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Abstract

Assume that M is diffeomorphic to a projective plane minus k points
(k= 1), In this paper, we prove that there is no complete minimal embed-
ding of M into R’. It is also shown that if 1 < k < 3, it does not exists a
complete minimal immersion of M into R® with paralled embedded ends.
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§1. Introduction

Assume that M is diffeomorphic to a projective plane minus k points. Set
M=P?—{py,---,p}. Let 7: M = CU{oo} — {q1,4},-*, @, ¢4 } — M be its
oriented two-sheeted covering with 7(g;) = #(¢!) = p;, 1 < ¢ < k. Put I(z) =
—1/%. Then the map I is the antipodal map of C U {co} and 7(p) = #(p')or
p,p' € M if and only if p' = I(p). For a regular complete minimal immersion
Z: M — R3, there exists a regular complete minimal immersion z : M — R3
such that # = z -« if and only if #(I(2)) = #(2) for each z € M. In this case,
we call the immersion Z : M — R® a double surface of z : M — R3. If an
end ¢; is an embedded end, ¢’ is so and we may call the corresponding end p;
embedded. If all the ends ¢; and ¢; are embedded and parallel, the minimal
surface is called pseudo-embedded by Peng[8]. If it happens, the corresponding
nonorientable minimal surface is said to be pseudo-embedded in the present
paper. If z : M — R® is embedded,  : M — R® is pseudo-embedded. An end
pi is called a Catenoid(resp. planar) end if ¢; is a Catenoid(resp. planar) end.

Lopez and Ros [5] proved that the plane and the Catenoid are the only
embedded complete minimal surfaces of finite total curvature and genus zero
in R?. On the other hand, there are complete genus zero pseudo-embedded
minimal surface with k ends (see [3],[6]) except when k£ = 3,4 or 5 [see [2]).
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In the nonorientable case, Meeks [6] showed that there is no complete pseudo-
embedded minimal immersion of a projective plane with two embedded ends.
In the present paper, we will prove

Theorem 1. There is no complete minimal embedding of a projective plane
into R® with k ends, k> 1.

Theorem?2. Assume that M is diffeomorphic to a projectiue.plane minus k
points, k > 1. There does not exist a complete pseudo-embedded minimal
immersion of M into R3 in the following cases:

(1)All the ends are plaﬁar.

(2)One end is a Catenoid end and the othor are planar.

(3)The ends of M are two Catenoid ends or two Catenoid ends and one palar
end.

(4) The ends of M are three Catenoid ends.

Corollary. There is no complete pseudo-embedded minimal immerston of a
projective plane with three ends.

In the present paper, we could not find any conmlete pseudo-embedded min-
imal immersion of a projective plane with k ends.

§2. Preliminaries

Let #: N — R3 be a complete pseudo-embedded genus zero minimal surface
of finite total curvature in the Euclidean space R®. Denote by w,g the holo-
morhic 1-form and the meromorphic function on N determined by the Weier-
strass representation of &, respecatively. Modulo natural identification, g is the
Gauss map of Z. We have the representation

(1) B = Real/(¢1,¢2,¢3),

where ¢; = w(l — 2)/2,¢2 = iw(1 +¢%)/2, and ¢3 = wg. It is evident that N
is conformally equivalent to CU {0} — {q1,---,@1}. An end g¢; is a Catenoid
(resp. planar) end if and only if ¢; is the regular (resp. branch) point of the
Gauss map g. We can assume that the ends of N are poles and zeros of g.
Assume that !; ends are poles and the rests are zeros. Put Iy =1 —1;. The
sum of order L; of the poles is equal to the sum of order Ly of the zeros. Since
all the ends are embedded, we have that L; = Ly = — 1. If we assume that #;
zeros and 1y poles are the catenoid ends, where 0 < ¢; < Iy and 0 < tp < g, we
get that Ip +t; —1> 11, I} > Iy —t3+ 1. Hence we get & + 12 2> 2. Thus we
have - :
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Proposition 1.4 compleie oriented genus zero pseudo-embedded minimal
surface in R has at least two Catenoids ends.

