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Abstract

Boolean functions are closely reltated to hypergraphs. In fact,
Ibaraki and Kameta(1993) sutudied relations between coteries
(intersecting simple hypergraphs) and positive Boolean functions.
In this paper, we shall show that the set of all simple hypergraphs
is lattice-isomorphic to the set of all positive Boolean functions.

A decompositions of a given function into a conjunction of self-dual
functions were studied by Ibaraki, Kameta(1993) and Bioch,
Ibaraki(1995). For a given dual-minor function, using a certain
corresponding hypergraph, we shall give the general condition for
the decomposition.

1991 Mathematics Subject Classification. Primary 06E30; Secondary 05C65
Introduction

A coterie is an intersecting simple hypergraph on a finite set U = {1,2,---,n}.
It is used as a mechanism to realize mutual exclusion in a distributed system [7],[6].
Coteries was sutudied by using Boolean functions in [8]. For a Boolean function
f:{0,1}* — {0,1}, the set of all true vectors is denoted by T'(f). The set of all
minimal true vectors is written by minT'(f). By identifing a vector in {0, 1}" with
a subset of U, we can consider minT'(f) as a simple hypergraph. There is the one
to one corresponence between the set of all positve Boolean functions and a set of
simple hypergraphs on U [8]. A positive function f is dual-minor(resp. self-dual)
if and only if minT(f) is a coterie(resp. ND-coterie) [8]. In this paper, firstly, we
shall describe some relations between hypergraphs and Boolean functions. Main
results were alredy given in [3],[6], [8], but we treate them in a slighly different
manner. A transversal hypergraph is very important in our treatment. For a
given hypergraph H, the family of minimal edges which meet all the edges of
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H constitute a simple hypergraph, called the transversal hypergraph of H, and
denoted by T'rH. A simple hypergraph H is a coterie if and only if H C TrH.
For any function f, we have TrT(f) C T(f%), where f¢ is the dual function of f.
From these facts, we get many relations between coteries and Boolean functions.

In Section 2, for a Boolean function f, we divide {0,1}" into four parts
TT(f), TF(f),FT(f) and FF(f), where TT(f) = {X € {0,1}*; f(X) = 1, f4(X) =
1},TF(f) = {X € {0,1}; f(X) =1, f4(X) = 0} and so on. A function is dual-
minor if and only if TF(f) = 0. The part FT(f) plays an important roll to
investigate a dual-minor functin f. We introduce a natural order and natural op-
erations into the set of all simple hypergraphs and show that it is lattice-isomorphic
to the set of all positive Boolean functions, the free distributive latice, with the
least element and the greatest element adjointed, in Section 3. We describe, in
Section 4, relations between coteries and positive Boolean functions as explained
above. We investigate the set of all simple hypergraphs as a distributive lattice in
Section 5.

Decompositions of coteries are reduced to decompositions of Boolean functins
[8],[3]- Bioch and Ibaraki [3] obtained a condition for the decomposition of a given
dual-minor functin f into a conjugation of self-dual functions; f = (f + f%g:)(f +
f2g2) - - - (f+f4%gx), where each g; is self-dual. Using the part FT(f), we investigate
conditon for the general deconposition of a dual-minor function f in Secton 6. For
a positive dual-minor function f, as will be discussed in the last Secttion, the
problem of finding a decomposition of f into a conjugation of positive selu-dual
functions is reduced to the problem of finding a family of maximal intersecting
subsets my, my, - -+, mg of minFT(f) such that Uf_m; = minFT(f). From our
results, we can show that any decomposition of a dual-minor function is one given
by Bioch and Ibaraki.

2. Definitions and basic facts

Let U = {u1,u2,---,un} be a finite set. Then, U will always stand for a set
of size n > 1, and we identify U with [n] = {1,2,.--,n}. The power set of U is
the set of all subsets of U and it is denoted by P, = P(U). With a natural order,
namely X <Y if X CY, P, is a partially odered set or briefly a poset. We
shall identify P, with {0,1}" such that X = (21,22,---,2,) € {0,1}" represents
the subset which contains the #th element if and only if z; = 1. A subset of
P, represents a hypergraph which has no multiedge but may have loops. Let
H(P,) denotes the set of all such hypergraphs. A Boolean function is a mapping
f:{0,1}* — {0,1}. The set of all true vectors {X € {0,1}"; f(X) = 1} is denoted
by T(f). Then, it represents a hypergraph in H(P,). The mapping of the set of
all Boolean functions {f : {0,1}" — {0,1}} to H(P,) which takes f to T'(f) gives
a one to one correspondence. A Boolean function is called a function in short.
The dual of a functin f, denoted f9, is defined by f¢(X) = f(X), where f and
X denote the complements of f and z respectively. The contra-dual f* of f is
defined by f*(X) = f(X). Boolean funtions are ordered naturally, i.e., f < g if
and only if f(X) < ¢g(X) for all X € {0.1}". It is evident that f < g if and only
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if T(f) C T(g). A function f is called duakminorif f < f4, dual-majorif f > f4
and self-dualif f = f%. For a function f, we put F(f) = {X € {0,1}"; f(X) = 0},
then T(f) = F(f). Set

