The Conductor of Some Special Points in P²

By

Tadahito HARIMA

Department of Management and Information Science, Faculty of Management and Information Science, Shikoku University, Furukawa Ohjin-cho, Tokushima 771-11,JAPAN

and

Hiroshi OKUYAMA

Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minamijohsanjima-cho, Tokushima 770, JAPAN (Received September 14, 1994)

Abstract

We describe a way of calculating the conductor of some "special" points in \mathbf{P}^2 , which are constructed by complete intersection finite sets of points. As examples, we calculate the conductor of pure configurations in \mathbf{P}^2 . Furthermore we give a necessary and sufficient condition for a pure configuration to have the Cayley-Bacharach property.

1994 Mathematics Subject Classification. Primary 13D40: Secondary 13F20

Introduction

Let A be the homogeneous coordinate ring of a set of s points $X = \{P_1, \dots, P_s\}$ in $\mathbf{P}^n = \mathbf{P}^n_k$, where k is an algebraically closed field, and let \overline{A} be the integral closure of A in its total quotient ring Q = Q(A), i.e., $\overline{A} \cong \prod_{i=1}^s k[t_i]$, where $k[t_i]$ is isomorphic to the homogeneous coordinate ring of P_i . We denote by C_X the conductor of A in \overline{A} , namely

$$C_X = \{ a \in \overline{A} \mid a\overline{A} \subset A \}.$$

F. Orecchia [7, Theorem 4.3] showed that

$$C_X = \prod_{i=1}^s t_i^{e_i} k[t_i],$$

where e_i is the least degree of any hypersurface which passes through all of X except for P_i . Accordingly we call e_i the degree of conductor of P_i in X and write $d_X(P_i) = e_i$. Also, we refer to C_X as the conductor of X.

In this note, we describe a way of calculating the conductor of some "special" points in \mathbf{P}^2 , which are constructed by complete intersection finite sets of points (see Theorem 3.1). Theorem 3.1 is viewed as an extension of Cayley-Bacharach Theorem in \mathbf{P}^2 (see Remark 2.2 (2)). As examples, we calculate the conductor of pure configurations in \mathbf{P}^2 (see Theorem 4.1). Furthermore we give a necessary and sufficient condition for a pure configuration to have the Cayley-Bacharach property (see Corollary 4.7).

1. Preliminaries

Throughout this note, let k be an algebraically closed field. Let $R = k[x_0, x_1, \dots, x_n]$ be a homogeneous coordinate ring of $\mathbf{P}^n = \mathbf{P}^n_k$ and let I be a homogeneous ideal of R. The ring $A = R/I = \bigoplus_{i \geq 0} A_i$ is a graded k-algebra of finite type. Hence the dimension of A_i as a k-vector space is finite. The Hilbert function of A is defined by $H(A,i) = \dim_k A_i$ for all $i = 0, 1, \dots$, and the Hilbert series of A is defined by $F(A, \lambda) = \sum_{i \geq 0} H(A, i) \lambda^i \in \mathbf{Z}[[\lambda]]$. We put $d = \dim A$. Then it is well-known that we can write $F(A, \lambda)$ in the form

$$F(A,\lambda) = \frac{h_0 + h_1\lambda + \dots + h_s\lambda^s}{(1-\lambda)^d}$$

for certain integers h_0, h_1, \dots, h_s satisfying $\sum h_i \neq 0$ and $h_s \neq 0$. We put s(A) = s and $e(A) = \sum_{i=0}^{s(A)} h_i$.

Assume that A is Cohen-Macaulay, and let

$$0 \longrightarrow \bigoplus_{i=1}^{t_g} R(-l_{g,i}) \longrightarrow \cdots \longrightarrow \bigoplus_{i=1}^{t_1} R(-l_{1,i}) \longrightarrow R \longrightarrow A \longrightarrow 0$$

be a minimal free resolution of A, where g = n + 1 - d. The socle type of A is defined by

$$S(A,\lambda) = \sum_{i \geq 0} (\dim_k [Tor_g^R(A,k)(g)]_i) \lambda^i \quad \text{, i.e.,} \quad S(A,\lambda) = \sum_{i=1}^{t_g} \lambda^{l_g,i-g} \ .$$

It is well-known that $l_{g,i} - g \leq s(A)$. We say that A is level if $l_{g,i} - g = s(A)$ for all $i = 1, \dots, t_g$. The Cohen-Macaulay type of A is defined by

$$r(A) = \dim_k Tor_g^R(A,k) \ \ \text{, i.e.,} \quad r(A) = S(A,1).$$

Next, let A be the homogeneous coordinate ring of a finite set X of points in \mathbf{P}^n , i.e., A=R/I(X), where I(X) is the homogeneous ideal of X generated by $\{f\in R\mid f \text{ is homogeneous and }f(P)=0 \text{ for all }P\in X\}$. We note that A is an 1-dimensional reduced ring. The Hilbert function, the Hilbert series, the socle type and the Cohen-Macaulay type of X are defined by H(X,i)=H(A,i) for all $i\geq 0$, $F(X,\lambda)=F(A,\lambda)$, $S(X,\lambda)=S(A,\lambda)$ and $F(X)=F(A,\lambda)$, respectively. We denote by |X| the number of points in X and X and X and X the

minimal number of generators of I(X). Furthermore we put e(X) = e(A) and s(X) = s(A).