As a corollary, we have that the case (1) of theorem 2 does not occur. Next we
show

Propositon 2. Let x : M — R> be a regular complete pseudo-embedded
minimal immersion. Then, the two-sheeted covering M is conformally
equivalent to C — {0,a1, -1/, +,@n, —=1/@n, b1, =1/b1, -, by, —=1/by },
where 0,00,ay,—1/@y,+++,an,—1/@, are Catenoid ends, by, —1/b1, .

my —1/by are planar and n + m+ 1 =k. Moreover, the double surface
&: M — R® is given by (1) with

A Ba; — Bo o
(2) ) ¢1 = zA( a12 BC(Q), ¢2:_—/\(B 1;-B 2)

where B € C with | B| = 1,A € R— {0} and

3 ¢3 = i/\a3,

H?:l(éiz + 1)2 H —1(b z+ 1)2
22 [[ima (2 — a)? I_I_] 1(z = ;)

(3) vy = H?=1(z - Ci)2 H ——1(‘z ~ bj )2 dz

H? 1(@iz + 1)21-1 —1(b z +1)?
[T (2 — ci)(@iz + 1)

o3 = dz

2[[ica(z — ai)(@iz + 1)

a1 =

Here, each c; is not an end or coinsides with some of b;. In addz'tz'on; the 1-forms
oy, are exact and there exist real numbers Ay, -+, A\, such that

n

Xi(@;2% + a;)
(4) a;;-zZ z—a,)(az+1)

Conversely, suppose that B € C with | B |= 1,A € R — {0} are given and
1-forms ay, a9, a3 are defined by (3). If a1 or ay is exact and there exist real
numbers Ay, -++, A, which satisfy (4), the associated minimal surface given by
(1)with (2)is the double surface of a regular complete pseudo-embedded minimal
immerion of M.

Proof. We may asuume that 0,ay,-- -y @p, by, -+, b, are zeros of the Gauss
map g of the double surface z: M — R3. Then 00, ~1/ay,+++,—=1/@n,
~1/by,+-+,~1/by, are its poles. It is known (see [1],[5]) that Z-I = z if and
only if
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(5) g-I=-1/§,I'w = —g2w.
Now we can put

g=B= [T (2~ a) T (2 = 6 T (= = @)
n?:l(al'z + 1) Hjni_—l(z;jz + 1)2 Hle(az + 1)

where | B |= 1 and since all the ends are embedded, we have deg(g) = 2k — 1.
Hence we obtain ¢ = n. An end is embedded if and only if

’

(6)

Maz{O(¢;),7 =1,2,3} =2,

where O(¢;) is the order of the pole at the end. Thus using (5), we obtain

Tz 4 1 T (5 4 1)
@ A AT G a R (e 5 P

where A satisfies AB = —AB. Hence we can put AB = i\. Thus we have the
representation (2). Since the 1-forms ¢;, ¢2 3 have no real periods on M,
aj, ag are exact and a3 has no imaginary periods, that is, faa is a real
number. As we have

I"‘al = g ,I*CY3 = —C_Y3
oy is exact if and only if a3 is so, and @3 has no imaginary periods if and only
if there exist real numbers Ay,---, A, which satisfy (4). Now, it is evident that
the converse is true. Q.E.D.

§3. A proof of theorem 1

Assume that there is an embedding z of M into R®. Then, 7 : M — R3 is
a pseudo-embedded complete minimal immersion with Z -1 = Z. We may put
g1 = 0 and ¢} = co. We assume that z = 0 is a zero of g. For z € M, put
z=71€e%0<r <00,0< 8 < w. We may suppose that the lines given by 8 = 0
and by 6 = 7 do not pass the points gz,93, - -, gx, ¢;. We deconpose the minimal
surface Z into four parts Iy, I, I3 and Iy such that I; = #(re'?),0 <r < 1,0 <
6§ <7 I =%re?),1<r1<00,080< 7, IL=0(re),0<r<1,mr<8<
27, and Iy = i(reig),l <r<oo,m <8< 27 . Let e; and e3 be the edges of
Iy given by 0 <7 < 1,6 =0 and 0 < r < 1,0 = 7 respectively. Similarly, e,
and ey are the egdes of I given by 1 < r < 00,0 =0and 1 <7< 00,0 =7
respectively. Let Mo (resp. M; ) be the end corresponding to g; = 0 (resp.
g = oo)(see §2 in [9]). The ends have simple forms as shown in [9]. In fact, by
changing coordinate in the Z;Z5-plane we can get
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62522

c
2oy

zy
V2

Z3 =alogy +b+

for suitable constants a, b, c;, co, where we set y = /%1 + 2. Put M; = My n
LMy = M{nI;, M3 = Mo n I3, My = M{n Iy, We may consider that the
image of M, coincides with that of M;. Think of the parts I} and I;. They
- have the common part » = 1,0 < § < 7. The edge e; (resp. ey4) lies exactly on
the edge e3 (resp. e;). But these can be done when I; and I intersect. We get
a contradiction. Q.E.D.

