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Abstract

We describe a way of calculating the conductor of some “special” points in P2,
which are constructed by complete intersection finite sets of points. As examples, we
calculate the conductor of pure configurations in P2, Furthermore we give a neces-
sary and sufficient condition for a pure configuration to have the Cayley-Bacharach

property.
1994 Mathematics Subject Classification. Primary 13D40: Secondary 13F20

Introduction

Let A be the homogeneous coordinate ring of a set of s points X = {Py,---, P} in
P" = P}, where k is an algebraically closed field, and let A be the integral closure of A
in its total quotient ring Q@ = Q(A4), i.e., A = [, k[t;], where k[t;] is isomorphic to the
homogeneous coordinate ring of P;. We denote by Cx the conductor of A in A, namely

Cx={a€ed | dACcA}

F. Orecchia [7, Theorem 4.3] showed that
Cx = Htf‘k[t,],
i=1

where e; is the least degree of any hypersurface which passes through all of X except for
P;. Accordingly we call e; the degree of conductor of P; in X and write dx(P;) = e;. Also,
we refer to C'x as the conductor of X.
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In this note, we describe a way of calculating the conductor of some “special” points in
P2, which are constructed by complete intersection finite sets of points (see Theorem 3.1).
Theorem 3.1 is viewed as an extension of Cayley-Bacharach Theorem in P? (see Remark 2.2
(2)). As examples, we calculate the conductor of pure configurations in P? (see Theorem
4.1). Furthermore we give a necessary and sufficient condition for a pure configuration to
have the Cayley-Bacharach property (see Corollary 4.7).

1. Preliminaries

Throughout this note, let £ be an algebraically closed field. Let R = k[zo, 21, -+, 2,] be
a homogeneous coordinate ring of P* = P} and let I be a homogeneous ideal of R. The
ring A = R/I = @;»¢ A; is a graded k-algebra of finite type. Hence the dimension of A;
as a k-vector space is finite. The Hilbert function of A is defined by H(A, 1) = dimy A; for
alli=0,1,.--, and the Hilbert series of A is defined by F(A,\) = ¥;50 H(A, )N € Z[[)]].
We put d = dim A. Then it is well-known that we can write F/(4, \) in the form

ho +hiA 4+ h A
FAN = =—1 55

for certain integers hg, Ay, -, h, satisfying 3°h; # 0 and hy, # 0. We put s(A) = s and
e(4) = T b
Assume that A is Cohen-Macaulay, and let

tg 4
0— PRrR(-ly;) — - — @PR(-l;) wR— A—0
i=1

=1

be a minimal free resolution of A, where g =n + 1 — d. The socle type of A is defined by

g

S(A,N) =Y (dime[Tor (A, k)(9)])N | ie., S(A,N) =Y N9
20 i=1

It is well-known that I;; ~ g < s(A). We say that A is level if Ij; — g = s(A) for all

i=1,..-,t,. The Cohen-Macaulay type of A is defined by

r(A) = dim; Torf(A,k) ,ie, 7(4)=S(4,1).

Next, let A be the homogeneous coordinate ring of a finite set X of points in P", i.e.,
A = R/I(X), where I(X) is the homogeneous ideal of X generated by {f € R | f is
homogeneous and f(P) = 0 for all P € X}. We note that A is an 1-dimensional reduced
ring. The Hilbert function, the Hilbert series, the socle type and the Cohen-Macaulay type
of X are defined by H(X,i) = H(A,q) for all i > 0, F(X,\) = F(A,\), $(X, ) = S(4, )
and r(X) = r(A), respectively. We denote by | X | the number of points in X and u(X) the
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minimal number of generators of I(X). Furthermore we put e(X) = e(A) and s(X) = s(A).

Remark 1.1. Let A be the homogeneous coordinate ring of a finite set X of points in
P", and let y € A; be a non zero-divisor. Put B = A/yA and Soc(B) ={f € B| fg=0
for all g € @1 Bi} = Bizo Soc(B);. It is well-known that Soc(B) = Tor(A,k)(n) as
graded k-vector spaces. Furthermore, we note that Soc(B) D Bja) and Soc(B); = (0)
for all 4 > s(A), and it is easy to check that X is level (i.e., A is level) if and only if
SOC(B) = Bs(A)-

Finally, we shall recall some basic facts about Hilbert functions of points in P".

