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Abstract

In the present paper, continued the preceding paper [10], we are mainly concerned
with a Kaehlerian Finsler manifold (M, f, g). First, in the Kachlerian Finsler manifold,
we define a generalized Finsler metric g by § = (g + fgf)/2. We investigate the relation
between the Finsler metric g, the generalized Finsler metric g, the complex structure f
and several Finsler connections derived from ¢ and §. In consequence of it, we obtain
that the Kaehlerian Finsler manifold is a Landsberg space and the generalized Finsler
metric § can be regarded as a real representation of a complex Finsler metric in a
sense. Finally we find a necessary and sufficient condition for an Hermitian structure
on the tangent bundle over a Kaehlerian Finsler manifold to be a Kaehler structure.
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§1 Preliminaries

In the preceding paper [10], we have obtained the following:

Let M be a 2n-dimensional manifold admitting an almost complex structure
fi(x) and a Finsler metric g;;(x, y) = 3,6,L2(x, ).

If the fundamental function L(x, y) satisfies the so-called Rizza condition,
that is,

(1.1) L(x, ¢gy) = L(x, y)
for any fe R, where
(1.2) ¢p; = cosB-05+sind- f},

then M is called an almost Hermitian Finsler manifold or simply a Rizza
manifold. In connection with the Rizza manifold, we can show

Theorem 1.1. The tangent space at any point of a Rizza manifold is a

In the present paper, the Latin indices a, b,...,i, j, k... run over the range 1, 2,...,2n; and the
Greek indices a, B,...,2, g,... run over the range 1,2,...,n; and the indices o, f§, 7,... stand for
o+ n, f+ny+n... respectively.
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complex Banach space.

Theorem 1.2. Let M be a manifold admitting an almost complex structure
ff(x) and a Finsler metric g;;(x, y). The condition for the couple (f}(x), g:;(x, )
to construct a Rizza structure is given by L(x, ¢pv) = L(x, y). This condition is
equivalent to any one of the following:

(1) Ipa(X PeY) OB D8; = gij(x, ),

(2) 9i(x, Y) fm()Y"y = 0,

(3) (Gim (%, ¥) — Gpg(x, Y) fF(X) fin(x))y™ = O,

(4) Gim(6 YV (X) + i (%, V) F70) 4 2C5,(x, Y) (X)) =

Theorem 1.3. If a Finsler metric g;;(x, y) and an almost complex structure
fi(x) satisfy the condition

gpq(x’ y)flp(x)f]q(x) = gij(x7 Y),
then g;; is a Riemann metric, that is, (f, g) is an almost Hermitian structure.

k.
Theorem 1.4. A Rizza manifold is a complex manifold if V, f{ = 0 holds good

%
where V means h-covariant derivative with respect to the Cartan’s Finsler connection

( Jk: )

Now a Rizza manifold satisfying l;k f1=0is said to be a Kaehlerian Finsler
manifold, and a Rizza manifold whose complex structure is integrable is said to
be an Hermitian Finsler manifold.

Let M be a Rizza manifold. If we put

(13) gij(x’ y) (glj(x y) + gpq(x y f x)fq X)

then g;; is a homogeneous symmetric generalized metric, which is called a
generalized Finsler metric, and g,; satisfies

(1.4) Jpa(X, V) E() () = gij(x, ¥),

Concerning these two metrics g;;(x, y) and g;;(x, y), because of the Rizza
condition (3), we have

Theorem 1.5. In a Rizza manifold, the relation

(1
(1.5) gij(x> y) = aiaj(ggpq(x: )’)ypyq>



Kaehlerian Finsler Manifolds 21

holds true.
Moreover we have shown

Theorem 1.6. Let M be a manifold admitting an almost complex structure
fi(x). In order that M admits a Finsler metric which constructs a Rizza structure
together with f}(x), it is necessary and sufficient that M admits a generalized
Finsler metric g;;(x, y) satisfying the conditions

(1) Gulx, ) = gpg(x, Y)fF(x) fE(x), (2) 5k§pq(x, Y)Yyt =0,
B) (1%, ¥) + dmlx, Y)Y™EEF s positive definite.

§2 Finsler connections in a Kaehlerian Finsler manifold

Let M be a 2n-dimensional manifold endowed with a Kaehlerian Finsler

ES
structure (f, g). It is directly seen that V,g;; =0 where § is the induced
generalized Finsler metric given by (1.3). That is to say, we have

: * *
2.1) Vifi =0, Vigi;=0.

ko
Now the condition V, f; = 0 leads us to

ymamfji_‘__anfjm_fr;G;"zo

Differentiating this partially with respect to y*, we have
B .
(2.2) Viefi =0,
B . . . . .
where V' means the h-covariant derivative with respect to the Berwald connection
Now we put

(2.3) fii(% ) = gim(x, Y) f77(%),

(2.4) Jiix, ¥) = Gim(x, Y) f7().
By virtue of (1.4) we have

- - ~ ~ 1
(2.5) fi'= _fji’ fimfjm: ‘”gija fijz‘z‘(fij_fji)-

B * * .
On the other hand, the relations V,g;; = —2y"V,C;; and I}, = Gj —

* * o
V"V Cj are well-known [13].  So, we see that the condition V) f; = 0 and (2.2)
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* %
lead us to y"V,Clfi = f}y"V,Ci. Using this and (2.5), we see
B . | B B
kaij = E(ngirfjr - ngjrfir)

* %

= - ym Vm Cikrfjr + yme Cjkrfir
* *

= —fkrymeCzrj + [ V"V Cirj

= 0.