TT(f) = T(ff*) = T(F) N T(f*) = {X € {0, 1}"; X € T(f), X € F(f)},

TF(f) = T(ff%) = T()NF(f%) = T(ff*) = {X € {0,1}"; X € T(f), X € T(f)},
FT(f) = T(ff% = F(f)nT(f*) = {X € {0,1}; X e F(f), X € F(f)},
FF(f)=T(ff%) = F(f) N F(f%) = {X € {0,1}*; X € F(f), X € T(f)}-

Then T(f) C T(f%) (resp. T(f%) C T(f)) if and only if TF(f) = 0 (resp.
FT(f) = 0), and we have(see Lemma 1 in [3] and Property 1.5 in [8])

Lemma 1. Let f be a Boolean function.

(1) FF(f) ={X €{0,1}*; X e TT(f)}.

(2) f is dual-minor if and only if TF(f) = 0.

(3) f is dual-major if and only if FT(f) = 0.

(4) f is self-dual if and only if TF(f) = FT(f) = 0.

For any set A, we denote its cardinal number by |A|. From (1) of the above
lemma, we get [T(f)| = ITT(f)| + |TF(f)| = |FF()| + ITF(f)| = [F(fI)] =
|Pal = IT(f9)| = 2° — IT(%)]-

Proposition 2. Let f be a Boolean function.

(1) [T(FH) = 2° = IT(F)].

(2) K it is dual-minor, |T(f)| < 2"~! < |T(f2)|.

(3) If it is dual-mayjor, [T(£%)] < 271 < [T(f).

(4) If it is self-dual, [T(f)| = 2"~

(5) If it satisfies |T'(f)] = 2*~', and it is dual-minor or dual-major, it is self-
dual.

Let H € H(P,) be a hypergraph. An edge X € H is called minimal (resp.
magzimal) if there is no edge Y € H with Y < X(resp.Y > X). If edges X,Y € H
satysfy that X C Y, then X =Y, H is called a simple hypergraph. Let denote
the family of all simple hypergraphs on U = [n] by SH,. Put minH = {X €
H; X is minimal} and mazH = {X € H;X is maximal}. Then, minH and
mazH are simple for every H € H(P,). If a set T € P, satisfies TN X # @ for
every X € H, it is called a transversal of H. The family of minimal tansversals of
H constitutes a simple hypergraph on P, called the transversal hypergrah of H,
and denoted by TrH. If any two eddges X,Y of a hyergrah H satisfy X NY # 0
it is said to be intersecting. It is evident that H is intesecting if and only if it
satisfies that H C TrH.

Proposition 3. For a Boolean function f, it holds TrT'(f) C T( f9).
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Proof. For a set X contained in TrT(f), it holds that X N'Y # @ for every
Y € T(f). Hence, for X € TrT(f), X does not contain any Y € T(f) and X is
not contained in T'(f), i.e., X € T(f9).

If T(f) is intersecting, T(f) C TrT(f) C T(f?), it hold TF(f) = 0. Hence,
from Lemmal we have ,

Proposition 4. For a Boolean function f, if T(f) is intersecting, f is dual-
minor. :

3. Positive function, simple hypergraphs, free distributive lattices

A Boolean function f is said to be positive if X <Y implies that f(X) < f(Y).
A set(hypergraph) H € H(P,) is called a monotone decreasing set system (also
called an ideal) if X € H and Y < X implies that Y € H. A set H is a monotone
increasing set system(also called a filter) if X € H and Y > X implies that Y € H.
It is well known that there is the one to one correspondence between the set of
all ideals (resp. filters) in H(P,) and SH,, which takes an ideal(resp. a filter) H
to mazH (resp. minH). If a function f is positive, it is evident that T'(f) (resp.
F(f)) is a filter (resp. an ideal). Thus, we have the one to one corresopndence
between the set of all positive functions, which we denote by PF,,, and SH,, which
sends a positive function f to the simple hypergraph minT(f). We put

Hf = mz'nT(f).