Proposition 1.2 (cf. [3]). Let X be a finite set of poinis in P™. Then
(1) e(X) =[ X |.

(2) H(X,t1) < H(X,i+1) for alli > 0.

(3) H(X,i) = H(X,i+1) = H(X,i+2) = H(X,i)

(4) H(X,i) =| X | for all i >> 0.

(5) s(X)=min{i | H(X,1) =| X |}.

(6) If Y C X then s(Y) < s(X).

2. The Cayley-Bacharach property

A. V. Geramita, P. Maroscia and L. Roberts gave a simple combinatorial characteriza-
tion of those sequences S = {b;};>o which are the Hilbert function of some set of points in
Pb, namely, S = {b;}i>¢ is the Hilbert function of some set of points in P* if and only if
S is a zero-dimensional differentiable O-sequence ( cf. [3, Theorem 4.1] for the details ).

Definition (cf. [3]). Let S be a zero-dimensional differentiable O-sequence. We say
that ¢ is a permissible value for S if the sequence S' = {b;}i»o, where

by [ b 0<i<(,
T -1 (<,

is a zero-dimensional differentiable O-sequence.

Remark 2.1. Let X be a finite set of points in P™ and let P € X. We can check that the
degree of conductor of P in X, dx(P) is necessarily a permissible value for {H(X,1)}i>0,
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ie.,
: H(X,i) 0 <i<dx(P),
H(X\{P =
(AP { H(X,) -1 dx(P)<i.
Also we have dx(P) < s(X) for all P € X (cf. [3, Lemma 3.3]). Furthermore, there exists
a point P € X such that dx(P) = s(X) (cf. [3, Theorem 3.4]).

Definition. Let X be a finite set of points in P*. We say that X has the Cayley-
Bacharach property ( CBP for short ) if dx(P) = s(X) for all P € X.

Remark 2.2. (1) We can easily calculate the Hilbert function of a finite set X of points
in P!, that is
N i+l 0<Zig X,
nxo={ 1) 15ied
Hence {H(X,14)}:»o has the unique permissible value ¢ =| X | =1. Thus by Remark 2.1,
we obtain dx(P) =| X | —1 for all P € X. Therefore, all finite sets of points in P! has
CBP.

(2) In general, if X is a finite set of points in P" such that the coordinate ring of X is
Gorenstein, then X has CBP (cf. {1, Theorem 5]). Hence, all complete intersection finite
sets of points in P" has CBP (Cayley-Bacharach Theorem). Therefore if X ¢ P" is a
complete intersection of type (ai,---,a,), i.e., X is a set of a; - - - a, points which is the
intersection of hypersurfaces of degree a; (1 < ¢ < n), then dx(P) = s(X) = a1+ - -+a,—n
forall P € X.

The following result tells us the relation betwen the degree of conductor and the socle
type of finite set of points in P™.

Proposition 2.3. Let X be a finite set of points in P", and let S(X,\) = £255) a; X be
the socle type of X. Then we have

dx(P) € {i| a; # 0}
forallP e X.

PROOF. We may assume that zo is not a zero-divisor on A = R/I(X). Put B =
R/(I(X),20) = &%) B; and Y = X\{P}. By Remark 2.1, we obtain

L[ HXG)  0<i<dx(P),
B9 “{ H(X,i) -1 dx(P) g;{.
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Hence we hea-
AH(X,i)—1 1i=dx(P),

AH(X,1) otherwise,
where AH(X, 1) is the difference function of X which is defined by

AH(X,i)=H(X,i)— H(X,i—1) (here H(X,-1)=0)
and is equal to H(B,i). Therefore it holds

AH(Y,i) = {

1 1= dx(P),

d. J,' =
i { 0 otherwise,

where J = @ J; is the image of I(Y') in B. Thus, there is an element £ € Jy,(p) such that
& # 0, and we have Bi¢ = (0). Hence & € Soc(B). This implies our assertion.

The following is clear from Proposition 2.3, so we omit the proof.
Corollary 2.4. If X is level, then X has CBP.

Remark 2.5. In general, the converse of Corollary 2.4 is not true. For example, we
consider the following set X of 7-points in P?

It is easy to check that X has CBP and S(X, ) = A2 + A3,

8. An extension of Cayley-Bacharach Theorem in P?

Let g,9' € R = k[zg,21,%2]. We write ¢ | ¢ if ¢’ € gR and degg < degg'.

The main theorem of this note is the following.