Remark 1.1. Let A be the homogeneous coordinate ring of a finite set X of points in \mathbf{P}^n , and let $y \in A_1$ be a non zero-divisor. Put B = A/yA and $Soc(B) = \{f \in B \mid fg = 0 \text{ for all } g \in \bigoplus_{i\geq 1} B_i\} = \bigoplus_{i\geq 0} Soc(B)_i$. It is well-known that $Soc(B) \cong Tor_n^R(A,k)(n)$ as graded k-vector spaces. Furthermore, we note that $Soc(B) \supset B_{s(A)}$ and $Soc(B)_i = (0)$ for all i > s(A), and it is easy to check that X is level (i.e., A is level) if and only if $Soc(B) = B_{s(A)}$.

Finally, we shall recall some basic facts about Hilbert functions of points in \mathbf{P}^n .

Proposition 1.2 (cf. [3]). Let X be a finite set of points in \mathbf{P}^n . Then

- (1) e(X) = |X|.
- (2) $H(X, i) \le H(X, i + 1)$ for all $i \ge 0$.
- (3) $H(X,i) = H(X,i+1) \Rightarrow H(X,i+2) = H(X,i)$.
- (4) H(X, i) = |X| for all i >> 0.
- (5) $s(X) = \min\{i \mid H(X, i) = |X|\}.$
- (6) If $Y \subset X$ then $s(Y) \leq s(X)$.

2. The Cayley-Bacharach property

A. V. Geramita, P. Maroscia and L. Roberts gave a simple combinatorial characterization of those sequences $S = \{b_i\}_{i\geq 0}$ which are the Hilbert function of some set of points in \mathbf{P}^{b_1} , namely, $S = \{b_i\}_{i\geq 0}$ is the Hilbert function of some set of points in \mathbf{P}^{b_1} if and only if S is a zero-dimensional differentiable O-sequence (cf. [3, Theorem 4.1] for the details).

Definition (cf. [3]). Let S be a zero-dimensional differentiable O-sequence. We say that ζ is a permissible value for S if the sequence $S' = \{b'_i\}_{i \geq 0}$, where

$$b_i' = \begin{cases} b_i & 0 \le i < \zeta, \\ b_i - 1 & \zeta \le i, \end{cases}$$

is a zero-dimensional differentiable O-sequence.

Remark 2.1. Let X be a finite set of points in \mathbf{P}^n and let $P \in X$. We can check that the degree of conductor of P in X, $d_X(P)$ is necessarily a permissible value for $\{H(X,i)\}_{i\geq 0}$,

i.e.,

$$H(X \setminus \{P\}, i) = \begin{cases} H(X, i) & 0 \le i < d_X(P), \\ H(X, i) - 1 & d_X(P) \le i. \end{cases}$$

Also we have $d_X(P) \leq s(X)$ for all $P \in X$ (cf. [3, Lemma 3.3]). Furthermore, there exists a point $P \in X$ such that $d_X(P) = s(X)$ (cf. [3, Theorem 3.4]).

Definition. Let X be a finite set of points in \mathbf{P}^n . We say that X has the Cayley-Bacharach property (CBP for short) if $d_X(P) = s(X)$ for all $P \in X$.

Remark 2.2. (1) We can easily calculate the Hilbert function of a finite set X of points in P^1 , that is

$$H(X,i) = \left\{ \begin{array}{ll} i+1 & 0 \leq i < \mid X \mid, \\ \mid X \mid & \mid X \mid \leq i. \end{array} \right.$$

Hence $\{H(X,i)\}_{i\geq 0}$ has the unique permissible value $\zeta=|X|-1$. Thus by Remark 2.1, we obtain $d_X(P)=|X|-1$ for all $P\in X$. Therefore, all finite sets of points in \mathbf{P}^1 has CBP.