B
Then (2.2), (2.5) and the above result lead us directly to ¥, g;; = 0. Hence, in a
Kaehlerian Finsler manifold, the relations
B B B
(2.6) kajl =0, ngij =0, kaij =0

hold true.
Now let us put

M. 1. - ~ ~
(2.7) K= Eglm(ngjm + X iGim — X8 jn)>
where we put
(2.8) X, =208 —Gro,,.

M.
Then I'j is symmetric with j and k and satisfies the transformation rule of a

M.
linear connection. In the present paper, from now on, we say this [} is the
M
modified Cartan connection of g, and we denote by V' the h-covariant derivative

M
with respect to (/7j, G3). Then direct calculation leads us to

M

(2-9) ngij = 0.

M

B M * . .
wJij = Vigij = 0. Since the coeflicients I, G, I’}

%
Thus we have V,g;; =

are all symmetric with j and k, and the used non-linear connections are common
to these three Finsler connections. So we obtain

* . M
(2.10) [l =Gh = T,

Hence the Finsler manifold is a Landsberg space [13]. Consequently we
obtain
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Theorem 2.1. Let M be a Kaehlerian Finsler manifold. Then M is a
Landsberg space. Moreover the modified Cartan connection of § also coincides

* . *
with the Cartan’s Finsler connection of g, which satisfies V, f; =0 and V,g;; =
*

ngij = O

§3 The tangent bundle over a Kaehlerian Finsler manifold

First, for the present, we assume that M is a Rizza manifold. Let T(M)
be the tangent bundle over M. Here we adopt (X, Y;) as a local frame of T(M)
where we put

(3.1) X; =08 = Gl'Op Yi= 0y
Then we can define globally on T(M) a (1, 1)-tensor field F such that
(3.2) F(X) =f"Xp, F(Y)=f"Y,.

It is apparent that F is an almost complex structure on T(M)[7]. Moreover
we can define an inner product { , ) such that

(3-3) <Xia Xj> = gij’ <Xia Y,> =0, <Yn Y,> = gij-

Then the inner product gives T(M) a globally defined Riemann metric G
[7]. The components of F and G in terms of the frame (X, ;) are written as

(3.4) F:<fjl(x)a .O >’ G=<gij(xa ¥), ) 0 )
0, fitx) 0, gij(x, y)

In addition we have '‘FGF = G. Therefore we obtain

Theorem 3.1. If a manifold M is a Rizza manifold, then its tangent bundle
T(M) admits an almost Hermitian structure (F, G).

In what follows, we show this structure (F, (~}) is an Hermitian structure if
M is a Kaehlerian Finsler manifold.

For the Kaehlerian Finsler manifold M, as is shown in Theorem 1.4, the
given almost complex structure f(x) is integrable, that is, M is a complex
manifold. So M is covered by a system of local complex coordinate
neighbourhoods {(U, z*)}. If we express z* = x* + / — 1x%, then (x) = (x%, x7)
is an admissible real local coordinate of U. With respect to this (x'), the complex

0, —05
structure f has the components <‘a b
B
hereafter. We call this local coordinate (x’) as the canonical coordinate of a

Kaehlerian Finsler manifold. With respect to this canonical coordinate, the

), which we denote by J =(J))
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., . * 7 .
condition V, f; = 0 can be written as
%, X
(3.5) royJr=J,.I%,

which leads us to ng = ;gj and ng = — FZJ

Hence we have

(3.6) G; = G3, Gj= —Gj.

And, at the same time, (3.5) leads us to

(3.7) JhGr=GhJT.

As to the almost complex structure F defined by (3.2), we see
Fo)=FX,+G"Y,)=J"X,,+ G"J, Y,
=JrX,, +JrG,y,=Jro,,

F(3) = Jr"d,.

Hence F i1s a complex structure of T(M). Thus T(M) is covered by a system
of local complex coordinate neighbourhoods {(z~'(U), (z%, ¢%)}. If we express

2f = x4 = 1x%, &% = y* + / — 1)%, then (x'; y) = (x%, x%; y*, y*) is an admissi-
ble local real coordinate of n~'(U). With respect to this (x*, x*; y*, %), the

complex structure F has the components < ’ ) Hence we obtain

Theorem 3.2. On the tangent bundle over a Kaehlerian Finsler manifold, the
almost Hermitian structure (F, G), which is defined by (3.2) and (3.3), is an
Hermitian structure.