Theorem 3.1. Let Yy, --,Y; be finite sets of points in P2 which are complete intersec-
tion, i.e., there exist forms gi,h; € R = k[xg,z1, xo] such that I(Y;) = (g;, h;)(1 < i < t).
Put X = Uj_,Y; and s(Y;) = degg; + degh; — 2 for alli = 1,---,t. Assume that giy1 | g;
and b | hiyy foralli=1,---,t -1, and g.c.d.{g;,h} = 1. Then we have

dx(P) = max{s(Yi) | P € Y}
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forallP e X.

We need some lemmas to prove Theorem 3.1.

Lemma 3.2. Let X be a finite set of points in P™, let g € R = k[xo, %1, ,Zs) be a
homogeneous polynomial and put Z = {P € X | g(P) # 0} and X\Z ={P € X | P ¢ Z}.
Then we have the following.

(1) dx(P) < dz(P) +degg forall P € Z.

(2) If I(X\Z) = (I(X),9), then dx(P) = dz(P)+degg for all P € Z.

PROOF. Let P € Z and let f be a homogeneous polynomial such that deg f = dz(P),
f(Q) = 0 for all points @ € Z\{P} and f(P) # 0. Since g(Q) = 0 for all @ € X\Z,
fa(Q) = 0 for all Q of X exceptfor P. Furthermore since f(P) # 0 and g(P) # 0, we
have fg(P) # 0. Hence deg fg > dx(P). This implies the assertion of (1).

Next, let P € Z and let f be a homogeneous polynomial such that deg f = dx(P),
f(Q) = 0 for all points Q of X except for P and f(P) # 0. Since f(Q) =0forall Q € X\Z,
we have f € I(X\Z) = (I(X),g). Hence, f = qg+ r for some ¢ € R and r € I(X). If
¢(Q) = 0 for all points Q of Z except for P and ¢(P) # 0, then deggq > dz(P). By noting
dx(P) = deg f = deg q + deg g, we have dx(P) > dz(P) + degg. So, it is enough to show
that ¢(Q) = 0 for all points Q of Z except for P and ¢(P) # 0. Let Q € Z and Q # P.
Since f(Q) = 0 and 7(Q) = 0, we have ¢g(Q) = 0. Furthermore since Q € Z, ¢g(Q) # 0.
Hence ¢(Q) = 0. Also, since f(P) # 0 and r(P) = 0, gg(P) # 0. Furthermore since P € Z,
g(P) # 0. Hence g(P) # 0. This completes the proof of (2).

Lemma 3.3. With the same notations as in Theorem 3.1, we have the following.

(1) The set {g1, g2h1, g3ha, - -, gthi=1,hi} is a minimal generating set for the ideal I(X)
of X.

(2)Y; g Ui Yj foralli=1,--- 1.

PROOF. (1) Obviously, I(X) = Ni.;(gi, h:). Put
I = (91,92’117 93}12, e )gtht~13 hi)

Let P € Y}, ie, g;(P) = 0 and hj(P) = 0. Then we have g;h;—1(P) = 0 for all ¢ < j
in view of giy1 | ¢;- On the other hand, we have, for all ¢ > j, g:hi—1(P) = 0 by noting
hi | hiy1. This implies that I(X) D I. Next, we show that I(X) C I. We prove this by
induction on £. Our assertion is true for t = 1. Let t > 1. By the assumption of induction,
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we have
t—1

n I(K) = (g1)g2hly e ’gt-—-lht—?y ht~l)'

i=1

For any element f € I(X), we can write f in the forms
f=qa1+ gl + - + gi1hi20i1 + hio1a
or
f=gb+hec

for certain elements a;,b,¢ € R. Hence we have
glghar + gohiaa + - -+ + gi_1huae1 — b) = hea(hie — a),

where g; = gig: and h; = hih,_1. Thus, since g.c.d.{g:, hi—1} = 1, we have hjc — a; € ¢;R,
ie., a; = giu + hic (v € R). Hence

f=gi01+ ghias + -+ + gio1hi—20i1 + gy 1u + hc € 1.

Next we show that u(X) =t+1. If

q1 € (92h1, o ,gth‘t—la ht)

or
ht € (gl>g2h1> v )gth't~1))

then we have hy | g or g; | h:, a contradiction. Assume that
gihi-1 € (91,9201, -+, gimthiz2, Giv1his -+, g1, )
for some ¢ (1 < i <t). Then there exist a; € R such that
gihi-1 = qran + gahiag + -+ - + gim1hicaaiy + Giprhiai + - + ghuo16i-1 + hyay.

