Kaehlerian Finsler Manifolds

By

Yoshihiro Ichijyo

Department of Mathematical Science, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770, JAPAN (Received September 14, 1994)

Abstract

In the present paper, continued the preceding paper [10], we are mainly concerned with a Kaehlerian Finsler manifold (M, f, g). First, in the Kaehlerian Finsler manifold, we define a generalized Finsler metric \tilde{g} by $\tilde{g} = (g + {}^t f g f)/2$. We investigate the relation between the Finsler metric g, the generalized Finsler metric \tilde{g} , the complex structure f and several Finsler connections derived from g and \tilde{g} . In consequence of it, we obtain that the Kaehlerian Finsler manifold is a Landsberg space and the generalized Finsler metric \tilde{g} can be regarded as a real representation of a complex Finsler metric in a sense. Finally we find a necessary and sufficient condition for an Hermitian structure on the tangent bundle over a Kaehlerian Finsler manifold to be a Kaehler structure.

1991 Mathematics Subject Classification: Primary 53B40.

§1 Preliminaries

In the preceding paper [10], we have obtained the following:

Let M be a 2n-dimensional manifold admitting an almost complex structure $f_j^i(x)$ and a Finsler metric $g_{ij}(x, y) = \frac{1}{2} \partial_i \partial_j L^2(x, y)$.

If the fundamental function L(x, y) satisfies the so-called Rizza condition, that is,

$$(1.1) L(x, \phi_{\theta} y) = L(x, y)$$

for any $\theta \in \mathbf{R}$, where

(1.2)
$$\phi_{\theta j}^{i} = \cos \theta \cdot \delta_{j}^{i} + \sin \theta \cdot f_{j}^{i},$$

then M is called an almost Hermitian Finsler manifold or simply a Rizza manifold. In connection with the Rizza manifold, we can show

Theorem 1.1. The tangent space at any point of a Rizza manifold is a

In the present paper, the Latin indices a, b, ..., i, j, k... run over the range 1, 2, ..., 2n; and the Greek indices $\alpha, \beta, ..., \lambda, \mu, ...$ run over the range 1, 2, ..., n; and the indices $\bar{\alpha}, \bar{\beta}, \bar{\gamma}, ...$ stand for $\alpha + n, \beta + n, \gamma + n...$ respectively.

complex Banach space.

Theorem 1.2. Let M be a manifold admitting an almost complex structure $f_j^i(x)$ and a Finsler metric $g_{ij}(x, y)$. The condition for the couple $(f_j^i(x), g_{ij}(x, y))$ to construct a Rizza structure is given by $L(x, \phi_{\theta} y) = L(x, y)$. This condition is equivalent to any one of the following:

(1)
$$g_{pq}(x, \phi_{\theta}y)\phi_{\theta i}^{p}\phi_{\theta j}^{q} = g_{ij}(x, y),$$

(2)
$$g_{ij}(x, y) f_m^i(x) y^m y^j = 0,$$

(3)
$$(g_{im}(x, y) - g_{pq}(x, y) f_i^p(x) f_m^q(x)) y^m = 0,$$

(4)
$$g_{im}(x, y) f_i^m(x) + g_{im}(x, y) f_i^m(x) + 2C_{iim}(x, y) f_r^m(x) y^r = 0.$$

Theorem 1.3. If a Finsler metric $g_{ij}(x, y)$ and an almost complex structure $f_i^i(x)$ satisfy the condition

$$g_{pq}(x, y) f_i^p(x) f_j^q(x) = g_{ij}(x, y),$$

then g_{ij} is a Riemann metric, that is, (f, g) is an almost Hermitian structure.

Theorem 1.4. A Rizza manifold is a complex manifold if $\overset{*}{V}_{k}f_{j}^{i}=0$ holds good where $\overset{*}{V}$ means h-covariant derivative with respect to the Cartan's Finsler connection $(\overset{*}{\Gamma}_{ik}^{i}, G_{i}^{i})$.

Now a Rizza manifold satisfying $V_k f_j^i = 0$ is said to be a *Kaehlerian Finsler manifold*, and a Rizza manifold whose complex structure is integrable is said to be an *Hermitian Finsler manifold*.