The corespondece which takes f € PF, to mazF(f) is also a bijection of PF,
onto SH,.

A set of all Boolean functions, denoted by F),, is a lattice with natural order -
and natural operations. We give a partial order in SH,,. Let H,, H, € SH,,. We
difine Hy; < H, if for any edge X; € H;, there exists an edge X2 € H, such that
X2 < X1, 1.e., X9 C X;. From the definition, we get easily

Lemma 5. With the above order, SH, is a poset. For fi, fo € PF,, fi < fi
if and only if Hy, < Hy,.

Let Hy = {X1,Xs,--, Xt} and Hy = {Y1,Ys,---,Y;} be in SH,. A join
H, Vv H, and a meet H; A H, are defined by

Hl VH2 - min{XI;X2:'")Xk;YI)Y2;”'7},£}:

HyANHy=min{X; UX;;1<i<k,1<j<4f}

respectively(see Chapter 2 in [2]). We have
Lemma 6. Let f, fo be positive function. Then it holds

Hy V Hgp, = Hyvg,, Hyp ANHyp, = Hpag,.
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Proof. We may put Hy, = {X1,Xs,---,X¢} and Hy, = {Y1,Ya,---,Y,}. If
X € Hy, VHy,, then X = X;,,1 <4< kor X =Y;,,1 <jo<¥ and (X)) v
f2(X) = 1. If there is an edge Y such that Y < X and fi(Y)V fo(Y) = 1, then
iy happens taht X; <Y < X or ¥; <Y < X. We have a contradiction. Hence
we get X € Hy,vy, and Hy, V Hy, C Hy vy, Conversely, If X € Hy yy,, then
fi(X)V fa(X) =1 and there isno edge Y such that Y < X and f1(Y)V fo(Y) = 1.
Now, it holds X;, < X,1 < iy <korY;, < X,1<jo <4 If X;, <X, then
Y = X;, satisfies that Y < X and fi(Y)V fo(Y) = 1. When Y =Yj,, we get
similarly a contradiction.

Let X bein Hy AHy,. Then, there are some X; and Y; such that X = X;UY;.
This implies taht X; < X, Y; < X and f;(X) A fo(X) = 1. If there exists an edge
Y such that Y < X, fi(Y) A fo(Y) = 1, we have X;» and Y}/ such that X;: <Y
and Y;» <Y. Hence, it holds that Y/ = X UY;; <Y < X, a contardiction.
Conversely, take an edge X € Hy,az,. Then it is evident that fi(X) = fo(X) = L.
There exist some X; and Yj such that X; < X,|Y; < X. Hence X; UY; < X. As
X is minimal, this implies X = X; UY;.

It is well known that the set of all positive functins PF,, is lattice-isomorphic
with the free distibutive lattice generated by n symbols, with the least element O
and the greatest element I adjoined(see Chap.3, Thorem 5 in [4]). From Lemmas
4 and 5, we obtain .

Theorem 7. The set of all simple hypergraphs SH,, with the order and the
operations given above is lattice-isomorphic with the set of all positive Boolean
functions. Hence, they are isomorphic with the free distibutive lattice generated
by n symbols, with the least element O and the greatest element I adjoined.

4. Dual-minor functions, dual-major functions and coteries

In this section, We shall describe relations between properites of a positive
function f and those of H;. Main resluts were alredy given in [1],[3] and [8], but
arrangements may be new. For a positive function, Ibaraki and Kameta noticed
the result more stronger than Proposition 3.

Proposition 8[8]. For a positive function f, it holds
TrT(f) = minT(f*) = H;a.

We define a mapping Tr : SH, — SH, by Tr(H) = TrH, for H € SH,.
Then, it is dual-isomorphic and involutive. In fact, we can show easily

Proposition 9. The mapping T'r satisfies

(1) T'r is a bijection.

(2) For Hy,Hy € SH,,, Tr(H;) < H; if and only if H; < Ha.
(3) For Hy,Hy € SH,,, Tr(H, V Hy) = Tr(H,) ANTr(Hy).
(4)For Hy, Hy € SH,, Tr(Hy A Hy) = Tr(Hy) VTr(Ha).