(2) In general, if X is a finite set of points in \mathbf{P}^n such that the coordinate ring of X is Gorenstein, then X has CBP (cf. [1, Theorem 5]). Hence, all complete intersection finite sets of points in \mathbf{P}^n has CBP (Cayley-Bacharach Theorem). Therefore if $X \subset \mathbf{P}^n$ is a complete intersection of type (a_1, \dots, a_n) , i.e., X is a set of $a_1 \cdots a_n$ points which is the intersection of hypersurfaces of degree a_i $(1 \le i \le n)$, then $d_X(P) = s(X) = a_1 + \dots + a_n - n$ for all $P \in X$.

The following result tells us the relation betwen the degree of conductor and the socle type of finite set of points in \mathbf{P}^n .

Proposition 2.3. Let X be a finite set of points in \mathbf{P}^n , and let $S(X, \lambda) = \sum_{i=0}^{s(X)} a_i \lambda^i$ be the socle type of X. Then we have

$$d_X(P) \in \{i \mid a_i \neq 0\}$$

for all $P \in X$.

PROOF. We may assume that x_0 is not a zero-divisor on A=R/I(X). Put $B=R/(I(X),x_0)=\bigoplus_{i=0}^{s(X)}B_i$ and $Y=X\setminus\{P\}$. By Remark 2.1, we obtain

$$H(Y,i) = \begin{cases} H(X,i) & 0 \le i < d_X(P), \\ H(X,i) - 1 & d_X(P) \le i. \end{cases}$$

Hence we has

$$\Delta H(Y,i) = \begin{cases} \Delta H(X,i) - 1 & i = d_X(P), \\ \Delta H(X,i) & \text{otherwise,} \end{cases}$$

where $\Delta H(X,i)$ is the difference function of X which is defined by

$$\Delta H(X,i) = H(X,i) - H(X,i-1)$$
 (here $H(X,-1) = 0$)

and is equal to H(B, i). Therefore it holds

$$\dim_k J_i = \begin{cases} 1 & i = d_X(P), \\ 0 & \text{otherwise,} \end{cases}$$

where $J = \bigoplus J_i$ is the image of I(Y) in B. Thus, there is an element $\xi \in J_{d_X(P)}$ such that $\xi \neq 0$, and we have $B_1\xi = (0)$. Hence $\xi \in Soc(B)$. This implies our assertion.

The following is clear from Proposition 2.3, so we omit the proof.

Corollary 2.4. If X is level, then X has CBP.

Remark 2.5. In general, the converse of Corollary 2.4 is not true. For example, we consider the following set X of 7-points in \mathbf{P}^2

It is easy to check that X has CBP and $S(X, \lambda) = \lambda^2 + \lambda^3$.

3. An extension of Cayley-Bacharach Theorem in P²

Let $g, g' \in R = k[x_0, x_1, x_2]$. We write $g \mid g'$ if $g' \in gR$ and $\deg g < \deg g'$.

The main theorem of this note is the following.

Theorem 3.1. Let Y_1, \dots, Y_t be finite sets of points in \mathbf{P}^2 which are complete intersection, i.e., there exist forms $g_i, h_i \in R = k[x_0, x_1, x_2]$ such that $I(Y_i) = (g_i, h_i)(1 \le i \le t)$. Put $X = \bigcup_{i=1}^t Y_i$ and $s(Y_i) = \deg g_i + \deg h_i - 2$ for all $i = 1, \dots, t$. Assume that $g_{i+1} \mid g_i$ and $h_i \mid h_{i+1}$ for all $i = 1, \dots, t-1$, and $g.c.d.\{g_1, h_t\} = 1$. Then we have

$$d_X(P) = \max_{1 \le i \le t} \{ s(Y_i) \mid P \in Y_i \}$$

for all $P \in X$.

We need some lemmas to prove Theorem 3.1.

Lemma 3.2. Let X be a finite set of points in \mathbf{P}^n , let $g \in R = k[x_0, x_1, \dots, x_n]$ be a homogeneous polynomial and put $Z = \{P \in X \mid g(P) \neq 0\}$ and $X \setminus Z = \{P \in X \mid P \not\in Z\}$. Then we have the following.

- (1) $d_X(P) \le d_Z(P) + \deg g$ for all $P \in Z$.
- (2) If $I(X \setminus Z) = (I(X), g)$, then $d_X(P) = d_Z(P) + \deg g$ for all $P \in Z$.

PROOF. Let $P \in Z$ and let f be a homogeneous polynomial such that $\deg f = d_Z(P)$, f(Q) = 0 for all points $Q \in Z \setminus \{P\}$ and $f(P) \neq 0$. Since g(Q) = 0 for all $Q \in X \setminus Z$, fg(Q) = 0 for all Q of X except for P. Furthermore since $f(P) \neq 0$ and $g(P) \neq 0$, we have $fg(P) \neq 0$. Hence $\deg fg \geq d_X(P)$. This implies the assertion of (1).

