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Abstract

This paper is concerned with the existence and uniqueness of
quasiperiodic solutions to Van der Pol type equations driven by two or
more distinct frequency input signals from the viewpoint of numerical
analysis.

A numerical result given in the previous paper [13] is corrected.
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0. Introduction

The most fundamental problem in nonlinear oscillations is to find the
periodic or quasiperiodic solutions to the nonlinear ordinary differential
equations such as

5c'+a5c+/8x+7x3=kf_1(akcos vkt+b_ksin viet) o (e :fl—t)’
X—2A(1—x?%) x+x=0,
and
X—2A(1—x2) 5c+x::Z=1(akcos Vptt+b,sin v,t),
where a, B, 7, 4, a,, b,, v, (k=1, 2 ,...,m) are all positive constants. But, it

is very difficult, in general, to find the exact solutions in analytical form.
Thus, we are obliged to study the solutions by numerical methods. As for
the periodic solutions to nonlinear periodic systems and also to nonlinear
autonomous systems, we refer to the papers [1], [8], [16], [17], [22], [25] and
[9], [10], [11], [23], [24]. .

From a practical viewpoint, a harmonic balance analysis of nonlinear
quasiperiodic microwave circuits has been given by Maas [5] in view of
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qualitative applications, but he is concerned with neither the existence analysis
nor the error analysis. ‘

Chua and Ushida [2] have presented two efficient algorithms for obtaining
steady-state solutions to nonlinear quasiperiodic circuits and systems driven
by two or more distinct frequency input signals. They have calculated some
approximate solutions to Duffing type equations with two frequency input
signals and they have given error estimation, but they are not concerned with
the existence analysis of the exact solutions.

In the present paper, we will show that we can indeed verify the existence
and uniqueness of an exact solution and know the error bound of the
approximate solution to nonlinear quasiperiodic differential equations driven
by two or more distinct frequency input signals. By making use of the
generalized exponential dichotomy, we will be able to strengthen the error
estimation of the approximate solutions.

As for the Duffing type equations we refer to the papers [4], [14]. In the
paper a numerical example concerned with the Van der Pol type equation is
given in revised form.

1. Existence and uniqueness theorem

A function f(t) € C (R ; Rd),> where R denotes the real line hereafter, is
said to be quasiperiodic with periods w,,ws,,...,®, if f(t) is represented as

f(t) =f0(t’ t,...,t) (1 1)

for some continuous periodic function fo(u,, u,,...,4,) with period w,, in each
u;. Without any loss of generality we may assume that w,, ©,, ..., w, are
all positive and further that reciprocals of these periods are rationally linearly
independent (see [17]). A function f(¢) is said to be almost periodic if from
every sequence {a,} one can extract a subsequence {a,’} such that {f(t+a,’)}
is uniformly convergent on R. We assume that all functions considered in the
present paper are continuous on R. It is known in [3] that the limit value

alf, 0) =lim == f, f(t) e de
exists for any almost periodic function f(¢) and any real o and that there is a
countable set X of real numbers such that.a(f,0) =0 if 0&X. The module of f,
M(f), 1s defined to be the smallest additive group of real numbers that
contains the set ¥ for which a(f, o) #0 if o€X.

According to the results of papers [4],[13] we have the following
propositions. '
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PROPOSITION 1. The Limit function f(t) of a uniformly convergent
sequence {f,(t)} of quasiperiodic functions is also quasiperiodic.

Consider a linear differential operator

Lz=dz/dt—A(t)z, _ (1.2)

where A(t) is an almost periodic or quasiperiodic matrix.
Let ®(t) be the fundamental matrix of the linear homogeneous equation

Lz=0 (1.3)

satisfying the initial condition @(0) =E (unit matrix).

The linear homogeneous equation (1.3) is called to satisfy the generalized
exponential dichotomy if there exist a projection P, positive constants g,, 0,
and non-negative functions C,(¢,s), C,(t,s) such that

(1) | @(t) PO~'(s) || <C,(¢,8)e ™ for t=s,
(i) | D) (E-P)D '(s) || <C,(t,s) e ™ for t<s,
(iii) the integral
f_:CI(t9S) et ds+f:°°Cz(t,s)e‘”z(s“) ds (1.4)

is bounded on R by a positive number M.

Here we introduce the ¢. norm || ¢ || in Euclidean spéce and denote that || f||
=sup || f(t) || for any bounded function f=f(t).
tER
We have the following two propositions.