(5) Tr? = Identity.
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A simple hypergraph H € SH, is called a coterie if it is intersecting, i.e.,
H < TrH. The notion of coterie was introduced as a matematical abstraction to
model mutual exclusin in distributed systems (see, for example [8]). If a coterie
H is maximal in the poset SH,, it is called ND coterie(nondominated coterie).

Proposition 10. A coterie H is ND coterie if and only if it is transversal,
ie,.H=TrH. ‘

Proof. Assume that a coterie H satisfies the condition TrH = H. If there is
a corerie H; with H < Hy, Then, it holds that TrH, < TrH = H < H,. This
contardicts to the fact H; is a coterie. Conversely, let H be a ND coterie. If
H # TrH, there is an edge X € TrH with X ¢ H. Put H' = HU {X}. Then
H < H' and H' < TrH'. Hence H is not ND coterie.

Now, the following is evident from Proposition 8.

Theorem 11 [8]. Let f be a positive function.

(1) It is dual-minor if and only if H; is a coterie, i.e., H s <TrH;.

(2) It is dual-major if and only if TrH; < Hy.

(3) It is self-dual if and only if Hy is a ND coterie, i.e.,TrH; = Hy.

The conditions in (2) and (3) above are rerated to the chromatic number x(Hy).
Let H be a hypergraph and k be an integer > 2. A k-colouring of the vertices
is a partition (S1,S2,---,Sk) of the set of vertices into k classes such that every
edge which is not a loop meets at least two clases of the partition. The chromatic
number x(H) is the smallest integer k£ for which H admits a k-colouring. It is
known that a simple hypergraph H without loops satisfies TrH < H if and only
if x(H) > 3(see ,Lemma 2 in [1] or Chapter 2, Lemma 2 in [2]). Bebzaken [1]
defined that H is a critical hypergraph if for every hypergraph H' with H' < H,
it holds x(H') < x(H), and shown that a hypergraph H which has more than one
vertices is 3-colourling and critical if and only if it is transversal, i..e., H = TrH.
Summing up, we have

Theorem 12[1]. Take f € PB,, n > 2, Assume that H; has no loop.
(1) It is dual-major if and only if x(H;) > 3.
(2) it is self-dual if and only if x(H;) = 3 and Hy is critical.

5. The rank function of the distributive lattice SH,

We shall discuss SH,, as a distributive lattice and use most of the terminology
and notations in [9]. Let P be a finite poset. A subset C of P is called a chain
if any two elements X,Y € P are comparablejie., X <Y or X > Y. A chain C
is said to be saturated if for any X,Y € P, there is no element Z € P — C such
that X < Z <Y and CU{Z} is a chain. For X,Y € P, if X <Y and there is no
element Z such that X < Z <Y, it is said that Y covers X. The length of a finite
chain C is defined to be ¢(C) = |C| — 1. If all maximal chains of P have the same
length £, P is calle a poset graded of rank £. In this case, we can define the rank
function p : P — {0,1,---,£} as follows. If X € P is minimal, we put p(X) = 0.
When Y covers X, we define p(Y) = p(X) + 1. A ranked lattice L is modular if
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and only if for any X,Y € L, p(X) + p(Y) = p(X AY) + p(X VY). Let L be a
finite distributive lattice. If an element X € L can not be given by X =Y V Z for
some Y, Z € L, it is called join-irreducible. Let P be the set of all join-irreducible
elements in L. Then P is a finite poset. Put J(P) be the distributve lattice of
all ideals of P. Now we describe the very important theorem(The fundamental
theorem for finite distributive lattice): A finite distributive lattice is isomorphic
to J(P)( see, for example, Theorem3.4.1 in [9]). It is also known that If P is a
poset of m-elements, then J(P) is a poset graded of rank m, and that for an ideal
I € J(P), p(I) = |I|(see Proposition“3:4.4.in [9]).

Now we shall apply the above results to the distributive lattice SH,. Take a
simple hypergraph H = {X1, Xz, -+, Xy} € SHp, k > 2. Put H; = {Xy,---, X},
Hy = {Xe41,--, Xx}1 < €< k. Then Hy,H, € SHy and H=H;VHy,i. e, H
is not join-irreducible. Hence a simple hypergraph is join-irreducible if and only if
it has only one edge. Hence, the poset P, of all join-irreducible elements of SHp
is dual-isomorphic to P,, and an ideal of P is considerd as a filter of P,

Proposition 13. Let P} be the poset of all join-irreducible elements in SHp.
Then P; consists of hypergraphs with one ege and is dual-isomorphic to P,. Let
J(P?) be the distributive lattice of all ideals of P;. Then SH,, is lattice-isomorphic
to J(P*). Moreover, J(P}) is consderd as the set of all filters of P,. For a simple
hypergraph H = {X3, X3, -+, Xm} € SH, , the corresponding filter J(H) is given
by '

J(H)=UP,{X € P;;X; C X}.