Hence we have
gihi1 = giiu + hyv,

where g; = g;gi_l forall j < i-2, h_,' = h;hz for &11] >i+l,u= g’la1+g§h1a2+~ cethi_oa; g
and v = g;110; + giyali 1 0ip1 + - - + Ria,. Thus gi(hi—1 — g_ u) = h;v, where g;_; = gg_lg,-‘.
Since g.c.d.{gi, i} = 1, we have h;_1 — g}_ u € IR, i.e., hj-1 — g/_ju = h;r for some r € R.
Hence h;—1(1 — hir) = gi_ju, where h; = h;_1h}. Thus since g.c.d-{hi-1,g}_;} = 1, we
have 1 — hir € gi_, R. Therefore 1 € (h},g,_,)R. But, since ¢;_, and k! are homogeneous
polynomials with positive degree, 1 ¢ (gi_,, hl), a contradiction.

(2) Put X' = U;; Y;. We show that I(X’) # I(X). From (1), we have gy hi_1 € I(X").
Assume that I(X') = I(X). Hence g;;1hi—1 € I(X). By noting I(X) C I(Y;), we can write
gir1thi-1 = giu + hyv, where u,v € R. Hence gi11(hi—1 — glu) = hyv, where g; = glgis1.
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Thus, since g.c.d.-{gi+1,h:} = 1, we have h;_y — gju € hR, i.e., hioy — giu = hyv (r € R).
Hence, h;—1(1 — hir) = glu, where h; = hih;_;. Thus 1 — hir € ¢g;R. Therefore 1 € (g;, h7).
But, since gi and A} are homogeneous polynomials with positive degree, 1 & (gi,h;), a
contradiction.

Lemma 3.4. With the same notations as in Theorem 3.1, we put Z = {P € X | g:(P) #
0} and W = {P € X | hy(P) # 0} for some i. Then we have I(X\Z) = (I(X), g:) and
I{X\W) = (I(X), h).

PROOF. Obviously, I(X\Z) D (I(X), ¢:). By noting Lemma 3.3 and g;, | g;, we have
I(Y;U---UY)) = (95, givrhi, -+, gthe1, he) = (1(X), g2)-

Since X\Z D Y;U..-UY,, we have I(X\Z) C I(Y;U---UY,). Hence I(X\Z) C (I(X), ).
Thus I(X\Z) = (I(X), ;). The proof of the equality I(X\W) = (I(X), h;) is the same as
above. We note that X\Z =Y;U.---UY,and X\W =Y, U.--UY..

Lemma 3.5. With the same notations as in Lemma 3.4, let Y] (1 < j < i) be subsets
of Y; defined by g;, h;, where g; = g;g;. Furthermore let Y] (i < j < t) be subsets of Y;
defined by g;, Iy, where h; = Wihi. Then Z = U1 Y] and W = Ul Y],

PROOF. Let P € Z,i.e., gi(P) # 0. Hence, since g;(P) # 0 for all j > i, we have P ¢ Y;
for all j > 4. Therefore P € Yj for some j, where 1 < j < 4. Since g;(P) = 0 and ¢;(P) # 0,
we have gj(P) = 0. Thus P € Y/, ie, Z C UL} Y/. Let P € UiZ} Y/, i.e, P € Y] for some
j (1 £j <i). Hence gj(P) = 0. We note that Y is the set of (degg;)(deg h;) distinct
points. Hence, by Bezout’s Theorem, the intersection number of Cy and C, at P is one,
where Cy and C; are the curves defined by g; and hy, respectively. Thus, since gi(P) = 0
and g; = ¢}g:, the intersection number of C] and C; at P is zero, where C7 is the curve
defined by g;. Therefore g;(P) # 0, i.e., Z D Uiz} Y/. Hence Z = UiZ} Y.

