1-2 (Davenport’s lemma [2]).

Suppose z, and zo are real numbers. Suppose N 1is a positive integer with 2++/3 >
(108 N)Y/N . Suppose p and q are integers with 1 < g < 1000N and

2
—_ < .
le19 = Pl < 500N

Suppose m and n are positive integers such that jmz, — n — 5| < (24 v3)~ V.
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Then
(1) m < (log(10°N))/ log(2 + v3),
or
(2) m >N,
or
(3)  llgz2ll < 0.003,

where ||a|| denotes the distance of o from the nearest integer.

Put A = 3+ 2v2, A" = 2+ v/3. Then to find the positive integer solutions of
(5) is equivalent to find non-negative integers m,n such that

w=pm = ((2+ V2B +2V2)™ + (2- V2)(3 - 2v2)™)/2,
Y= gm = (2+ V2B +2v2)™ - (2-V2)(3 - 2V2)™)/2V2,
z=w, =((2+V3)"+(2-V3)")/2,

y=tn=((2+V3)" - (2—-V3)")/2V3,

with ¢, = t,. Put

_VB2+vV2)
E_——————\/5 = v3 + V6.

Then elementary calculations show that for m,n > 10
0 < |mlog A — nlog A’ +log E| < (2 + V/3)~ max(m.n),

In our case, we see A, A’ are algebraic numbers of degeree 2 with the heights H = 6
and H' = 4 and F is an algebraic number of degree 4 with the height H" = 18.

So in Lemma 1-1, we can take V = 4, and we have
(2 + V/3) " max(mn) 5 exp(—11 - 210M43(W + 11))

so that
11- 21993 (W + 11) > €' log(2 + V3).

If W > 55, this gives
2107  (6/5) x 11 > (e" log(2 + V3))/W

or
74.5 > 107 log 2 + log(6/5) + log 11 — log log(2 + v3) > W — log W.
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Since g(W) = W — log(W) is a monotone increasing function for W > 1 and
g(79) = 74.63--- > 74.5, we have W < 79, i.e., max(m,n) < €™ < 10%. Now we
apply Davenport’s lemma. Let N = 103°. Then as we have shown, m < N, so we

are not in case (2) of Davenport’s lemma. Let

I log A _ logE
1—-logA’

arll .’L'z——i'og'T.

and put

p = 56385661377567652409679055189876652197,

q = 42126030957897209320409914963098120351.

Then one can see |z1¢ — p| < 2 x 10738 and ||gz;|| = 0.46217--- > 0.004. Thus we
are not in case (3) of Davenport’s lemma, also we are not in case (2) of Davenport’s
lemma. Hence we are in case (1), i.e., m < log104!/log(2 + v/3) < 73. We have
checked all the 0 < m < 73 and have shown that g, = t,, occurs only for the case
m = 0 and n = 1, i.e., the simultaneous Fermat-Pell equations (5) have only one

positive integer solution (z,y, w) = (2,1,2).

Remark 1-1. In{1], W. S. Anglin has shown the above method is applicable
for solving any simultaneous Fermat-Pell equations

{mz—Ry2 =C

6
(©) 22-8y? =D

with 0 < R, S,|C|,|D| < 1000. Hence in the sdme way as above, one can show each
simultaneous Fermat-Pell equations (2) (resp. (4)) have only one non-negative in-
teger solution (z,v,z) = (1,0,1) (resp. (2,1,0)). Similarly the equations (3) have

only two non-negative integer solutions (z,y,2) = (1,0,1) and (7,4, 5).

2. Rickert’s method

In this section, we will show the simultaneous Fermat-Pell equations

22 -3y =1
(4) 9 9
y-—22¢ =1

have only one non-negative integer solution (z,y, z) = (2,1,0) and no others.




6 Shin-ichi KaTAYAMA

In the following, instead of (4), we will consider the following equivalent equations

| z2 -3y =1
0 o .
w* —2y* = -2

where w = 2z. With the help of a result of J. H. Rickert (see (1.7) in [21]),
we will show that these equations have only one non-negative integer solution:
(z,9,w) = (2,1,0).

Lemma 2-1 (Rickert [21]). Let u,v be non-zero integers. All integer solutions
z,y, 2 of the following simultaneous Fermat-Pell equations

22-3y2 =u
w? - 2y% =

satisfy .
max{|zl, [y], [w]} < (107 max{jul, |v[})"*.

Then to find the non-negative integer solutions of (4) is equivalent to finding all

non-negative integers m,n for which

= rm = (+V3)"+(2-v3)")/2,

= s = (2+V3"-(2-V3")/(2V3),
= pm = (1+V2)P™+(1-v2)?m)/2,
= gm = (1+vV2*-(1-v2)’)/V2

g ® @ §

From Lemma 2-1, we see that (1 + v/2)?™ < 2p,, < 2(107 x 2)2 for m > 0
implies m < (421log(10) + 6.5log(2))/ log(1 + v/2) = 114.836... < 115. We have
checked that for 0 < m < 114, p,, = s, only for m = 0,n = 1, i.e., the simultane-
ous Fermat-Pell equations (7) have only one non-negative integer solution (z, y, w)
= (2,1,0).