Since |[P?| = |Pa| = 2%, SH, is alattcie of ranked 2. For H = {X1, X3, -+, Xm},

we have
p(H) = p(F(H)) = the number of subsetsX € P, such thatX; C X for some X;.

Let f be a positive function. Then it is evident that J(H;) = T(f) and
J(TrH;) = J(H;a) = T(f%), Hence, we have

Proposition 14. For a positive functin f, it holds that p(H;) = |T'(f)| and
p(TrHy) = [T(£)]

Using the above, we get

Proposition 15.

(1) For Hy,Hs € SHy,, if Hy < Hy, then, p(H1) < p(H?).

(2) For H € SHy, it holds p(TrH) = 2" — p(H).

Proof. (1) is evident, as we can put Hy = Hy, and H, = Hy, with some positive
functions fi, f. We prove (2).Takeing a positive function f, we set H = Hy. Then,
from Prposition 2, we get p(TrH;) = |T(f*)| = 2" — |T(f)|- This shows (2).

For a hypergrah H = {X} with one edge, set p(H) = p(X). Then it is evident
that p(H) = p(X) = 2"~ Xl. As SH, is distributive, it is modular. Hence,
for any Hy, Ho € SHy, it holds p(Hy V Ha) = p(H1) + p(Hz) — p(H1 A H2). i
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H, = {Xl} Hy = {X2} then H; V Hy = {Xl,Xg} and A, A Hy = {Xl UX2}
Hence, we have p({Xl,Xg}) p(X1) + p(X2) = p(X1 U X3). In general, using an
induction, we obtain'-

Proposition 16. For H = {X1,Xs,---, X} € SH,, it holds,

p(H) = Zp(Xi) - Z p(Xil UXi,)+ Z p(Xi, U Xi, UXi,)

i1<ia 11<i2<13

_(_l)l Z p(Xil UXiz‘U"'»UXic)_"'_(_)mp(XIUX2U"'UXM);
1 <3< <1y ’

where p(X) = 2* Xl for any edge X.
6. Decomposition of dual-minor functions

For a function f,g, the eztensin of f with respect to g is defined by f 1 g =
F+f%. It is known that if g is self-dual and f is dual-minor then f 1 g is self-dual.
Bioch and Ibaraki [3] obtainded a condition when a given dual-minor function is
deconposed into a conjunction of self-dual functins. In fact, they gave:

Let f be a dual-minor functzon Then f can be decomposed into k self dual
functions f 1 ¢g;,1=1,2,---,k;

=(f19)(f192) - (f190),
defined by self-dual functions 91,92, -, gk,tf and only if

9192 g < f+f".

The conditon in the above theorem, g1g5---gx < f+ f* is equivalent to

gitg+- 4> Fre

ie., U5 T(¢:) D FT(f) = T(ff?). Firstly, we shall show
Theorem 17. Let f be a dual-minor function.

(1) Asumme that f is docomposed into a conjunction of & self dual functions,
ie, f=fifo-- fk, Put T; = T(ff,) for 1 < i <k. Then it holds
(a) FT(f) = UL, T(f£),
(b) X eT; ifand only if X € FT(f)\ T;.
(2) If there is a family of subsets 11,75, - -, T} of FT(f) such that
(a) FT(f) = U£p=11';,’ .
(b) X € T; if and only if X € FT(f)\ T;.
Define functions f; by T'(f;) = T(f) UT;, for 1 < i < k. Then f; is self-dual
and f = fifa-- fr.

Proof. (1) As f¢'= “f1 +f2+ -+ fr, we have ffi=ffi+ ffo+ -+ fF.
This implies (a). If X € T;, then, f(X) = 0 and f;(X) = 1. As fi = f8, we
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get fi(X) = 0. Hence X ¢ T;. But from X € FT(f), we get X € FT(f). Thus
we have X € FT(f)\ T;. Coversely if X € FT(f)\ T;, then f;(X) = 0 and
X € FT(f). If fi(X) = f4(X) = fi(X) =0, we have f;(X) = 1, a contradiction.
Hence, we get X € T;.