Now the Finsler metric function L(x, y') can be written as
PR R L éa 4+ é_a éa . é_oz o w e
2 > b :: H(Z b Z ; g H é )'

2 2./-1 2 2 /-1
Here we consider the Rizza condition with respect to this complex

i

coordinate. Since (¢,y) = cos #-y' +sin - J.y™, it is easy to see

L(x', y") = L(

1 . —— -
(Poy) = (8" + &%), (dpy) =

1
2 2 /-1

That is, the Rizza condition (1.1) can be rewritten as

(7" — &7¢%).

(38) H(Za, Z—a; éa’ Ea) — H(Za, Z*a; eieéa’ ei()éa).
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We represent by g and g the components of g;; and g;; respectively with respect
to the complex coordinate (z'; &) = (2%, z*; &%, £%). Due to the relation

1 1
_ d, _5(1
6 5 08

0x ay 2
6—5 = 6—5—1 =1 \/_—T — and
g — % =5

1 0*H? ox? o0x4

® -

Y5 =7 seigei  Irag oo

we see
1
ap = " {Gop — 975) =~/ — 192 + 9.0 }»
1
935 =7 {Gap + 955) — /= 1G5 — 9.5)}
(3.9) |
gékﬂ = Z l(gaﬁ + gaﬂ +V gaﬁ Jozﬂ
ga (gaﬁ gaﬂ + \ gaﬁ + q(zﬂ)
Since ga/} = [_3 %(gaﬂ + gaﬂ) gaﬁ = - 97&;1 = %(gaﬁ - g&ﬂ)’ SO W¢€ get
go)tkﬂ = Oa
N 1
Gy = 7 Gap + 935) =/ — 135 — 9ap) b
(3.10)

gaﬂ {(gaﬂ + gaﬂ) + \V gaﬂ gaﬁ IR

g;ﬁ = 0.
That is, we have g;;_, = gs5- Hence we get
1 0*H?
gk — g% ot — ¥ —
(3.11) Yap = Yag = 0, Yag = Yap = 5 85“@56

This fact tells us that the generalized Finsler metric g;; coincides with the
real representation of a complex Finsler metric in the sense of Aikou [1] etc..

Moreover, in a Kaehlerian Finsler manifold, if we examine, with respect to
the canonical coordinate, the components of the torsion tensor
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R, =0,G\ — 4,G'Grr — 8,Gl, + 6,,GL.G™,
we can show, by using (3.6),

(3.12) R + [iR S + [ R i — Ry, 7' fi = 0.

§4 The Kaehlerian form on the tangent bundle over a Kaehlerian Finsler
manifold

Let M be a Kaehlerian Finsler manifold and T(M) be its tangent bundle. As
is shown in Theorem 3.2, T(M) admits an Hermitian structure (F, 6),_ which is
defined by (3.2) and (3.3). Here we consider the condition that the Hermitian
structure is Kaehlerian.

For this purpose, we consider the so-called Kaehler 2-form

4.1) Q = f;dx" Adx? + f;09' A 5y
where (dx', 6y") is the local dual coframe of (X?, Y, that is,
(4.2) oy’ = dy' + G dx™.
It is directly seen that
dQ = X, f;dx* A dx' A dx) + (B, fi; + fimn RISV A dxi A dxI
B _ ) ) . o~ . .
+ Vi fi;dx* A 8YE A Sy + 0, f1;0yF A Sy A Sy
By virtue of (2.5) and (2.6), we have that (F, G) is a Kaehler structure if and only if
(1) kaij+Xifjk+inki=0>
(2) akfij + fkaZI‘ =0,
(3) Ofij+ 0ifu+0;fui=0.
B ~ ~ ~
However, since V, f;; =0, so X, f,;= Gif,; — Ghifn. Hence it is easy to
sec that (1) holds identically. Similarly, since f;; = g;,, /7", 50 8,f;; = 2Chim ST

Hence 5kf,-j = 5ifkj holds true. Therefore (2.5) tells us that (3) holds identically.
Thus we obtain

Theorem 4.1. Let M be a Kaehlerian Finsler manifold and T(M) be its
tangent bundle. The Hermitian structure (F, G) shown in Theorem 3.2 is a Kaehler
structure on T(M) if and only if

(43) Ofij + fem R = 0

holds true.
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If the given Finsler metric g;; is a Riemann metric, we see directly that
gij = Yij> fij = fija R’i(j = RZijyh'
Then the condition (4.3) is rewritten as Rj; =0. Hence we obtain also

Theorem 4.2. The Hermitian structure (F, G) on the tangent bundle over a
Kaehler manifold is a Kaehler structure if and only if the base manifold is a flat
Kaehler manifold.
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