Remark 2-1. In [13], as an application of Lemma 2-1 for the case u = 1
and v = 2, we have shown the simultaneous Fermat-Pell equations (1) have only
one non-negative integer solution (z,y,2) = (2,1,1). In [23], as an application
of Lemma 2-1 for the case © = 1 and v = 1, J. H. Rickert has shown the si-

multaneous Fermat-Pell equations (2) have only one non-negative integer solution
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(z,¥,2) = (1,0,1). Similarly, taking u = —3 and v = 2, one can easily show that
the equations (3) have only two non-negative integer solutions (z,y,2) = (1,0,1)
and (7, 4,5).

3. Integer points on the elliptic curves

In the following, we shall reduce the problems of solving the diophantine equa-
tions (1),(2),(3) and (4) to the problem of the determination of all the integer
points on the following elliptic curves:

Ei: Y2=X3-X2-9X+9,
Ey: Y?2=X3-X?2-2X,
Ez: Y?=X3-36X,
Ey: Y2=X3_-X%2_17X+15,
where each curve E; corresponds to the simultaneous Fermat-Pell equations (7)
1<i1<4).
Firstly we shall treat the simultaneous Fermat-Pell equations
@) 2 -3y =1
22 -2y2 =1
Then we have
(z2)* = By + 1)(2* + 1),
SO
(6zyz)? = 6y°(6y> + 2)(6y° + 3).

The substitutions Y = 6zyz, X = 6y + 2 yields the elliptic curve
E;:Y?=X3-X?-2X,

which is the curve 96B1(A) in Cremona’s table [9]. Thus the Mordell-Weil group
E>(Q) of E; over @ is given by Ex(Q) = {0,(0,0),(-1,0),(2,0)} = (Z/2Z)>.
Hence the equations (2) have only one non-negative integer solution (z,y,2) =
(1,0,1).

Similarly the equations (4) imply

2Azz)® = (¥ - DB +1),
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SO
(12.7:yz)2 = (iyz(ﬁy2 — 6)(6y2 +2).

The substitutions Y = 12zyz, X = 6y% — 1 yields the elliptic curve
E3:Y?=X3- X% 17X - 15,

which is the curve 192D2(F) in Cremona’s table [9]. Thus the Mordell-Weil group
E3(Q) of E3 over Q is given by E3(Q) = {O,(_370)7 ('—170)a (5’ 0)} = (Z/2Z)2
Hence the equations (4) have only one non-negative integer solution (z,y,z) =

(2,1,0).
Now we shall treat the simultaneous Fermat-Pell equations
z2-3y2 =1
(1 o
Yy —22¢ = -1,

which imply
2z2)? = (y* + By’ + 1),

so
(12zyz)? = 6y>(6y° + 2)(6y° + 6).

The substitutions Y = 12zyz, X = 6y? + 3 yields the elliptic curve
E :Y2=X3-X%>-9X+9,

which is the curve 192A42(R) in Cremona’s table [9]. Thus the Mordell-Weil group
E1(Q) of E, over Q is given by E1(Q) = Z x (Z/2Z)?. Since E, has rank one, we
must calculate several arithmetical invariants of F;. Calculating canonical heights
of several integer points on E; and using the gap principle of the ordinary height
and the canonical height (see e.g. [9], [10]), we can take P, = (0, 3) as a generator of
infinite order of E1(Q). Since the torsion part of F1(Q) is {0, (3,0), (1,0), (-3,0)},
any integral point on F;1(Q) can be written in the form P = nyP; + n2(3,0) +
n3(1,0) with 0 < no,n3 < 1. With the help of the LLL-reduction which was
introduced in {10] and [24], we see 1, is bounded ( actually n; < 10). Enumerating
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all the possible cases, we see F;(Z) is consisting of the following 13 points:

(3’0)’ (1’0)7 (“3)0)1

+P = (0,%3),

(P +(3,0) = (-1, F4),
+(P; + (1,0)) = (9,+24),
(P +(=3,0)) = (-5,78),
+(2P; + (3,0)) = (51,F360).