(2)From the deﬁmtm, we have f < f;. Hence we get f < fifa--- fr. Next,
we show that ﬂ,_lT- = 0. Let an edge X be contained in N} ITQ Then, X €
FT(f)\T; for all i, 1 < i < k. Hence, we have X ¢ T; for all i. This implies
that X ¢ FT(f), a contradiction. Hence, N¥_,T; = @. Since T(fif2---fi) =
T(f) U (N1 T) = T(f), we get f = fifz--- fr. We shall show T(f8) = T(f;).
Take X € T(f,) Assume that f(X) = 1. If f(X) =1, then X € T(f) N F(f%) =
TF(f) = 0, since f is dual-minor. Hence f(X) = 0. As X ¢ FT(f), X ¢ FT(f),
Hence, f(X)=0,ie, f{(X)=1.If X € T, then X € FT(f)\T; and f(X) = 0.
Hence f;(X ) = 0. Thus we have f#(X) = 1. Conversely assume X € T(ff). Then
f,(X) =0,ie., f(X)=0, X ¢ T;. Hence, X € FT(f)\T This yields X € T;,
le., X € T(f,)

A family {T;, 1 < ¢ < k} in (2) of the above theorem is called a generating
system for a decomposition. In this case, As T; satisfies that X € T; if and only if
X € FT(f)\T;, It holds that |T;| = |FT(f)\T;|- Hence, we have |T;| = |FT(f)|/2.
As it is shown in the above proof, it holds that

nf:lTi = 0

If we put S; = FT(f)\T; for 1 < i < k. Then, it is evident that X € S; if and
only if X € FT(f)\ S;. Take X € FT(f). As n§ 1T = 0, there is some T such
that X ¢ T;. Hence, X € S;. This implies that U,=15, FT(f). If a dual—mlnor
function f is docompopsed into f = fif2--- fx, where f; for 1 <i < k are
self-dual functins. Let T; is a set given (1) in the above theorem. Then the set
G; ={9:T; CT(9) CT; UT(f), gi are self-dual.} is nonempty, since it contains
fi. Then we can put f; = f + f%; for any g; € G;. Hence every dcomposition of
a self-dual function is one given by Biochi and Ibaraki.

Proposition 18. Asumme that f is docomposed into a conjunction of k self-
dual functions, ie., f= fifa--- fi, Pt Ti = T(ff;) for 1 <i < k.

(1) [T:] = |FT(F)I/2

(2) Set S; = FT(f)\T; for 1 <i < k. Then {S;, 1 < i < k} is a complementary
generating system for a decomposition of f.

(3)Set G; = {9:;T; C T(g9;) C T; UT(f), g; are self-dual.} for 1 <i < k. Then
each Gj; is not empty and for any g; € G;, we can put f; = f + fdg,

For every variable z;, the function f(X) = z;, denoted simply by z;, is self-
dual. For a positive dual-minor function f, Let z;, z;, - --zj, be one of its prime
implicants. By putting f; = f + f%g, 9; = z;,, Bioch and Ibaraki [3] gave a
decomposition f = fif2 - - fr, which is called a canonical decomposition of f. For
any variable z;, T(z;)UT(&;) = P, and X € T(%;) if and only if X € T(%;). If f is
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dual-minor and not self-dual, we put Ty = T(2;)NFT(f) and Tz = T(&)NFT(f).
Then they give a generating system for a decomposition of f. In general, Let T}
is a subset of FT(f) such that X € T if and only if X € FT(f)\ T;. Put
T, = FT(f) \ T1. Then {T},T} is a generating system for a decomposition.

For a function f, We can put FT(f) = {X1,X1,X2, X, Xm,Xm} Set
X! = X;and X) = X; forany 1 < i <m. For W = (‘U)1,‘w2, W) €
{0,1}"‘, Put T(W) = {XP, Xy?,---,X%2}. Then T(W) = FT(f)\ T(W) and
{T(W),T(W)} is a generating system for a decomposition.

Proposition 19. Let f be a dual-minor function. Put FT( f) =

{X1,X1,X2, X2, Xm, Xm}. Take T(W) = {XP,Xy2,---,X%3}. Then
T(W) = FT(f) \ T(W) and {T(W) T(W)} is a generating system for a decom-
position. Hence , there are 2™~! kinds of decompositions of f into two self-dual
functions.