§4. The cases (2) and (3) of theorem 2

In the present section we prove that The cases (1) and (2) of the thorem do
not occur. We use the notations in Proposition 2. Assume that the immersion
z: M — R? has only one Catenoid end, that is, n = 0. Then az = 1/z and
it has an imaginary period. We get a contradiction. Next we suppose the case
(2). Then we can put

_ (cz+1)(z —¢) - Xi(az? + a;) B
2(z —a)(az + 1) z(z —a)(az+1)

a3

Hence, we can put, up rotation in R3,

1 a
8 M= —, C= —1—0
®) " el |al

Since Meeks [3] showed that there is no complete pseudo-embedded minimal
immersion of a projective plane with two ends, we suppose the nonorientable

minimal surface  : M — R® has two Catenoids ends and one flat end. Then
we can set

P2
Q?
where P = (2 — b)(z — ¢) and Q = (az + 1)(bz+ 1). Lopez proved in [5] that

a3 is exact if and only if F'= PQ” - 2P'Q' =0 at —1/a and —1/b. Hence we
have F' = —6(az + 1)(bz + 1), that is,

dz ,

o =

[l
o

(9) @a+b+ab(b+c)
(10) (b+c)(a+b)+ abbc+3

Il
e

Set



14 Toru ISHIHARA

a=r(cosf +1isinf),0<r <27, b=uzx+iy.

Then ¢ = sin § — 1cosd. From (9), we get
(11) | r—ry=—r(l+1t)cost, rz+y=—r(1+1)sind,
where ¢ = 22 + y2. It fllows from (11) that t must sastisfy the equation

22 — (1= )t 412 = 0.
There exist positeve real numbers which satisfy the above equation if and only
if .
(12) 0<r< 7
From (11), we get

_r(cosf + rsin§)(1 +1) Y= _7(sind —rcos0)(1+1)

T = =
1472 ’ 1472

Subsituting these into (10), we obatain

B+ +(1 -7t =o.
This contradicts (12). Thus we show the desired result.

§5. The case (4) of theorem 2 ,
Assume that M has three Catenoid ends, that is » = 2 and m = 0. Since

the 1-form a3 has no imaginary periods, there exist real numbers A;, Ay such
that

Do (G-a)Eztl) o5~ M@z +a)
znle(z——a;)(d;z+1)d B gz(z—a,-)(&;z—}—l)d'

Hence if we set

A+ A2 =201, (M — Ag) = 2u,

c1 +ca=Ch, cieg = Coa1 +ag = Ay, 0100 = Ag,a; — ag = Az,

we have

(13) CQ = —i?ulAg
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(14) 1+ I C, |2 - l C, |2 = i?ug(alt—lg — a"lag),
(15) Z(Cl - 026'1) = ;1,1(/11 — .AQA]) + }LQ(A3 -+ AgAg).

Put P =22 - Cyz+4 Cy and Q = Ayz® + A;z + 1. Then the 1-form ay = g;dz
is exact if and only if

(16) A + A0 = 0,
(17) ;1101+/—1202 = -3.

Up reparametrization in CU{oo}, we can assume
Ay =7, >0
We set
Al ==z tiy, Az =22+

Then, from (13) and (16), we have, respectively,

Substituﬁng these into (17), we have

(18) x? - yf =3r, Ty = puir.

Thus we obtain
3r4+ D 9 =3r+D
2 y Y1 = ) ’
where D = r\/9 + 4u?rt. Using (13) and (16), we get
iCy = (A1 + AzA1) — ua(A; + Az A3).

(19) | 22 =

This equation gives
(20) par(l+r)ze = ur(l+r)zy -y,
(21) par(l=1)ya = =z + mr(l — )y,
If py = 0, from (20), we have

y1 = mr(l +7)z;.

Substituting this into the second equation of (18), we get § = r2/(1 + 7).
Using (19), we obtain a contradiction

?+3+(1+7)D =0.
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Hence pgy # 0. If # = 1, from (21), we have z; = 0. This contradics the first
equation of (18). The equation (14) is rewritten as

ar®(z1y2 — Toy1) = 23 4+ 7 — (1 + 4pir®)r®.
Using (20), (21) and (19), we obtain
(22) (r2 +1)D = 4437 (1 = r?) — r* - 57°,

From this, we have
(23) | 0<r <1,
Solving (23), we get

o (11— 6r2 — 1)+ (1 4+1%)(3 - 72)V4 — 312

(24) 1 8r3(1 - r2)

Substituting this into (22), we have

214+ (3 -1)rv4 - 32

(25) b= 2(1 - 12)

Since Ay = (A% — A3%)/4, from (18) it follows

(26) g2 —y2 = —r, xays = 7.

Now we set

(27) . F = pyrdp3eays.

Then it must be that F' > 0. Using (20), (21), (23) and (24), we obatain a

contradiction ;
e p2r3(r? = 3)%(r + V4 — 3r?)
= - 8 .
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