Let M be a Rizza manifold. If we put

(1.3)
$$\tilde{g}_{ij}(x, y) = \frac{1}{2} (g_{ij}(x, y) + g_{pq}(x, y) f_i^p(x) f_j^q(x)),$$

then \tilde{g}_{ij} is a homogeneous symmetric generalized metric, which is called a generalized Finsler metric, and \tilde{g}_{ij} satisfies

(1.4)
$$\tilde{g}_{pq}(x, y) f_i^p(x) f_j^q(x) = \tilde{g}_{ij}(x, y),$$

Concerning these two metrics $g_{ij}(x, y)$ and $\tilde{g}_{ij}(x, y)$, because of the Rizza condition (3), we have

Theorem 1.5. In a Rizza manifold, the relation

(1.5)
$$g_{ij}(x, y) = \dot{\partial}_i \dot{\partial}_j \left(\frac{1}{2} \tilde{g}_{pq}(x, y) y^p y^q \right)$$

holds true.

Moreover we have shown

Theorem 1.6. Let M be a manifold admitting an almost complex structure $f_j^i(x)$. In order that M admits a Finsler metric which constructs a Rizza structure together with $f_j^i(x)$, it is necessary and sufficient that M admits a generalized Finsler metric $\tilde{g}_{ij}(x, y)$ satisfying the conditions

- (1) $\tilde{g}_{jk}(x, y) = \tilde{g}_{pq}(x, y) f_j^p(x) f_k^q(x),$ (2) $\dot{\partial}_k \tilde{g}_{pq}(x, y) y^p y^q = 0,$
- (3) $(\tilde{g}_{jk}(x, y) + \hat{\partial}_k \tilde{g}_{jm}(x, y)y^m)\xi^j \xi^k$ is positive definite.

§2 Finsler connections in a Kaehlerian Finsler manifold

Let M be a 2n-dimensional manifold endowed with a Kaehlerian Finsler structure (f, g). It is directly seen that $\overset{*}{V}_k \tilde{g}_{ij} = 0$ where \tilde{g} is the induced generalized Finsler metric given by (1.3). That is to say, we have

(2.1)
$$\overset{*}{\nabla}_k f_i^i = 0, \quad \overset{*}{\nabla}_k \tilde{g}_{ij} = 0.$$

Now the condition $\overset{*}{V}_k f_j^i = 0$ leads us to

$$y^m \partial_m f_j^i + G_m^i f_j^m - f_m^i G_j^m = 0.$$

Differentiating this partially with respect to y^k , we have

where ∇^B means the h-covariant derivative with respect to the Berwald connection (G_{jk}^i, G_j^i) .

Now we put

(2.3)
$$f_{ij}(x, y) = g_{im}(x, y) f_j^m(x),$$

(2.4)
$$\tilde{f}_{ij}(x, y) = \tilde{g}_{im}(x, y) f_i^m(x).$$

By virtue of (1.4) we have

(2.5)
$$\tilde{f}_{ij} = -\tilde{f}_{ji}, \quad \tilde{f}_{im}f_j^m = -\tilde{g}_{ij}, \quad \tilde{f}_{ij} = \frac{1}{2}(f_{ij} - f_{ji}).$$

On the other hand, the relations $\nabla^B_k g_{ij} = -2y^m \nabla^*_m C_{ijk}$ and $\Gamma^i_{jk} = G^i_{jk} - y^m \nabla^*_m C^i_{jk}$ are well-known [13]. So, we see that the condition $\nabla^*_k f^i_j = 0$ and (2.2)

lead us to $y^m \overset{*}{V}_m C_{ri}^k f_j^r = f_r^k y^m \overset{*}{V}_m C_{ij}^r$. Using this and (2.5), we see

$$\vec{V}_{k} \tilde{f}_{ij} = \frac{1}{2} (\vec{V}_{k} g_{ir} f_{j}^{r} - \vec{V}_{k} g_{jr} f_{i}^{r})$$

$$= -y^{m} \vec{V}_{m} C_{ikr} f_{j}^{r} + y^{m} \vec{V}_{m} C_{jkr} f_{i}^{r}$$

$$= -f_{kr} y^{m} \vec{V}_{m} C_{ij}^{r} + f_{kr} y^{m} \vec{V}_{m} C_{ij}^{r}$$

$$= 0.$$

Then (2.2), (2.5) and the above result lead us directly to $\overset{B}{V}_{k}\tilde{g}_{ij}=0$. Hence, in a Kaehlerian Finsler manifold, the relations