Next, let $P \in Z$ and let f be a homogeneous polynomial such that $\deg f = d_X(P)$, f(Q) = 0 for all points Q of X except for P and $f(P) \neq 0$. Since f(Q) = 0 for all $Q \in X \setminus Z$, we have $f \in I(X \setminus Z) = (I(X), g)$. Hence, f = qg + r for some $q \in R$ and $r \in I(X)$. If q(Q) = 0 for all points Q of Z except for P and $q(P) \neq 0$, then $\deg q \geq d_Z(P)$. By noting $d_X(P) = \deg f = \deg q + \deg g$, we have $d_X(P) \geq d_Z(P) + \deg g$. So, it is enough to show that q(Q) = 0 for all points Q of Z except for P and $q(P) \neq 0$. Let $Q \in Z$ and $Q \neq P$. Since f(Q) = 0 and f(Q) = 0, we have f(Q) = 0. Furthermore since $f(Q) \neq 0$. Hence f(Q) = 0 and $f(Q) \neq 0$. This completes the proof of (2).

Lemma 3.3. With the same notations as in Theorem 3.1, we have the following.

- (1) The set $\{g_1, g_2h_1, g_3h_2, \dots, g_th_{t-1}, h_t\}$ is a minimal generating set for the ideal I(X) of X.
 - (2) $Y_i \not\subset \bigcup_{i \neq i} Y_i$ for all $i = 1, \dots, t$.

PROOF. (1) Obviously, $I(X) = \bigcap_{i=1}^{t} (g_i, h_i)$. Put

$$I = (g_1, g_2h_1, g_3h_2, \cdots, g_th_{t-1}, h_t).$$

Let $P \in Y_j$, i.e., $g_j(P) = 0$ and $h_j(P) = 0$. Then we have $g_i h_{i-1}(P) = 0$ for all $i \leq j$ in view of $g_{i+1} \mid g_i$. On the other hand, we have, for all i > j, $g_i h_{i-1}(P) = 0$ by noting $h_i \mid h_{i+1}$. This implies that $I(X) \supset I$. Next, we show that $I(X) \subset I$. We prove this by induction on t. Our assertion is true for t = 1. Let t > 1. By the assumption of induction,

we have

$$\bigcap_{i=1}^{t-1} I(Y_i) = (g_1, g_2 h_1, \cdots, g_{t-1} h_{t-2}, h_{t-1}).$$

For any element $f \in I(X)$, we can write f in the forms

$$f = g_1 a_1 + g_2 h_1 a_2 + \dots + g_{t-1} h_{t-2} a_{t-1} + h_{t-1} a_t$$

or

$$f = g_t b + h_t c$$

for certain elements $a_i, b, c \in R$. Hence we have

$$g_t(g_1'a_1+g_2'h_1a_2+\cdots+g_{t-1}'h_{t-2}a_{t-1}-b)=h_{t-1}(h_t'c-a_t),$$

where $g_i = g_i'g_t$ and $h_t = h_t'h_{t-1}$. Thus, since $g.c.d.\{g_t, h_{t-1}\} = 1$, we have $h_t'c - a_t \in g_tR$, i.e., $a_t = g_tu + h_t'c$ $(u \in R)$. Hence

$$f = g_1 a_1 + g_2 h_1 a_2 + \dots + g_{t-1} h_{t-2} a_{t-1} + g_t h_{t-1} u + h_t c \in I.$$

Next we show that $\mu(X) = t + 1$. If

$$g_1 \in (g_2h_1, \cdots, g_th_{t-1}, h_t)$$

or

$$h_t \in (g_1, g_2 h_1, \cdots, g_t h_{t-1}),$$

then we have $h_1 \mid g_1$ or $g_t \mid h_t$, a contradiction. Assume that

$$g_i h_{i-1} \in (g_1, g_2 h_1, \cdots, g_{i-1} h_{i-2}, g_{i+1} h_i, \cdots, g_t h_{t-1}, h_t)$$

for some i $(1 < i \le t)$. Then there exist $a_i \in R$ such that

$$g_i h_{i-1} = g_1 a_1 + g_2 h_1 a_2 + \dots + g_{i-1} h_{i-2} a_{i-1} + g_{i+1} h_i a_i + \dots + g_t h_{t-1} a_{t-1} + h_t a_t$$