The proof of W = U_;;, Y/ is the same as above

Lemma 3.6. With the same notations as in Theorem 3.1, we have

s(X) =max{s(¥;) |1 <i <t}

PrROOF. We use induction on ¢. By Remark 2.2 (2), our assertion is true for ¢t = 1. Let
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t > 1. By Lemma 3.3, we have

I(Y1U---UYiy) = (g1, 0201, Gerhuea, hemr)
Hence, by g, | g; for all 1 < ¢ <t —1 and h;—; | hy, we have

IMViU---UY) + I(Y2) = (g4, he-1)-
Thus we obtain the following exact sequence
0 — R/I(X) — R/I(Y1U---UY) ® R/I(Y;) — R/(g:, her) — 0.
Hence, in view of Proposition 1.2 (5) and Remark 2.2 (2), we obtain
$(X) < max{s(Y1U -+ UYi1),s(Ys), s(R/(ge, 1)) }-

From the assumption of induction, we have

s(YiU---UYp) =max{s(Y;) |1 <i<t -1}
Furthermore we can check that

5(Yi-1) > degg, +deghi—1 — 2 = s(R/(g1, he-1)).

Thus, we have
s(X) <max{s(Y;) |1 <i <t}

On the other hand, from Proposition 1.2 (6), we have s(Y;) < s(X) for all ¢ = 1,--+,¢.
Hence we obtain
s(X)=max{s(Y;) |1 <i<t}.

We now start to prove Theorem 3.1.

Proof of Theorem 3.1. We use induction on t. By Remark 2.2 (2), our assertion is
true for t = 1. Let ¢ > 1. By Lemma 3.6, there exists an integer j such that s(X) = s(¥;).
Since dx(P) > dy,;(P) for all P € Y}, we have dx(P) = s(Y;) for all P € Y; by Remark 2.1.
PutY={PeX|PeY;},Z={PeX|g(P)#0}and W ={P € X | h;(P) # 0}.
Obviously Y = ZU W. By Lemma 3.4, we have [(X\Z) = (I(X),g;) and I(X\W) =
(I(X), h;). Hence, by Lemma 3.2, we have, for all P € X,

dx(P) = dz(P)+degg; if PeZ,
X dw(P) +degh; if PeW.
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Thus by Lemma 3.5 and by the assumption of induction, we have, for all P € X,

maxlgq{s(Yi’) I Pe Y;I} + deggj if Pe Z,
dx(P) =

ma,xj<,-§t{s(Y}’) I Pe }/zl} +d€g h]' fPeW.
Therefore it follows that for all P € X,
dx(P) = @?s}s{s(m | P eYi}.

This completes the proof.

The following is clear from Theorem 3.1, so we omit the proof.

Corollary 3.7. With the same notations of Theorem 3.1, if s(Y:) = s(Yiy1) for all
t1=1,---,t—1, then X has CBP.

4. Examples

Let R = k[2o, 21, %] be a homogeneous coordinate ring of P2. In this section, we calculate
the conductor of pure configurations in P2

Definition (cf. [5]). A pure configuration in P? is a finite set X of points in P2 which
satisfies the following conditions:

There exist distinct elements ¢g,- -, ¢, € k such that
(i) X is the disjoint union of X N Ly,---,X N L,, where L; is the line defined by
o ~— CiIEo.: 0.
(i) ¢(X N Li) D (X N Liyy) for all i =1,---,u — 1, where ¢ : P?\{(0,0,1)} — P!
is the map defined by sending the point (ao, a1, a2) to the point (aq, a;).

We put d; = X N L; | for all i = 1,---,u. By the condition (ii), we have d; > --- > d,.
The type of X is defined by type(X) = (di,---,d.) and we write X = X(dy,- -, d,).

If di > dy, then we put r; = min{j | d; > d;4,}, and, inductively, if d,..,; > d,, then
Ti+1 = min{j > r; | d; > dj11}. If dy = dy, then we put r; = u. Furthermore we denote by
t(X) the number of distinct natural numbers in {dy,---,d,}. The r-type of X is defined
by (r1,- -+, Tyx)), where ryx) = u.

Let {b1,- -, bq, } be the z;-coordinates of points in XNL,, and let L be the line defined by
z1—bjzo =0forall j =1,-..,d;. Note that X is thedisjointunionof XNL},--- , XN Ly .
We may assume that | XN L | > | X NL;,, |[forallj=1,---,dy — L.
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Put

dr; T;

g = H(.’L’l - bj.'l)o) and hi = H(.Z‘z - le‘())
Jj=1 j=1
foralli=1,---,t (= t(X)). Furthermore we put
Y; = {P € X | g:(P)=0and hy(P) =0}

forall i =1, ---,t (= t(X)), and we call Y, --,Y; the CI-subsets of X.
The following theorem can be proved by using Theorem 3.1. So we omit the proof.