(2.6)
$$V_{k}^{B} f_{i}^{i} = 0, \quad V_{k}^{B} \tilde{g}_{ij} = 0, \quad V_{k}^{B} \tilde{f}_{ij} = 0$$

hold true.

Now let us put

(2.7)
$$\Gamma^{M}_{jk} = \frac{1}{2} \tilde{g}^{im} (X_k \tilde{g}_{jm} + X_j \tilde{g}_{km} - X_m \tilde{g}_{jk}),$$

where we put

$$(2.8) X_k = \partial_k - G_k^m \dot{\partial}_m.$$

Then Γ^i_{jk} is symmetric with j and k and satisfies the transformation rule of a linear connection. In the present paper, from now on, we say this Γ^i_{jk} is the modified Cartan connection of \tilde{g} , and we denote by \tilde{V} the h-covariant derivative with respect to (Γ^i_{jk}, G^i_j) . Then direct calculation leads us to

Thus we have $\overset{*}{V}_{k}\tilde{g}_{ij} = \overset{B}{V}_{k}\tilde{g}_{ij} = \overset{M}{V}_{k}\tilde{g}_{ij} = 0$. Since the coefficients $\overset{*}{\Gamma}_{jk}^{i}$, G_{jk}^{i} , $\overset{M}{\Gamma}_{jk}^{i}$ are all symmetric with j and k, and the used non-linear connections are common to these three Finsler connections. So we obtain

Hence the Finsler manifold is a Landsberg space [13]. Consequently we obtain

Theorem 2.1. Let M be a Kaehlerian Finsler manifold. Then M is a Landsberg space. Moreover the modified Cartan connection of \tilde{g} also coincides with the Cartan's Finsler connection of g, which satisfies $\tilde{V}_k f_j^i = 0$ and $\tilde{V}_k g_{ij} = \tilde{V}_k \tilde{g}_{ii} = 0$.

§3 The tangent bundle over a Kaehlerian Finsler manifold

First, for the present, we assume that M is a Rizza manifold. Let T(M) be the tangent bundle over M. Here we adopt (X_i, Y_i) as a local frame of T(M) where we put

$$(3.1) X_i = \partial_i - G_i^m \dot{\partial}_m, \ Y_i = \dot{\partial}_i.$$

Then we can define globally on T(M) a (1, 1)-tensor field F such that

(3.2)
$$F(X_i) = f_i^m X_m, \ F(Y_i) = f_i^m Y_m.$$

It is apparent that F is an almost complex structure on T(M)[7]. Moreover we can define an inner product \langle , \rangle such that

$$\langle X_i, X_j \rangle = \tilde{g}_{ij}, \ \langle X_i, Y_j \rangle = 0, \ \langle Y_i, Y_j \rangle = \tilde{g}_{ij}.$$

Then the inner product gives T(M) a globally defined Riemann metric \widetilde{G} [7]. The components of F and \widetilde{G} in terms of the frame (X_i, Y_i) are written as

(3.4)
$$F = \begin{pmatrix} f_j^i(x), & 0 \\ 0, & f_j^i(x) \end{pmatrix}, \quad \tilde{G} = \begin{pmatrix} \tilde{g}_{ij}(x, y), & 0 \\ 0, & \tilde{g}_{ij}(x, y) \end{pmatrix}.$$

In addition we have ${}^{t}F\tilde{G}F = \tilde{G}$. Therefore we obtain

Theorem 3.1. If a manifold M is a Rizza manifold, then its tangent bundle T(M) admits an almost Hermitian structure (F, \tilde{G}) .