Hence we have

$$g_i h_{i-1} = g_{i-1} u + h_i v,$$

where $g_j = g'_j g_{i-1}$ for all $j \leq i-2$, $h_j = h'_j h_i$ for all $j \geq i+1$, $u = g'_1 a_1 + g'_2 h_1 a_2 + \dots + h_{i-2} a_{i-1}$ and $v = g_{i+1} a_i + g_{i+2} h'_{i+1} a_{i+1} + \dots + h'_t a_t$. Thus $g_i(h_{i-1} - g'_{i-1} u) = h_i v$, where $g_{i-1} = g'_{i-1} g_i$. Since $g.c.d.\{g_i, h_i\} = 1$, we have $h_{i-1} - g'_{i-1} u \in h_i R$, i.e., $h_{i-1} - g'_{i-1} u = h_i r$ for some $r \in R$. Hence $h_{i-1}(1 - h'_i r) = g'_{i-1} u$, where $h_i = h_{i-1} h'_i$. Thus since $g.c.d.\{h_{i-1}, g'_{i-1}\} = 1$, we have $1 - h'_i r \in g'_{i-1} R$. Therefore $1 \in (h'_i, g'_{i-1}) R$. But, since g'_{i-1} and h'_i are homogeneous polynomials with positive degree, $1 \not\in (g'_{i-1}, h'_i)$, a contradiction.

(2) Put $X' = \bigcup_{j \neq i} Y_j$. We show that $I(X') \neq I(X)$. From (1), we have $g_{i+1}h_{i-1} \in I(X')$. Assume that I(X') = I(X). Hence $g_{i+1}h_{i-1} \in I(X)$. By noting $I(X) \subset I(Y_i)$, we can write $g_{i+1}h_{i-1} = g_iu + h_iv$, where $u, v \in R$. Hence $g_{i+1}(h_{i-1} - g_i'u) = h_iv$, where $g_i = g_i'g_{i+1}$.

Thus, since $g.c.d.\{g_{i+1}, h_i\} = 1$, we have $h_{i-1} - g'_i u \in h_i R$, i.e., $h_{i-1} - g'_i u = h_i r$ $(r \in R)$. Hence, $h_{i-1}(1 - h'_i r) = g'_i u$, where $h_i = h'_i h_{i-1}$. Thus $1 - h'_i r \in g'_i R$. Therefore $1 \in (g'_i, h'_i)$. But, since g'_i and h'_i are homogeneous polynomials with positive degree, $1 \notin (g'_i, h'_i)$, a contradiction.

Lemma 3.4. With the same notations as in Theorem 3.1, we put $Z = \{P \in X \mid g_i(P) \neq 0\}$ and $W = \{P \in X \mid h_i(P) \neq 0\}$ for some i. Then we have $I(X \setminus Z) = (I(X), g_i)$ and $I(X \setminus W) = (I(X), h_i)$.

PROOF. Obviously, $I(X \setminus Z) \supset (I(X), g_i)$. By noting Lemma 3.3 and $g_{j+1} \mid g_j$, we have

$$I(Y_i \cup \cdots \cup Y_t) = (g_i, g_{i+1}h_i, \cdots, g_th_{t-1}, h_t) = (I(X), g_i).$$

Since $X \setminus Z \supset Y_i \cup \cdots \cup Y_t$, we have $I(X \setminus Z) \subset I(Y_i \cup \cdots \cup Y_t)$. Hence $I(X \setminus Z) \subset (I(X), g_i)$. Thus $I(X \setminus Z) = (I(X), g_i)$. The proof of the equality $I(X \setminus W) = (I(X), h_i)$ is the same as above. We note that $X \setminus Z = Y_i \cup \cdots \cup Y_t$ and $X \setminus W = Y_1 \cup \cdots \cup Y_i$.

Lemma 3.5. With the same notations as in Lemma 3.4, let Y'_j $(1 \le j < i)$ be subsets of Y_j defined by g'_j, h_j , where $g_j = g'_j g_i$. Furthermore let Y'_j $(i < j \le t)$ be subsets of Y_j defined by g_j, h'_j , where $h_j = h'_j h_i$. Then $Z = \bigcup_{j=1}^{i-1} Y'_j$ and $W = \bigcup_{j=i+1}^{t} Y'_j$.

PROOF. Let $P \in Z$, i.e., $g_i(P) \neq 0$. Hence, since $g_j(P) \neq 0$ for all $j \geq i$, we have $P \notin Y_j$ for all $j \geq i$. Therefore $P \in Y_j$ for some j, where $1 \leq j < i$. Since $g_j(P) = 0$ and $g_i(P) \neq 0$, we have $g'_j(P) = 0$. Thus $P \in Y'_j$, i.e., $Z \subset \bigcup_{j=1}^{i-1} Y'_j$. Let $P \in \bigcup_{j=1}^{i-1} Y'_j$, i.e., $P \in Y'_j$ for some j $(1 \leq j < i)$. Hence $g'_j(P) = 0$. We note that Y_j is the set of $(\deg g_j)(\deg h_j)$ distinct points. Hence, by Bezout's Theorem, the intersection number of C_1 and C_2 at P is one, where C_1 and C_2 are the curves defined by g_j and h_j , respectively. Thus, since $g'_j(P) = 0$ and $g_j = g'_j g_i$, the intersection number of C'_1 and C_2 at P is zero, where C'_1 is the curve defined by g_i . Therefore $g_i(P) \neq 0$, i.e., $Z \supset \bigcup_{j=1}^{i-1} Y'_j$. Hence $Z = \bigcup_{j=1}^{i-1} Y'_j$.

