J. Math. Tokushima Univ. Vol. 32 (1998), 15-18

CORE

On Some Numerical Relations of tetragonal Linear Systems

By

Akira Ohbuchi

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1, Minamijosanjima-cho, Tokushima 770, JAPAN email address: ohbuchi@ias.tokushima-u.ac.jp (Recieved September 14, 1998)

Abstract

Let \mathcal{L} be a pencil of degree 4 on a curve C and let e_1, e_2, e_3 be scrolar invariants. We prove that $e_1 \leq e_2 + e_3 + 2$ if and only if e_1, e_2, e_3 are scrollar invariants of some tetragonal curve.

1991 Mathematics Subject Classification. Primary 14H45

Introduction

Let C be a complete non-singular curve defined over an algebraically closed field k with char $(k) \neq 2$. Assume that C is a tetragonal curve. We assume that C is non-hyperelliptic of genus g.

Let $F_i = \Gamma(C, \omega \otimes \mathcal{O}(-ig_4^1))$. The modules F_i $(i = 1, 2, \cdots)$ give a filtration,

$$F_0 \supset F_1 \supset \cdots \supset F_n \supset \cdots$$

and by the definition of $\{F_i\}_{i=0}^{\infty}$ we have injective maps

$$F_0/F_1 \hookrightarrow F_1/F_2 \hookrightarrow \cdots \hookrightarrow F_n/F_{n+1} \hookrightarrow \cdots$$

By Riemann-Roch's Theorem, $\dim F_0/F_1 = 3$. We define the scrollar invariants $e_i = e_i(g_4^1)$ (i = 1, 2, 3) by

$$e_i = e_i(g_d^1) = \#\{j \in \mathbb{N}; dim (F_{j-1}/F_j) \ge i\} - 1 \ (i = 1, 2, 3).$$

It is clear that $e_1 \ge e_2 \ge e_3 \ge 0$ and $e_1 + e_2 + e_3 = g - 3$. We now consider another description of scrollar invariants. For any $i \in \mathbb{N} \cup \{0\}$, we define $\alpha_i =$ $\dim \Gamma(C, \mathcal{O}((i+1)g_4^1)) - \dim \Gamma(C, \mathcal{O}(ig_4^1))$. Then we have

 $e_i = \min\{j; \alpha_j \ge 4 - i + 1\} - 1$

where $1 \leq i \leq 3$. This is proved by Riemann-Roch Theorem. Therefore we have that

$$\begin{split} \dim\Gamma(C,\mathcal{O}(g_4^1) &= 2,\\ \dim\Gamma(C,\mathcal{O}(2g_4^1) &= 3,\\ &\cdots,\\ \dim\Gamma(C,\mathcal{O}((e_3+1)g_4^1) &= e_3+2,\\ \dim\Gamma(C,\mathcal{O}((e_3+2)g_4^1) &= (e_3+3)+1,\\ &\cdots,\\ \dim\Gamma(C,\mathcal{O}((e_2+1)g_4^1) &= (e_2+2)+(e_2-e_3),\\ \dim\Gamma(C,\mathcal{O}((e_2+2)g_4^1) &= (e_2+3)+(e_2-e_3+1)+1,\\ &\cdots,\\ \dim\Gamma(C,\mathcal{O}((e_1+1)g_4^1) &= (e_1+2)+(e_1-e_3)+(e_1-e_2),\\ \dim\Gamma(C,\mathcal{O}((e_1+2)g_4^1) &= (e_1+3)+(e_1-e_3+1)+(e_1-e_2+1)+1, \end{split}$$

We know the following result (see [4] p.4588 Theorem 1).

Theorem 1 Let $e_1 \ge e_2 \ge e_3 \ge 0$ be integers such that $e_1 + e_2 + e_3 = g - 3$. Then there is a 4-gonal curve $C = (C, g_4^1)$ with the scrollar invariants (e_1, e_2, e_3) such that $|(e_3 + 2)g_4^1|$ is birationally very ample, if and only if $e_2 \le 2e_3 + 2$ and $e_1 \le e_2 + e_3 + 2$.

. . . .

In this paper we shall consider a generalization of this result. The Main result is the following.

Theorem 2 (Main Theorem) Let $e_1 \ge e_2 \ge e_3 \ge 0$ be integers such that $e_1 + e_2 + e_3 = g - 3$. Then there is a tetragonal curve $C = (C, g_4^1)$ with the scrollar invariants (e_1, e_2, e_3) , if and only if $e_1 \le e_2 + e_3 + 2$.

1 The Proof of Main Theorem

We use the following result.

Theorem 3 Let C be a tetragonal curve with the scrollar invariants (e_1, e_2, e_3) . Let g_4^1 be a base point free complete linear system on C. Let $\phi : C \to \mathbb{P}(\Gamma(C, \mathcal{O}((e_3 + 2)g_4^1))))$ be the morphism defined by $|(e_3 + 2)g_4^1|$. If ϕ is not birational onto its image, then $e_2 \neq e_3$, $\deg(\phi) = 2$ and $\phi(C)$ is a complete non-singular curve of genus $e_3 + 1$ admitting a g_2^1 with $\phi^* g_2^1 = g_4^1$.