Let t = 5} ;2 - -- z;* be one of implicants of f+f*, where ¢; € {0,1} , and z}
25, 2} =%;. Put T; = T(z")ﬂFT(f) Ast < f+f*, wehave Ur_ | T; = FT(f) It
is evident that t < f + f* and that  gives the complementary generating system
for a decomposition of f. A generating system for a decomposmon is said to be
minimal if none of its subsets can be deleted. Let ¢ = :chzjz - Jk * be a pnme
implicant of f + f*, the corresponding generating system for a decomposition is
minimal.

Proposition 20. Let f be a dual-minor function. Let ¢ = &7} ;2 ---z;* be
one of prime 1mphcants of f + f*, where ¢; € {0,1}. Put T; = T(a:‘J) N FT(f)
Then T;, 1 < i < k is a minimal generating system for decompos1tlon The

complementary prime implicant  give the complementary generating system.
7. Decomposition of positive dual-minor functions

Let f be a positive dual-minor functon. Put m( f) = minFT(f). Bioch and ‘
Ibaraki proved [3]

m(f) = min(T(f*)) \ minT(f) = Hye \ Hy.

They aiso definded the positive closure of f byf = A{h|h > f4f}, and shown
m(f)=H; = = minT(f). As TrH; = H;a, it is evident that
m(f) = Ter N F(f). We put also M(f) maz FT(f). Then we have

M(f)={X; X e m(f)}.

Given a hypergraph, we define an intersecting subset to be a set of edges having
non-empty pairwise intersection.

Lemma 21. Let f be a positive dual-minor function and let m; be a maximal
intersecting family of m(f). Put
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= {X € FT(f); there is some Y € m; such that Y C X},

Ty = {X € FT(f); there is some Y € m; such that X C Y}.

Then TUTy = FT(f) and 1 N Ty = 0. Hence. minT> = m(f) \ M;. Moreove,
X €T if and only if X € 1.

Proof. Set my = m \ m; and M; = mazT;. Then M; C M(f). Put M, =
M(f)\ M;. We shall show M; = {X; X € my}. Take X € m,. As m; is maximal,
there is an edge Y € m; with X NY = 0. Hence, Y C X. This implies X € M;.
Conversely, take X € M;. Then, there is an edge Y €EmywithY C X. If X € m,,
thenY, X €m; and Y N X = (0. We have a contradiction. Hence X € my. Next,
we show Mz = {X; X € m;}. Let X € m;. If X € Mi, there is an edge Y € m;
with Y C X. Hence, X € my, €Y € my and X NY = 0. Hence, X € M,. Let
X € M. If X € my, then X € M,. Hence, X € m;.Thus we have

M, = {X, X Emz}, My = {X, X Eml},

my = {X; X € My}, my = {X; X € M1}

Now, X € M, if and only if X € m;. This implies that is X € M> and only if
X € mazxT,. Hence, My = mazT,. Take X € my. Then, as m; is maximal, there
isY € my with XNY = 0. Hence X C Y. As X € m(f), we get X € minTs.
Conversely, assume X € minTy. Then there is Y € m; with X C Y. Hence,
XNY =0 and X ¢ m;. This implies X € m,. Thus we obtain

My = mazTy, minTy, = ma = m(f) \ my.

If X € FT(f)\T1, thereisaedgeY € Masuchthat X CY ,AsY = Z,Z € my.
Hence, X € Ty. Next, take X € Ty N To. Then, there are Y;, Yo € m; with
Y; C X C Y,. Hence, we have Y NY, =0, a contradlctlon Thus T; N T3 = 0.

If X € Ty, there is an edge Y € m; with Y C X. Hence, X C Y, that is,
X € Ts. Similarly, we can show the converse.

A family of maximal intersecting subsets {m;, 1 < ¢ < k} of m(f) with
Ur_,m; = m(f) will be called a generating system for a positive decomposition
of a positive dual-minor function f.

Theorem 22. Let f be a positive dual-minor function.

(1) Asumme that f is docomposed into a conjunction of k positive self-dual
functions, ie., f = fifs-- fi. Put m; = minT(ff;) A m(f) for 1. < i < k. Then
{mi, 1< < k} is a generating system for a positive decomposition of f.