Hence the equations (1) have only one non-negative integer solution (z,y,z) =
(2,1,1).
Finally the simultaneous Fermat-Pell equations (3) imply

(86zyz)? = (622)3 — 36(6z2).
The substitutions Y = 36zyz, X = 6z yields the elliptic curve
E;:Y?=X%-36X,

which is the curve 576 H2 in Cremona’s table [9]. Thus the Mordell-Weil group
E3(Q) of E3 over Q is given by E3(Q) = Z x (Z/2Z)%. In the same way as the
above E;, we can take P, = (—3,9) as a generator of infinite order of F3(Q) and
the torsion part of E3 is {0, (0,0),(6,0),(—6,0)}. Thus all the integer points on
Ej5 are the following:

(Oa O)a (6’0)’ (—6v 0)1

+P; = (-3,49),

+(P; + (0,0)) = (12,136),
+(P1 + (6,0)) = (-2, F8),
+(P; + (—6,0)) = (18,F72),
+(2P; + (6,0)) = (294, £5040).

Hence the equations (3) have only two non-negative integer solutions (z,y,z) =
(1,0,1) and (7,4,5).

Remark 3-1. In Sections 1 and 2, one can solve the equations (1),(2),(3) and
(4) similarly. It is interesting that in the above methods the equations (1), (3) are

quite different from (2), (4) because the corresponding elliptic curves have positive
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rank for the cases (1), (3), while the cases (2), (4) have rank 0.

4. Square terms in binary recurrence sequences

We shall prepare several preliminary lemmas. Let m be a positive integer with
D=m?+1>0. Put a=m++vD and 8=m — vD. Then

Tp = (@” + A")/2 and y, = (™ — §*)/2VD
are the non-degenerate binary recurrence sequences |

Ttz = 2MTonyy £ T, (0 2> 0)
Yony2 = 2my2u+1 * Yn (n 2 0)7

with the initial terms 2o =1, xy = m and yo =0, y; = 1.
Then we have
Yont1 —1 = {(@®*! - g2rt1)2 —4(m? £ 1)}/4D
= {ai"*2 4 gint+2 _ (4m? £ 2)}/4D
= (a?m+2 — GmH2) (g2 _ §20) /4D
= Y2n Y2n+2- ‘

Moreover inductively we get (y2n, Y2n+2) = 2m. Hence we have shown the follow-

ing lemma.

Lemma 4-1.
(2) y%n-}-l ~-1= Yon Y2n+2,

(u) (y2na y2n+2) = 2m.

In his paper [17], W. Ljunggren has shown the following lemma.

Lemma 4-2(Ljunggren [17]). 22 — 3y* = 1 has only two positive integer
solutions (z,y) = (2,1) and (7,2).

If (z,y, 2) is a non-negative integer solution of (4), we see y2 — 222 = 1 implies y
is odd. Hence, putting m = 2 and D = 3 in above, we see y = y2, 1 for some n.
222 =y?> — 1=y, .1 — 1 = Y2n Y2n+2 implies one of yp,, OF Yo, .2 is a square a?.
Hence, from Lemma 4-2, we see a = 1 or 2. Thus the only possible non-negative

integer solution of (4) is (z,y,2) = (2,1,0).
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Finally we shall show the equations (3) can be solved similaly. As was noted
in [3], one can solve (4) with the help of the square terms properties of {z,}
(see J. H. E. Cohn [8]), but here we shall give another proof based on the square
terms properties of {y,}. Put m = 1 and D = 2. Then the solution of (3)
satisfies 2 — 222 = —1. Hence £ = T3,y and z = Yo, for some n. We note
that 22 — 1 = 2(22 — 1) = 2yon Yons2. S0 22 — 1 = 3y? implies the following
possibilities;

Y2 =0,  Yont2 = 60,

Yon = 20, Y242 =30,
‘y2n = 3Da Yont2 = 2D1

Yon = 60, yony2 =0,
where w = O means that the integer w is a square. Here we shall quote a corollary
of the more general results of K. Nakamula and A. Pethd [19].

Lemma 4-3 (Nakamula-Pethd). v, = cO forn > 3 and c € {1,2,3,6} if
and only if (n,m,c) = (4,1,3),(4,2,2), (4,12,3) or (7,1,1).

Hence we see the possiblen = O or 1, i.e., (T2n41,¥2n+1) = (1,1) or (7,5). Hence
the equations (3) have only two non-negative integer solutions (z,y, z) = (1,0,1)
~and (7,4,5).

Remark 4-1. In [3], M. A. Benett has introduced another general method
based on a gap principle of two solutions of the given simultaneous diohantine
equations and the linear forms in two logarithms and shown the equations (3)
have only two non-negative integer solutions as above. So combining the above
5 methods, one can see that the simultaneous diophantine equations (3) can be
solved by six different methods.

Remark 4-2. There are several words which express the above simultaneous
Fermat-Pell equations, the first one is ”simultaneous Pell equations” or ”simulta-

neous pellian equations” as was used in [3], and the second one is ”simultaneous
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Fermat equations” as was used in [1]. I feel the naming ”simultaneous Fermat-Pell

equations” is not familiar to many peaple but our coauthor C. Levesque suggested

to me to use this naming in our previous papers [12] and [13]. So I decided to use

this naming in this paper again.
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