From Theorem 1 and Theorem 3, we may assume C is a two-sheeted cover of a hyperelliptic curve D of genus $e_3 + 1$ such that $e_3 \neq e_2$. And put $\pi: C \to D$ be a double-covering and we put $g_4^1 = \pi^* g_2^1$. Under these assumptions, we prove that Main Theorem.

We know that $\pi_*\mathcal{O}(ng_4^1) \cong \mathcal{O}(ng_2^1) \oplus \mathcal{O}(ng_2^1 - E)$ for some divisor \mathcal{D} such that 2E is linearly equivalent to some effective divisor (see [6] p.326-p.328). We now consider (C, g_4^1) such that $g_4^1 = \pi^*g_2^1$ and let e_1, e_2, e_3 be scrollar invariants. Then

$$\dim \Gamma(C, \mathcal{O}((e_3+2)g_4^1) = (e_3+3)+1$$

implies $\dim \Gamma(D, \mathcal{O}((e_3+2)g_2^1-E) = 0$ because $\pi_*\mathcal{O}(ng_4^1) \cong \mathcal{O}(ng_2^1) \oplus \mathcal{O}(ng_2^1-E)$. And

$$\dim \Gamma(C, \mathcal{O}((e_2+2)g_4^1) = (e_2+3) + (e_2-e_3+1) + 1$$

implies dim $\Gamma(D, \mathcal{O}((e_2 + 2)g_2^1 - E) = 1$. Therefore we have an effective divisor $T = P_1 + \cdots + P_t$ such that $\iota(P_i) \notin \{P_1, \ldots, P_t\}$, for every $i = 1, \ldots, t$ and $(e_2 + 2)g_2^1 - T \sim E$ where ι is a hyperelliptic involution on D. As 2E is linearly equivalent to a ramification divisor of ϕ (see [6] p.326-p.328), so we have

$$2g - 2 = 2(2(e_3 + 1) - 2) + 2(2(e_2 + 2) - t).$$

Hence we have

$$t = -e_1 + e_2 + e_3 + 2$$

because $e_1 + e_2 + e_3 = g - 3$. As $t \ge 0$, we have $e_1 \le e_2 + e_3 + 2$. Now let $e_1 \ge e_2 \ge e_3 \ge 0$ be integers such that $e_1 + e_2 + e_3 = g - 3$ and assume that $e_1 \le e_2 + e_3 + 2$. Let D be a hyperelliptic curve of genus $e_3 + 1$. Let $t = -e_1 + e_2 + e_3 + 2$. Take points $P_1 \dots, P_t \in D$ such that $\iota(P_i) \notin \{P_1, \dots, P_t\}$, for every $i = 1, \dots, t$. Let $T = P_1 + \dots + P_t$ and $E = (e_2 + 2)g_2^1 - T$. Let take an effective divisor R such that $R \sim 2E$. Because $2E \sim 2(e_2 + 2)g_2^1 - 2T$, so $e_2 + 2 \ge 2t = 2(-e_1 + e_2 + e_3 + 2)$ implies 2E is linearly equivalent to some effective dividor R. Therefore an isomorphism $\mathcal{O}(-2E) \cong \mathcal{O}(-R) \hookrightarrow \mathcal{O}$ induces an algebra structure on $\mathcal{O} \oplus \mathcal{O}(-E)$. Let $C = \operatorname{Spec}(\mathcal{O} \oplus \mathcal{O}(-E))$. Then R is a ramification divisor of $\pi : C \to D$ (see [6] p.326-p.328), therefore C is of genus g. Let $g_4 = \pi^*(g_2^1)$. Then it is clear that scrolar invariants of g_4^1 are e_1, e_2, e_3 .

Q.E.D.

Akira Онвисни

References

- [1] M. Coppens, The Weierstrass gap sequence of the total ramification points of trigonal curve of \mathbb{P}^1 , Indag. Math., 47 (1985) 245-270.
- [2] M. Coppens, The Weierstrass gap sequence of the ordinary ramification points of trigonal curve of \mathbb{P}^1 ; Existence of a kind of Weierstrass gap sequence, J. *Pure Appl. Algebra*, **43** (1986) 11-25.
- [3] R. C. Gunning, On the gonality ring of Riemann surfaces. preprint.
- [4] T. Kato, A. Ohbuchi Very ampleness of multiple of tetragonal linear systems, Communications in Algebra 21(12) (1993), 4587-4597.
- [5] J. Komeda, The Weiersträss gap sequences of certain ramification points of tetragonal coverings of P¹, Research Rep. of Ikutiku Tech. Univ. B-12 (1988), 185-191.
- [6] D. Mumford, Prym varieties I, Contribution to Analysis. Acad. Press, (1947) 325–355.
- [7] F.-O. Schreyer, Syzygies of Canonical Curves and Special Linear Series, Math. Ann., 275 (1986) 105-137.