In what follows, we show this structure (F, \tilde{G}) is an Hermitian structure if M is a Kaehlerian Finsler manifold.

For the Kaehlerian Finsler manifold M, as is shown in Theorem 1.4, the given almost complex structure $f_j^i(x)$ is integrable, that is, M is a complex manifold. So M is covered by a system of local complex coordinate neighbourhoods $\{(U,z^\alpha)\}$. If we express $z^\alpha = x^\alpha + \sqrt{-1}x^{\overline{\alpha}}$, then $(x^i) = (x^\alpha, x^{\overline{\alpha}})$ is an admissible real local coordinate of U. With respect to this (x^i) , the complex structure f has the components $\begin{pmatrix} 0, & -\delta^\alpha_\beta \\ \delta^\alpha_\beta, & 0 \end{pmatrix}$, which we denote by $J = (J^i_j)$ hereafter. We call this local coordinate (x^i) as the canonical coordinate of a Kaehlerian Finsler manifold. With respect to this canonical coordinate, the

condition $\overset{*}{V}_k f_j^i = 0$ can be written as

(3.5)
$$\Gamma^{i}_{mk}J^{m}_{j} = J^{i}_{m}\Gamma^{m}_{jk},$$

which leads us to $\Gamma^{\alpha}_{\beta j} = \Gamma^{\overline{\alpha}}_{\overline{\beta} j}$ and $\Gamma^{\alpha}_{\overline{\beta} j} = -\Gamma^{\overline{\alpha}}_{\beta j}$. Hence we have

$$G^{\alpha}_{\beta} = G^{\overline{\alpha}}_{\overline{\beta}}, \quad G^{\alpha}_{\overline{\beta}} = -G^{\overline{\alpha}}_{\beta}.$$

And, at the same time, (3.5) leads us to

$$J_m^k G_i^m = G_m^k J_i^m.$$

As to the almost complex structure F defined by (3.2), we see

$$\begin{split} F(\partial_i) &= F(X_i + G_i^m Y_m) = J_i^m X_m + G_i^m J_m^r Y_r \\ &= J_i^m X_m + J_i^m G_m^r Y_r = J_i^m \partial_m, \\ F(\dot{\partial}_i) &= J_i^m \dot{\partial}_m. \end{split}$$

Hence F is a complex structure of T(M). Thus T(M) is covered by a system of local complex coordinate neighbourhoods $\{(\pi^{-1}(U), (z^{\alpha}, \xi^{\alpha}))\}$. If we express $z^{\alpha} = x^{\alpha} + \sqrt{-1}x^{\bar{\alpha}}$, $\xi^{\alpha} = y^{\alpha} + \sqrt{-1}y^{\bar{\alpha}}$, then $(x^i; y^i) = (x^{\alpha}, x^{\bar{\alpha}}; y^{\alpha}, y^{\bar{\alpha}})$ is an admissible local real coordinate of $\pi^{-1}(U)$. With respect to this $(x^{\alpha}, x^{\bar{\alpha}}; y^{\alpha}, y^{\bar{\alpha}})$, the complex structure F has the components $\begin{pmatrix} J, & 0 \\ 0, & J \end{pmatrix}$. Hence we obtain

Theorem 3.2. On the tangent bundle over a Kaehlerian Finsler manifold, the almost Hermitian structure (F, \tilde{G}) , which is defined by (3.2) and (3.3), is an Hermitian structure.

Now the Finsler metric function $L(x^i, y^i)$ can be written as

$$L(x^{i}, y^{i}) = L\left(\frac{z^{\alpha} + \bar{z}^{\alpha}}{2}, \frac{z^{\alpha} - \bar{z}^{\alpha}}{2\sqrt{-1}}, \frac{\xi^{\alpha} + \bar{\xi}^{\alpha}}{2}, \frac{\xi^{\alpha} - \bar{\xi}^{\alpha}}{2\sqrt{-1}}\right) := H(z^{\alpha}, \bar{z}^{\alpha}; \xi^{\alpha}, \bar{\xi}^{\alpha}).$$