PROPOSITION 2 ([13]). Let A(t) be an almost periodic maltrix.
Suppose that the equation (1.3) satisfies the generalized exponential
dichotomy and that f(t) is an almost periodic function. Then there is a
unique almost periodic solution z(t) of the inhomogeneous equation

Lz=f(t) (1.5)
and the modules satisfy the relation

Mod (z) € Mod (A,f), (1.6)
where Mod (A, f) is the smallest additive group of real numbers that contains

the countable set X for which a(f,0) =0 and a(a;;,0) =0if o0& and A= (a,;).

PROPOSITION 3 ([13]). Let A(t) be a quasiperiodic square matrix
with periods w,,w,, ...,w,. Suppose that the equation (1.3) satisfies the
generalized exponential dichotomy. Then for any quasiperiodic function f(t)
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with periods w,w,, ...,w, the inhomogeneous equation (1.5) has a unique
quasiperiodic solution z(t) with the same periods @, ®,, ..., W, given by

z (t) =72 G (t, s) f(s) ds, (1.7)
where
f ©)PD (s) for t=s,
G (&)= “pw) (B-P)d - (s) for t<s.

Moreover the solution z(t) satisfies the relation (1.6) and
[zl <M fIl. ‘ (1.8)

Our numerical analysis of the quasiperiodic Van der Pol type equation is
based on the following existence and uniqueness theorem.

THEOREM 1 ([13]). Given a nonlinear differential equation

dz
W:X(t, z), (1.9)

where z and X (t, z) are vectors and X(t, z) is quasiperiodic in t with periods
w,,W,, ...,0, and is continuously differentiable with respect to z belonging to
a region D of z-space.

Suppose that there is a continuously differentiable quasiperiodic function
z,(t) with pertods w,,w,, ...,w, such that

zy(t) €D,

I dz(t)

7 Xzl =r

for all t€R. Further suppose that there are a positive number 6,
a non-negative number k<l and quasiperiodic matrix A(t) with periods
W0, ..., W, such that

((1) the linear equation (1.3) satisfies the generalized exponen-
tial dichotomy,
(ii) D,={z;||z2—2,(t) || <6  for some teER} CD, (1.10)
|Gi) 1%, 2) ~A@) || < whenever ||z-2o(t) | <8,
(iv) %‘S@.

Here W(t,z) is the Jacobian matrix of X(t,z) with respect to z and the quantity
M is given in (1.8).

Then the given equation (1.9) possesses a solution z=2(t) quasiperiodic in t
with periods w,,w,, ...,w, such that
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| 20(t) ~2(2) | <= (1.1D)

for all teR. Furthermore, to equation (1.9) there is no other quasiperiodic
solution belonging to D; besides z=2 (t).

2. Quasiperiodic solution to the Van der Pol type equation
We shall first consider the following linear differential equation

d?x dx
2=
der T g tviesft), (2.1)

where p, v are constants such that v>0, y4#0, and f(¢) is quasiperiodic with
periods w,,w,, ...,0,. Putting y=dx/dt,

= (30 A=) g F@W =4y,

equation (2.1) can be written in the vector form as follows :

dz
o ~ARTE(). (2.2)
Let L be the differential operator defined by
d
Lz= di —Az, (2.3)

then the fundamental matrix ®(¢) of the linear system Lz=0 such that ®(0)
=E is given by @(t) =exp tA, which will be called the matrizant of L. In what
follows, we denote by

| the following £. norm of vectors and matrices :
[[ v =max v, for vector v with components v,
|| =m:.;1x;§v g, ;! for matrix @ with components ¢, ;.
The matrizant satisfies the inequality
1P@) | <Kye ot (2.4)

Here K, and o, are quantities specified in the following three cases :
(i) when lul>y,

1 1 2 .
max(—lg_a (1+181), —a (v™+2lul)) if 4<0,
o= max(2— (1+lal), —— W2+2iuh))  if g0
B—a > B-a ’
—-a if <o,
g9 = .
- if ©>0,
(ii)  when lul=v, (2.5)

Ky=K,(t) =max (1+|utl+1¢l, 1+1utl+luz 1),

00:ﬂ1
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(ii) and when lul<y,
_ v+1
Ko e
U
O¢=U,

where a=—ﬂ—/ﬂ2—u2 , B =—,u+/u2—v2.

max (1, v),

Remark that K, is not a constant number when |ul=v.
From (2.4) and Proposition 2, the equation (1.3) satisfies the generalized
exponential dichotomy, because we can choose the matrix P such that

P:{O when ©<0,
E when u>0.