Theorem 4.1. Let X = X(dy,---,d,) be a pure configuration in P2, (ri,---,1,) be the
r-type of X where t = t(X) and let Yy,---,Y; be the Cl-subsets of X. Then we have

dx(P) =max {d,, +r; —2| P €Yi}

forall P e X.

Example 4.2. Let X be the following set of 38 points in p?

o O

o O

o o ©

o 0 O

o O O

0O 0 0 0 0 0 O O©
0O 0 0 0 0 0 O O
o 0 0 0 0 0o 0o o0 ©

Then we have X = X(9,8,8,3,3,3,2,2), and the r-type of X is (1,3,6,8). Furthermore
we obtain

i: 1 2 3 4
r;: 13 6 8
d,: 9 8 3 2
de,+1m:i—=2: 8 9 7 8.

Also, the Cl-subsets Y7, Y5, Y3, Yy of X are as follows.
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Y,

o o

o o

o oflol Y;

0o ojo

o oo Y,

o o|[ojo o o o o©
|oooooooo Y]
Hgoooooooo]

Accordingly we can calculate the degree of conductor of all points in X as follows.

7 for 3 points such that P € Y3,P ¢ Yo and P ¢ Yy,
dx(P) =4 8 for 11 points such that P € YUY, and P ¢ Y5,
9 for 24 points P € Y;.

Consequently we have
3 14 38
Cx = [ e7kl[t:] TT tiklt:) TT ¢%1t] -
i=1

i=4 i=15

The following is clear from Theorem 4.1, so we omit the proof.

Corollary 4.3. Let X and X' be pure configurations in P2. If type(X) = type(X')
then C X = CX/.

Example 4.4. Let X’ be the following set of 38 points in P2

[@)

(o}

o o

o

0O 0O O 0o o o o o
o ©°
o

o O 0O 0o 0o o o o
(o}

(o]

Then we have X’ = X'(9,8,8,3,3,3,2,2). Thus by Corollary 4.3, we obtain

3 14 38
Cxr = [T ikt T] 6k[t:] T t2k(t] -
i=1 i=4 =15
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Next, we recall some results about pure configurations in P? from [5).

Definition. Let 7 = {71}, -+, 7m = {7} be sequences of non-negative integers. We
denote by H("»™) the sequence obtained as follows.
Write down the sequences 7y, - - -, T, successively shifted to the right and add:
Tm . Tm,0y
Tm-1 + Tm-1,00 Tm-1,1,
T2 : 72,0, 72,1,

i T0, T10, T2

FI(nsm)

Hence

m
H(Tl’w’rm)(l‘) = ZTj»i+1—j’ where 750 =10 for 1 <0.
j=l1

Theorem 4.5 (cf. [5, Theorem 3.1]). Let X = X(dy,---,dy) be a pure configuration in
P2, and (ry,---,7;) be the r-type of X where t = t(X). For alli = 1,-+-,u, let 7; be the
sequence 1,2, d;, — (continuing with this constant value d;). Then

(1) H(X) = Hmm),

(2) (X )—t+1

(3) S(X,A) =T, Adritri=?

(4) r(X ) =t.

(5) X is level if and only if d,, + ri = d,,, +7ip1 for alli =1, - 1.

Remark 4.6. Let X be a finite set of points in P? and S(X,A) = Y1) ;A the socle
type of X. In general, for an integer i such that a; # 0, it does not necessarily exist a point
P ¢ X such that dx(P) = ¢. For example, see Remark 2.5. But it follows from Lemma 3.3
(2) and Theorem 4.1 that if X is a pure configuration, then for each ¢ (1 <4 < t), there
exists a point P € X such that dx(P) =d,, +1; — 2.

Corollary 4.7. Let X = X(di,---,d,) be a pure configuration in P? and (ry,---,7;) be
the r-type of X. Then X has CBP if and only if d,, +7; = dp,y,, +7iq1 foralli =1, ,t—1.
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ProOF. The assertion follows from Theorem 4.1 and Remark 4.6.

Example 4.8. Let X be the following set of points in P?

o]

(o]

© ©0 O O ©O
o

o O O O o

Then we have X = X(5,5,4,2,2), and the r-type of X is (2,3,5). Therefore, we obtain

1 1 2 3
T 2 3 5
d,: 5 4 2
dr;+mi: 7T T 7.
Thus by Corollary 4.7, X has CBP in this case.
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