(2) If {m;, 1 < i < k} is a generating system for a positive decomposition of f.
Define positive functions f; by Hy, = minT(f;) = m; UHy, for 1 <i < k. Then
each f; is positive, self-dual and f = fifz--- fi.
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Proof(1) As FT(f) = UL\ T(T10), mlf) = min(U, T() € UbcyminT (7).
Hence, m(f) = UL m;. We show each m; is a maximal intersecting subset Take
any X, Y € mi. Then fi(X) = fi(Y) =1 As f8 = f;, fi(X) = fi(Y) = 0. If
X NY =40, it holds that X C Y. As f; is positive, 1 = filX) = f,(Y) We get a
contradiction. Let X € m(f)\ m;. Assume X intersects all edges in m;. Then X
contains no edge in m;. Hence, X € T(f¢f)\ T(f;f). Hence we have X € T(f:f),
a contradictionn. Thus m; is maximal.

(2) From the definition, it is evident that each f; is positive and satisfies f <
fi. We show that each f; is self-dual. Put T; = {X € FT(f); thereis Y €
m;such thatY C X}. Take X with f;(X) = 1. If f(X) = 1, then X ¢ FT(f) and

f(X) = 0. Hence, f;(X) =0, ie. fd(X) =1 HXeT;, from lemma 21, we get
X € FT(f)\T:. Hence fi(X) = 0 ie., f3(X)=1. Conversely, if f,(X) =0, then
f(X) =0and X ¢ T;. Hence using lemma 21, we get X € T;, ie., fi(X) = 1.
Hence, f#(X) = 0.

It is evident that f < fifo--- fr. Since T;, 1 < i < k, is a generating system
for a decomposition, we have NY_, T; = . This implies that f = fy f> - - - fx.

As m; and ms are maximal intersecting subsets, it holds that m; N my = 0.
Hence, we have

Corollary 23 [3]. Let f be a positive dual-minor function. Then, f is decom-
" posed into a conjuncttion of two positive self-dual functions if and only if there is
a generating system {m;, m,} for a positive decomposition with ms = m(f)\ m;.

As similarly as (3) in Proposition 18, we have

Proposition 24. Asumme that f is docomposed into a conjunction of k
positiveself-dual functions, i.e., f = fifs--- fi. Put T; = T(ff;) for 1 < i < k.
Set G; = {9;;T; C T(9:) C T; UT(f), g: are positive self-dual.} for 1 < i < k.
Then each G; is not empty and for any g; € G;, we can put f; = f + f%g;.

Proposition 25. Let f be a positive dual-minor function. For each variable
z;, put m(z;) = T(z;) N m(f). Then each m(z;) is intersecting and maximal. If
&;, &i, - - - &5, is a prime implicant of f + f*, then {m(z;,), m(zs,), -, m(z;, )} is
a minimal generating system for a positive decomposition of f.

Proof. It is evident that m(z;) is intersecting. If X(&€ m(f)\ m(z;)) intersects
all edges of m(z;), as X € T(z;) N FT(f), there is Y € m(z,) such that Y C X.
Then we have. Y N X = 0, a contradiction. Hence, m(z;) is a maximal intersecting
subset of m(f). The rest of the statemment can be shown as similarly as the
coresponding statement of Proposition 20.

Given a hypergraph H = {E}, E,,---,E,}, its representative graph L(H) is a
graph whose vertices are points Eq, Fs,- -, E,, the vertices E;, E; being adjace-
ment if and only if E; N E; # 0. Now, we can get easily,

Proposition 26. Let f be a positive dual-minor function. Let denote by
L(m( f)) the representative graph of the simple hypergraph m(f). Then {m;, 1 <
i < k} is a generating system for a positive decomposition if and only if each m;
is a maximal clique of L(m(f)) and UL, m; = L(m(f)).
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For a positive self-dual function f, put m(z;) = T(z;) "N m(f), 1 < i< n as
above. Assume m(f) = {X1,X3,--+,Xm}. Then, we obtain a hypergraph on m(f)
with edges m(z;), 1 < i < n, denoted m(z). A covering of m(z), i.e., a partial
hypergraph of m(z) which covers all vetrices of m(z) is a generating system for a
positive decomposition. Let A = (a;;) be the incident matrix, i.e., A = (a;;) given
by a;; = 1 if m(z;) 3 X; and a;; = 0 otherwise for 1 < i< n, 1< j < m. The
problem of finding a genereting system for a positive decomposition is reduced to
the problem of finding rows a;,,a;,, -, a;, which cover all columns, i.e., for each
J, 1 < j < m, there is at least one row a;, with a;,; = 1, theSet Covering Problem.
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