Here we consider the Rizza condition with respect to this complex coordinate. Since $(\phi_{\theta} y)^i = \cos \theta \cdot y^i + \sin \theta \cdot J_m^i y^m$, it is easy to see

$$(\phi_{\theta}y)^{\alpha} = \frac{1}{2}(e^{i\theta}\xi^{\alpha} + \overline{e^{i\theta}\xi^{\alpha}}), \quad (\phi_{\theta}y)^{\bar{\alpha}} = \frac{1}{2\sqrt{-1}}(e^{i\theta}\xi^{\alpha} - \overline{e^{i\theta}\xi^{\alpha}}).$$

That is, the Rizza condition (1.1) can be rewritten as

(3.8)
$$H(z^{\alpha}, \bar{z}^{\alpha}; \xi^{\alpha}, \bar{\xi}^{\alpha}) = H(z^{\alpha}, \bar{z}^{\alpha}; e^{i\theta}\xi^{\alpha}, \overline{e^{i\theta}\xi^{\alpha}}).$$

We represent by g_{ij}^* and \tilde{g}_{ij}^* the components of g_{ij} and \tilde{g}_{ij} respectively with respect to the complex coordinate $(z^i; \xi^i) = (z^\alpha, \bar{z}^\alpha; \xi^\alpha, \bar{\xi}^\alpha)$. Due to the relation

$$\left(\frac{\partial x^{i}}{\partial z^{j}}\right) = \left(\frac{\partial y^{i}}{\partial \xi^{j}}\right) = \begin{pmatrix} \frac{1}{2}\delta^{\alpha}_{\beta}, & \frac{1}{2}\delta^{\alpha}_{\beta} \\ -\sqrt{-1}}{2}\delta^{\alpha}_{\beta}, & \frac{\sqrt{-1}}{2}\delta^{\alpha}_{\beta} \end{pmatrix} \text{ and}$$

$$g^{*}_{ij} = \frac{1}{2}\frac{\partial^{2}H^{2}}{\partial \xi^{i}\partial \xi^{j}} = g_{pq}\frac{\partial x^{p}}{\partial z^{i}}\frac{\partial x^{q}}{\partial z^{j}},$$

we see

$$\begin{cases}
g_{\alpha\beta}^{*} = \frac{1}{4} \left\{ (g_{\alpha\beta} - g_{\overline{\alpha}\overline{\beta}}) - \sqrt{-1} (g_{\overline{\alpha}\beta} + g_{\alpha\overline{\beta}}) \right\}, \\
g_{\alpha\overline{\beta}}^{*} = \frac{1}{4} \left\{ (g_{\alpha\beta} + g_{\overline{\alpha}\overline{\beta}}) - \sqrt{-1} (g_{\overline{\alpha}\beta} - g_{\alpha\overline{\beta}}) \right\}, \\
g_{\overline{\alpha}\beta}^{*} = \frac{1}{4} \left\{ (g_{\alpha\beta} + g_{\overline{\alpha}\overline{\beta}}) + \sqrt{-1} (g_{\overline{\alpha}\beta} - g_{\alpha\overline{\beta}}) \right\}, \\
g_{\overline{\alpha}\beta}^{*} = \frac{1}{4} \left\{ (g_{\alpha\beta} - g_{\overline{\alpha}\overline{\beta}}) + \sqrt{-1} (g_{\overline{\alpha}\beta} + g_{\alpha\overline{\beta}}) \right\}.
\end{cases}$$

Since $\tilde{g}_{\alpha\beta} = \tilde{g}_{\alpha\bar{\beta}} = \frac{1}{2}(g_{\alpha\beta} + g_{\bar{\alpha}\bar{\beta}})$, $\tilde{g}_{\alpha\bar{\beta}} = -\tilde{g}_{\bar{\alpha}\beta} = \frac{1}{2}(g_{\alpha\bar{\beta}} - g_{\bar{\alpha}\beta})$, so we get

$$\begin{aligned}
\tilde{g}_{\alpha\beta}^{*} &= 0, \\
\tilde{g}_{\alpha\overline{\beta}}^{*} &= \frac{1}{4} \left\{ (g_{\alpha\beta} + g_{\overline{\alpha}\overline{\beta}}) - \sqrt{-1} (g_{\overline{\alpha}\beta} - g_{\alpha\overline{\beta}}) \right\}, \\
\tilde{g}_{\overline{\alpha}\beta}^{*} &= \frac{1}{4} \left\{ (g_{\alpha\beta} + g_{\overline{\alpha}\overline{\beta}}) + \sqrt{-1} (g_{\overline{\alpha}\beta} - g_{\alpha\overline{\beta}}) \right\}, \\
\tilde{g}_{\overline{\alpha}\overline{\beta}}^{*} &= 0.
\end{aligned}$$