The proof of $W = \bigcup_{i=i+1}^t Y_i'$ is the same as above.

Lemma 3.6. With the same notations as in Theorem 3.1, we have

$$s(X) = \max\{s(Y_i) \mid 1 \le i \le t\}.$$

PROOF. We use induction on t. By Remark 2.2 (2), our assertion is true for t = 1. Let

t > 1. By Lemma 3.3, we have

$$I(Y_1 \cup \cdots \cup Y_{t-1}) = (g_1, g_2 h_1, \cdots, g_{t-1} h_{t-2}, h_{t-1}).$$

Hence, by $g_t \mid g_i$ for all $1 \le i \le t - 1$ and $h_{t-1} \mid h_t$, we have

$$I(Y_1 \cup \cdots \cup Y_{t-1}) + I(Y_t) = (g_t, h_{t-1}).$$

Thus we obtain the following exact sequence

$$0 \longrightarrow R/I(X) \longrightarrow R/I(Y_1 \cup \cdots \cup Y_{t-1}) \oplus R/I(Y_t) \longrightarrow R/(g_t, h_{t-1}) \longrightarrow 0.$$

Hence, in view of Proposition 1.2 (5) and Remark 2.2 (2), we obtain

$$s(X) \le \max\{s(Y_1 \cup \cdots \cup Y_{t-1}), s(Y_t), s(R/(g_t, h_{t-1}))\}.$$

From the assumption of induction, we have

$$s(Y_1 \cup \cdots \cup Y_{t-1}) = \max\{s(Y_i) \mid 1 \le i \le t-1\}.$$

Furthermore we can check that

$$s(Y_{t-1}) \ge \deg g_t + \deg h_{t-1} - 2 = s(R/(g_t, h_{t-1})).$$

Thus, we have

$$s(X) \le \max\{s(Y_i) \mid 1 \le i \le t\}.$$

On the other hand, from Proposition 1.2 (6), we have $s(Y_i) \leq s(X)$ for all $i = 1, \dots, t$. Hence we obtain

$$s(X) = \max\{s(Y_i) \mid 1 \le i \le t\}.$$

We now start to prove Theorem 3.1.

Proof of Theorem 3.1. We use induction on t. By Remark 2.2 (2), our assertion is true for t = 1. Let t > 1. By Lemma 3.6, there exists an integer j such that $s(X) = s(Y_j)$. Since $d_X(P) \ge d_{Y_j}(P)$ for all $P \in Y_j$, we have $d_X(P) = s(Y_j)$ for all $P \in Y_j$ by Remark 2.1. Put $Y = \{P \in X \mid P \notin Y_j\}$, $Z = \{P \in X \mid g_j(P) \ne 0\}$ and $W = \{P \in X \mid h_j(P) \ne 0\}$. Obviously $Y = Z \cup W$. By Lemma 3.4, we have $I(X \setminus Z) = (I(X), g_j)$ and $I(X \setminus W) = (I(X), h_j)$. Hence, by Lemma 3.2, we have, for all $P \in X$,

$$d_X(P) = \begin{cases} d_Z(P) + \deg g_j & \text{if } P \in Z, \\ d_W(P) + \deg h_j & \text{if } P \in W. \end{cases}$$

Thus by Lemma 3.5 and by the assumption of induction, we have, for all $P \in X$,

$$d_X(P) = \begin{cases} \max_{1 \le i < j} \{ s(Y_i') \mid P \in Y_i' \} + \deg g_j & \text{if } P \in Z, \\ \max_{j < i \le t} \{ s(Y_i') \mid P \in Y_i' \} + \deg h_j & \text{if } P \in W. \end{cases}$$

Therefore it follows that for all $P \in X$,

$$d_X(P) = \max_{1 \le i \le t} \{ s(Y_i) \mid P \in Y_i \}.$$

This completes the proof.

The following is clear from Theorem 3.1, so we omit the proof.

Corollary 3.7. With the same notations of Theorem 3.1, if $s(Y_i) = s(Y_{i+1})$ for all $i = 1, \dots, t-1$, then X has CBP.