Consequently, we get the following theorem.

THEOREM 2 ([13]). If u=0, the équation (1.3) satisfies the generalized
exponential dichotomy and the unique quasiperiodic solution z=zy(t) ='(x,
(t), ¥o(t)) with periods w,w,, ..., w, to the equation (2.2) is given by

2,(t) =/ -G(t, s) F(s)ds,

where the Green function G(t, s) is specified in the following two cases :
(i) when u>0,

_ [ D(t—s) for t=s,
G(t.s) = { 0 for t<s,

(ii) when u<o,

_fJ0 for t=s,
G(t,s) = {—QD(t—s) for t<s.

Moreover, we have

| Gt,s) | < Kge o',
where

g=lo,l.

Now, consider the Van der Pol type equation with quasiperiodic forcing
term such as

d?x dx m .
T =21 (1-x?) 7 +x=k§1(ak coS V,t+b, sin v,t), (2.6)
where A and v, (k=1, 2, ... ,m) are all positive parameters.

In the following, we may assume that the reciprocals of periods w,=27/v,
(k=1, 2, ..., m) are rationally independent.
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The equation (2.6) can be written into the vector form
dz
g "AzTe () +A7 (2), (2.7)

where

0

_ 0 I
=), A= (Y _57), 9(1)=(, '
y I =22 Y(a,cos vytt+bysin vit)
=1

k

1) =0 )

Let L be the differential operator defined by

Lw=7—Aw, (2.8)

then Theorem 2 tells us that the equation (1.3) defined by (2.8) satisfies the
generalized exponential dichotomy for u#0 and that the linear operator G
defined by G¢=w, which means

Joo G(t,s)¢(s)ds=w(t),

satisfies the inequality

Gl <M, (2.9)
where
‘ 1+22 .
>
2 (-[a1) [ a1 yorL
M= { 3 if A=I, (2.10)
+
_Jerern i 0<A<I.
AJI-A2

Remark that the value of M for A>1 is corrected for the paper [13].
The quasiperiodic solution of the linear equation

Lz=¢(t) (2.1D)
. _ o x,(t)
is given by z=z,(t) = (yz(t) ), where

x,4(t) =§_’1(ak cos Vyt+B, Sin v,t), (2.12)

d
yo(t) = dt xo(t);
and

* (I-vE)? +4A% V3

—2a,Av, +b,(1-v2)
(1-)? +42%0}

» Br=




Zulfikar ALl,Yoshitane SHINOHARA, Hitoshi IMA1, Atsuhito KOHDA
76 Kuniya Oxkamoro, Hideo SAakAGucHi, and Haruo MivamoTo

Since

——_  Ja+b
ak+Bk=

Jd-vp)? +4a2}

we have the following estimation
lxg(t) 1, lyo(t) ISK (2.13)

for all teR, where

Kemax (5 . at b 5o lval/at by
=1 [ (1-up)r a2 k1 | (1-02)2 +4222

).

Using the estimate (2.13), we can estimate the residual function for z,(¢) as
follows :

|- ZelD 4z, () — ()~ (20(8)) 1| = | =An(2a(8)) |
=2A1x§(t) y,(t) I1<2AK3.
Accordingly, we can choose v
r=22K3. (2.14)
Let D, = {2z, ||z ]| <2K}, D’———th{z s |lz==z4(t) || £K}. It is clear that
z,(t) €D, for any t€R and D’CD,.

Let us denote the Jacobian matrix of the right-hand side of (2.7) with
respect to z by ¥(z). Then we have the inequality

| ¥ (2) —A || =2A(2l x| +ly]) x| <24AK2 (2.15)

for all zeD’.

In order to apply Theorem 1 to the present case, we have to check with
the inequalities in (1.10). The question is “Is it possible to take a
non-negative number k<1 satisfying both inequalities

241K? ST’Z— and 22K3M< (1-x)K?”.

From the inequalities 24AK2M<k<I and 2AK2M<1—k, we have the inequalities
24AK2M<k<]-22K?M and 26 AK2M<1. Hence we have

1

0<1Sm (2.16)
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/ 1
K< 6AM . (2.17)

Consequently, we have the following existence and uniqueness theorem

or

of a quasiperiodic solution to the quasiperiodic Van der Pol type equation.