That is, we have $\tilde{g}^*_{\alpha \overline{\beta}} = g^*_{\alpha \overline{\beta}}$. Hence we get

(3.11)
$$\tilde{g}_{\alpha\beta}^* = \tilde{g}_{\overline{\alpha}\overline{\beta}}^* = 0, \quad \tilde{g}_{\alpha\overline{\beta}}^* = \overline{\tilde{g}_{\overline{\alpha}\beta}^*} = \frac{1}{2} \frac{\partial^2 H^2}{\partial \xi^\alpha \partial \bar{\xi}^\beta}.$$

This fact tells us that the generalized Finsler metric \tilde{g}_{ij} coincides with the real representation of a complex Finsler metric in the sense of Aikou [1] etc..

Moreover, in a Kaehlerian Finsler manifold, if we examine, with respect to the canonical coordinate, the components of the torsion tensor

$$R_{jk}^{i} = \partial_k G_j^{i} - \dot{\partial}_m G_j^{i} G_k^{m} - \partial_j G_k^{i} + \dot{\partial}_m G_k^{i} G_j^{m},$$

we can show, by using (3.6),

(3.12)
$$R_{jk}^{i} + f_{r}^{i} R_{mk}^{r} f_{j}^{m} + f_{r}^{i} R_{jm}^{r} f_{k}^{m} - R_{mr}^{i} f_{j}^{m} f_{k}^{r} = 0.$$

§ 4 The Kaehlerian form on the tangent bundle over a Kaehlerian Finsler manifold

Let M be a Kaehlerian Finsler manifold and T(M) be its tangent bundle. As is shown in Theorem 3.2, T(M) admits an Hermitian structure (F, \tilde{G}) , which is defined by (3.2) and (3.3). Here we consider the condition that the Hermitian structure is Kaehlerian.

For this purpose, we consider the so-called Kaehler 2-form

(4.1)
$$\Omega = \tilde{f}_{ij} dx^i \wedge dx^j + \tilde{f}_{ij} \delta y^i \wedge \delta y^j$$

where $(dx^i, \delta y^i)$ is the local dual coframe of (X^i, Y^i) , that is,

$$\delta y^i = dy^i + G_m^i dx^m.$$

It is directly seen that

$$\begin{split} d\Omega &= X_k \tilde{f}_{ij} dx^k \wedge dx^i \wedge dx^j + (\dot{\partial}_k \tilde{f}_{ij} + \tilde{f}_{km} R^m_{ij}) \delta y^k \wedge dx^i \wedge dx^j \\ &+ \overset{B}{V_k} \tilde{f}_{ij} dx^k \wedge \delta y^i \wedge \delta y^j + \dot{\partial}_k \tilde{f}_{ij} \delta y^k \wedge \delta y^i \wedge \delta y^j. \end{split}$$

By virtue of (2.5) and (2.6), we have that (F, \tilde{G}) is a Kaehler structure if and only if

- $(1) X_k \tilde{f}_{ij} + X_i \tilde{f}_{jk} + X_j \tilde{f}_{ki} = 0,$
- (2) $\dot{\partial}_k \tilde{f}_{ij} + \tilde{f}_{km} R_{ij}^m = 0,$
- (3) $\dot{\partial}_k \tilde{f}_{ij} + \dot{\partial}_i \tilde{f}_{jk} + \dot{\partial}_j \tilde{f}_{ki} = 0.$