4. Examples

Let $R = k[x_0, x_1, x_2]$ be a homogeneous coordinate ring of \mathbf{P}^2 . In this section, we calculate the conductor of pure configurations in \mathbf{P}^2 :

Definition (cf. [5]). A pure configuration in \mathbf{P}^2 is a finite set X of points in \mathbf{P}^2 which satisfies the following conditions:

There exist distinct elements $c_1, \dots, c_u \in k$ such that

- (i) X is the disjoint union of $X \cap L_1, \dots, X \cap L_u$, where L_i is the line defined by $x_2 c_i x_0 = 0$.
- (ii) $\varphi(X \cap L_i) \supset \varphi(X \cap L_{i+1})$ for all $i = 1, \dots, u-1$, where $\varphi : \mathbf{P}^2 \setminus \{(0, 0, 1)\} \longrightarrow \mathbf{P}^1$ is the map defined by sending the point (a_0, a_1, a_2) to the point (a_0, a_1) .

We put $d_i = |X \cap L_i|$ for all $i = 1, \dots, u$. By the condition (ii), we have $d_1 \geq \dots \geq d_u$. The type of X is defined by $type(X) = (d_1, \dots, d_u)$ and we write $X = X(d_1, \dots, d_u)$.

If $d_1 > d_u$, then we put $r_1 = \min\{j \mid d_j > d_{j+1}\}$, and, inductively, if $d_{r_i+1} > d_u$, then $r_{i+1} = \min\{j > r_i \mid d_j > d_{j+1}\}$. If $d_1 = d_u$, then we put $r_1 = u$. Furthermore we denote by t(X) the number of distinct natural numbers in $\{d_1, \dots, d_u\}$. The r-type of X is defined by $(r_1, \dots, r_{t(X)})$, where $r_{t(X)} = u$.

Let $\{b_1, \dots, b_{d_1}\}$ be the x_1 -coordinates of points in $X \cap L_1$, and let L'_j be the line defined by $x_1 - b_j x_0 = 0$ for all $j = 1, \dots, d_1$. Note that X is the disjoint union of $X \cap L'_1, \dots, X \cap L'_{d_1}$. We may assume that $|X \cap L'_j| \ge |X \cap L'_{j+1}|$ for all $j = 1, \dots, d_1 - 1$.

Put

$$g_i = \prod_{j=1}^{d_{r_i}} (x_1 - b_j x_0)$$
 and $h_i = \prod_{j=1}^{r_i} (x_2 - c_j x_0)$

for all $i = 1, \dots, t \ (= t(X))$. Furthermore we put

$$Y_i = \{ P \in X \mid g_i(P) = 0 \text{ and } h_i(P) = 0 \}$$

for all $i = 1, \dots, t \ (= t(X))$, and we call Y_1, \dots, Y_t the CI-subsets of X.

The following theorem can be proved by using Theorem 3.1. So we omit the proof.

Theorem 4.1. Let $X = X(d_1, \dots, d_u)$ be a pure configuration in \mathbf{P}^2 , (r_1, \dots, r_t) be the r-type of X where t = t(X) and let Y_1, \dots, Y_t be the CI-subsets of X. Then we have

$$d_X(P) = \max \{d_{r_i} + r_i - 2 \mid P \in Y_i\}$$

for all $P \in X$.

Example 4.2. Let X be the following set of 38 points in P^2

Then we have X = X(9,8,8,3,3,3,2,2), and the r-type of X is (1,3,6,8). Furthermore we obtain

Also, the CI-subsets Y_1, Y_2, Y_3, Y_4 of X are as follows.

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline Y_4\\ \hline & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \circ & \circ & \\ \hline & \circ & \circ & \circ & \circ & \circ & \circ \\ \hline & \circ & \circ & \circ & \circ & \circ & \circ & \\ \hline & \bullet & \circ & \circ & \circ & \circ & \circ & \\ \hline & \bullet & \circ & \circ & \circ & \circ & \circ & \circ \\ \hline & \bullet & \circ & \circ & \circ & \circ & \circ & \circ \\ \hline \end{array}$$

Accordingly we can calculate the degree of conductor of all points in X as follows.

$$d_X(P) = \left\{ \begin{array}{ll} 7 & \text{for 3 points such that } P \in Y_3, P \not\in Y_2 \text{ and } P \not\in Y_4, \\ 8 & \text{for 11 points such that } P \in Y_1 \cup Y_4 \text{ and } P \not\in Y_2, \\ 9 & \text{for 24 points } P \in Y_2. \end{array} \right.$$

Consequently we have

$$C_X = \prod_{i=1}^3 t_i^7 k[t_i] \prod_{i=4}^{14} t_i^8 k[t_i] \prod_{i=15}^{38} t_i^9 k[t_i] .$$

The following is clear from Theorem 4.1, so we omit the proof.