THEOREM 3. If the parameter A and the constant number K satisfy
(2.16) or (2.17), the given equation (2.6) possesses a quasiperiodic solution
z=2(t) with periods w,,w,, ..., w, such that

[2(t) —=o(¢) || <K (2.18)
for all teR.

If the inequalities (2.16) or (2.17) do not hold, or the error estimation
(2.18) is too crude, we should compute a more accurate approximation than
zo(t). For this purpose we have considered an approximate quasiperiodic
solution written in the form

£,(t) =a(0,0) +Z, Z {a,c0s (p, »)t+Bysin (p, V)L,
r=1 |Ipl=r

d
YVa(t) —?xn(t),

where (p,v) =§;pkuk, Ipliglpkh and we have determined the unknown
coefficients a(0,0), a,, B, by means of the Galerkin method.

For the compute@ﬁg}alerkin approximation of n-th order as

Zn(t) =a (0, 0) +2, X {a cos (p, V)t+Bs sin (p, v)t},
we consider the residual function

2 d — -
r(t)= d? Z,(1) gy dEn(t) s (t) +2A%2 (t)M _
dt? dt dt
Y (a,cos v, ttb,sinvy,t)
k=1

which can be expanded into the finite double Fourier series as
3(n+l1)

r(t)= £(0,0)+ X Y{focos (p,v)t+g,sin(p,v)t},

r=1 |pl=r

where 3 (n+1) is considered as sufficiently large when n is large.
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Put
3(n+l)
r=If(0,0)1 +% Y {lfol+lgsl}, (2.19)
r=1 |pl=r
then we have Ir (¢)I1<r for all t€R. Define
‘n+l _
Q=la0,0)l+ 3 3 {la,l+84} (2.20)
r=1 Ipl=r
and
n+l1 —
=3 Y {la,l+1B,1} (p,v), (2.21)
r=1 |pl=r

then we have the inequalities QZSuRp | % n(t)'l and £° Zsup! y.(¢)l.
te teR
For z which lies in the d—neighbourhood of z2.(t) = * (% (t), y.(t)), we
have
| W(z) —A || L2A{Q2(202°+Q) +2(2’+22)6+352}.

If there exist a non-negative number £<1 and a positive number § satisfying
both inequalities

22{ (22 +Q)+2(Q°+202)5+362} <— and f/ﬁ M<5, then

M 1
from Theorem 1 the exact quasiperiodic solution 2(¢) = *(&(t), (¢t)) with
periods w, (k=1, 2, ..., m) exists and an error estimation of z,(¢) is given by

12,(2) =2 (&) || <

s

11—k
that 1s,

_ d d
lZn(t) =2 ()], | ?x"(t) —ch(t) <

for all teR.

I-k

3. Numerical example

We shall consider the Van der Pol type equation (2.6) with v,=./2,
vy=+/5, v,=0 (k=3)[13].

As for the case 1=10,a,=a,=1/32,a,=0 (k=3) and b,=0 (k=1), we have
x,4(t) =2 {—0.00001950686 cos vt —0.0005517378 sin vt
—0.00003100200 cos v,t —0.0003466129 sin v,t}.

In order to find a more accurate approximation, we have used the
Galerkin method. After 2 iterations starting with x,(¢), we have a Galerkin
approximation of 7-th order as

%7 (t) =2 {—0.0000195 cos vt —0.0005517 sin vt
—0.0000310 cos vyt —0.0003466 sin y,t},
where all the terms whose coefficients are smaller than 10-7 in magnitude are
omitted.
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By (2.19), (2.20) and (2.21), we take r=0.73x10-'°, Q=0.001897723 and
Q’=0.003304484.
If we take 6=K=0.0067, we have
K

2M{ Q2 +Q2)+2(2°+22)6+352} <0. 0049]9048S7 ,
and

£=0.004919048M=0.1035579,
where M=21. 06. Remark that the value of K and M are corrected. Hence we
can choose k£ as (. 11, then we have

Mr  21.06x0.73x10-1
1k 0.89

=17.27...x10 7" <0.18x10 °.

From the above calculation we have an error estimation
| z¢(t) —2 (t) || <0.18%x1078.
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