However, since $\overset{B}{V}_k \tilde{f}_{ij} = 0$, so $X_k \tilde{f}_{ij} = G^m_{ik} \tilde{f}_{mj} - G^m_{jk} \tilde{f}_{mi}$. Hence it is easy to see that (1) holds identically. Similarly, since $f_{ij} = g_{im} f^m_j$, so $\dot{\partial}_k f_{ij} = 2 C_{kim} f^m_j$. Hence $\dot{\partial}_k f_{ij} = \dot{\partial}_i f_{kj}$ holds true. Therefore (2.5) tells us that (3) holds identically. Thus we obtain

Theorem 4.1. Let M be a Kaehlerian Finsler manifold and T(M) be its tangent bundle. The Hermitian structure (F, \tilde{G}) shown in Theorem 3.2 is a Kaehler structure on T(M) if and only if

$$\dot{\partial}_k \tilde{f}_{ij} + \tilde{f}_{km} R^m_{ij} = 0$$

holds true.

If the given Finsler metric g_{ij} is a Riemann metric, we see directly that

$$\tilde{g}_{ij} = g_{ij}, \ \tilde{f}_{ij} = f_{ij}, \ R_{ij}^k = R_{hij}^k y^h.$$

Then the condition (4.3) is rewritten as $R_{hij}^k = 0$. Hence we obtain also

Theorem 4.2. The Hermitian structure (F, \tilde{G}) on the tangent bundle over a Kaehler manifold is a Kaehler structure if and only if the base manifold is a flat Kaehler manifold.

References

- [1] T. Aikou, Complex manifolds modeled on a complex Minkowski space, to appear in J. Math. Kyoto Univ..
- [2] S. Dragomir and S. Ianus, On the holomorphic sectional curvatures of Kaehlerian Finsler spaces, TENSOR, 39 (1982), 95–98.
- [3] J. J. Faran, Hermitian Finsler metrics and the Kobayashi metric, J. Diff. Geom., 31 (1990), 601–625.
- [4] M. Fukui, Complex Finsler manifolds, J. Math. Kyoto Univ., 29 (1989), 609-624.
- [5] M. Hashiguchi, On generalized Finsler spaces, Anal. Stii. Univ. Al. I. Cuza (IASI), Sect Ia Mat., 30 (1984), 69–73.
- [6] E. Heil, A relation between Finslerian and Hermitian metrics, TENSOR, 16 (1965), 1-3.
- [7] Y. Ichijyō, Almost complex structures of tangent bundles and Finsler metrics, J. Math. Kyoto Univ., 6 (1967), 419–452.
- [8] Y. Ichijyō, Almost Hermitian Finsler manifolds, TENSOR, 37 (1982), 279-284.
- [9] Y. Ichijyō, Almost Hermitian Finsler manifolds and non-linear connections, Conf. Sem. Mat., Univ. Bari, 214 (1986).
- [10] Y. Ichijyō, Finsler metrics on almost complex manifolds, Riv. Mat. Univ. Parma (4), 14 (1988), 1–28.
- [11] Y. Ichijyō and M. Hashiguchi; On (a, b, f)-metrics, to appear.
- [12] S. Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J., 57 (1975), 153–166.
- [13] M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha Press (Ohtsu-shi, Japan), (1986).
- [14] Y. Matsushima, Differentiable manifolds, Marcel Dekker (New York), (1972).
- [15] R. Miron, Metrical Finsler structures and metrical Finsler connections, J. Math. Kyoto Univ., 23 (1983), 219–224.
- [16] H. S. Park, On nearly Kaehlerian Finsler manifolds, TENSOR, 52 (1993), 243-248.
- [17] G. B. Rizza, Strutture di Finsler sulle varieta complesse, Atti. Acad. Naz. Lincei (Rendiconti), 33 (1962), 271–275.
- [18] G. B. Rizza, Strutture di Finsler di tipo quasi Hermitiano, Riv. Mat. Univ. Parma (2), 4 (1963), 83-106.
- [19] H. L. Royden, Complex Finsler metrics, Contemp. Math., 49 (1986), 119-124.
- [20] H. Rund, Generalized metrics on complex manifolds, Math. Nachr. 37 (1967), 55-77.