Corollary 4.3. Let X and X' be pure configurations in \mathbf{P}^2 . If type(X) = type(X') then $C_X = C_{X'}$.

Example 4.4. Let X' be the following set of 38 points in \mathbf{P}^2

Then we have X' = X'(9, 8, 8, 3, 3, 3, 2, 2). Thus by Corollary 4.3, we obtain

$$C_{X'} = \prod_{i=1}^{3} t_i^7 k[t_i] \prod_{i=4}^{14} t_i^8 k[t_i] \prod_{i=15}^{38} t_i^9 k[t_i] .$$

Next, we recall some results about pure configurations in \mathbf{P}^2 from [5].

Definition. Let $\tau_1 = \{\tau_{1,i}\}, \dots, \tau_m = \{\tau_{m,i}\}$ be sequences of non-negative integers. We denote by $H^{(\tau_1,\dots,\tau_m)}$ the sequence obtained as follows.

Write down the sequences τ_1, \dots, τ_m , successively shifted to the right and add:

$$T_m: \qquad T_{m,0}, \cdots \\ T_{m-1}: \qquad T_{m-1,0}, T_{m-1,1}, \cdots \\ \cdots \qquad \cdots \qquad \cdots \\ T_2: \qquad T_{2,0}, T_{2,1}, \cdots \\ T_1: T_{1,0}, T_{1,1}, T_{1,2}, \cdots \cdots \\ \hline H^{(\tau_1, \dots, \tau_m)}: \qquad \cdots$$

Hence

$$H^{(\tau_1,\dots,\tau_m)}(i) = \sum_{j=1}^m \tau_{j,i+1-j}, \text{ where } \tau_{j,l} = 0 \text{ for } l < 0.$$

Theorem 4.5 (cf. [5, Theorem 3.1]). Let $X = X(d_1, \dots, d_u)$ be a pure configuration in \mathbf{P}^2 , and (r_1, \dots, r_t) be the r-type of X where t = t(X). For all $i = 1, \dots, u$, let τ_i be the sequence $1, 2, \dots, d_i, \longrightarrow$ (continuing with this constant value d_i). Then

- (1) $H(X) = H^{(\tau_1, \dots, \tau_u)}$.
- (2) $\mu(X) = t + 1$.
- (3) $S(X, \lambda) = \sum_{i=1}^{t} \lambda^{d_{r_i} + r_i 2}$.
- (4) r(X) = t.
- (5) X is level if and only if $d_{r_i} + r_i = d_{r_{i+1}} + r_{i+1}$ for all $i = 1, \dots, t-1$.

Remark 4.6. Let X be a finite set of points in \mathbf{P}^2 and $S(X,\lambda) = \sum_{i=0}^{s(X)} a_i \lambda^i$ the socle type of X. In general, for an integer i such that $a_i \neq 0$, it does not necessarily exist a point $P \in X$ such that $d_X(P) = i$. For example, see Remark 2.5. But it follows from Lemma 3.3 (2) and Theorem 4.1 that if X is a pure configuration, then for each i $(1 \leq i \leq t)$, there exists a point $P \in X$ such that $d_X(P) = d_{r_i} + r_i - 2$.

Corollary 4.7. Let $X = X(d_1, \dots, d_u)$ be a pure configuration in \mathbf{P}^2 and (r_1, \dots, r_t) be the r-type of X. Then X has CBP if and only if $d_{r_i} + r_i = d_{r_{i+1}} + r_{i+1}$ for all $i = 1, \dots, t-1$.

PROOF. The assertion follows from Theorem 4.1 and Remark 4.6.

Example 4.8. Let X be the following set of points in \mathbf{P}^2

Then we have X = X(5, 5, 4, 2, 2), and the r-type of X is (2,3,5). Therefore, we obtain

Thus by Corollary 4.7, X has CBP in this case.

References

- [1] E. D. Davis, A. V. Geramita and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597.
- [2] W. Fulton, Algebraic Curves, Benjamin, New York (1969).
- [3] A. V. Geramita, P. Maroscia and L. Roberts, The Hilbert function of a reduced K-algebra, The Curves Seminar at Queen's papers in Pure and Applied Math. 61 (1982), Kingston, Ontario, Canada.
- [4] T, Harima, Some examples of unimodal Gorenstein sequences, to appear in J. Pure Appl. Algebra.
- [5] _____, Hilbert functions of pure configurations in \mathbf{P}^n , Preprint, 1994.
- [6] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
- [7] F. Orecchia, Points in generic position and the conductor of curves with ordinary singularities, J. London Math. Soc. 24 (1981), 85-96.
- [8] A. Sodhi, The conductor of points having the Hilbert function of a complete intersection in **P**², Can. J. Math. Vol. **44** (1) (1992), 167-179.