Nonexistence of a Projective Plane Minimally Immersed with Some Embeddedness

By

Toru Ishihara

Department of Mathematics and Comuputer Sciences,
Faculty of Integrated Arts and Sciences,
The University of Tokushima
Tokushima 770, JAPAN
(Received September 14, 1992)

Abstract

Assume that M is diffeomorphic to a projective plane minus k points $(k \ge 1)$, In this paper, we prove that there is no complete minimal embedding of M into R^3 . It is also shown that if $1 \le k \le 3$, it does not exists a complete minimal immersion of M into R^3 with parallel embedded ends.

1991 Mathematics Subject Classification Primary 53A10.

§1. Introduction

Assume that M is diffeomorphic to a projective plane minus k points. Set $M = P^2 - \{p_1, \cdots, p_k\}$. Let $\pi : \tilde{M} = \mathbb{C} \cup \{\infty\} - \{q_1, q'_1, \cdots, q_k, q'_k\} \to M$ be its oriented two-sheeted covering with $\pi(q_i) = \pi(q'_i) = p_i, 1 \le i \le k$. Put $I(z) = -1/\bar{z}$. Then the map I is the antipodal map of $\mathbb{C} \cup \{\infty\}$ and $\pi(p) = \pi(p')$ for $p, p' \in \tilde{M}$ if and only if p' = I(p). For a regular complete minimal immersion $\tilde{x} : \tilde{M} \to R^3$, there exists a regular complete minimal immersion $x : M \to R^3$ such that $\tilde{x} = x \cdot \pi$ if and only if $\tilde{x}(I(z)) = \tilde{x}(z)$ for each $z \in \tilde{M}$. In this case, we call the immersion $\tilde{x} : \tilde{M} \to R^3$ a double surface of $x : M \to R^3$. If an end q_i is an embedded end, q' is so and we may call the corresponding end p_i embedded. If all the ends q_i and q'_i are embedded and parallel, the minimal surface is called pseudo-embedded by Peng[8]. If it happens, the corresponding nonorientable minimal surface is said to be pseudo-embedded in the present paper. If $x : M \to R^3$ is embedded, $\tilde{x} : \tilde{M} \to R^3$ is pseudo-embedded. An end p_i is called a Catenoid(resp. planar) end if q_i is a Catenoid(resp. planar) end.

Lopez and Ros [5] proved that the plane and the Catenoid are the only embedded complete minimal surfaces of finite total curvature and genus zero in R^3 . On the other hand, there are complete genus zero pseudo-embedded minimal surface with k ends (see [3],[6]) except when k = 3, 4 or 5 [see [2]).

In the nonorientable case, Meeks [6] showed that there is no complete pseudoembedded minimal immersion of a projective plane with two embedded ends. In the present paper, we will prove

Theorem 1. There is no complete minimal embedding of a projective plane into R^3 with k ends, $k \ge 1$.

Theorem 2. Assume that M is diffeomorphic to a projective plane minus k points, $k \geq 1$. There does not exist a complete pseudo-embedded minimal immersion of M into R^3 in the following cases:

- (1) All the ends are planar.
- (2) One end is a Catenoid end and the other are planar.
- (3) The ends of M are two Catenoid ends or two Catenoid ends and one palar end.
 - (4) The ends of M are three Catenoid ends.

Corollary. There is no complete pseudo-embedded minimal immersion of a projective plane with three ends.

In the present paper, we could not find any conmlete pseudo-embedded minimal immersion of a projective plane with k ends.

§2. Preliminaries

Let $\tilde{x}:N\to R^3$ be a complete pseudo-embedded genus zero minimal surface of finite total curvature in the Euclidean space \mathbf{R}^3 . Denote by ω,g the holomorphic 1-form and the meromorphic function on N determined by the Weierstrass representation of \tilde{x} , respectatively. Modulo natural identification, g is the Gauss map of \tilde{x} . We have the representation

(1)
$$\tilde{x} = \operatorname{Real} \int (\phi_1, \phi_2, \phi_3),$$

where $\phi_1 = \omega(1-g^2)/2$, $\phi_2 = i\omega(1+g^2)/2$, and $\phi_3 = \omega g$. It is evident that N is conformally equivalent to $C \cup \{\infty\} - \{q_1, \cdots, q_l\}$. An end q_i is a Catenoid (resp. planar) end if and only if q_i is the regular (resp. branch) point of the Gauss map g. We can assume that the ends of N are poles and zeros of g. Assume that l_1 ends are poles and the rests are zeros. Put $l_2 = l - l_1$. The sum of order L_1 of the poles is equal to the sum of order L_2 of the zeros. Since all the ends are embedded, we have that $l_1 = l_2 = l - 1$. If we assume that l_1 zeros and l_2 poles are the catenoid ends, where $0 \le l_1 \le l_1$ and $0 \le l_2 \le l_2$, we get that $l_2 + l_1 - 1 \ge l_1$, $l_1 \ge l_2 - l_2 + 1$. Hence we get $l_1 + l_2 \ge l_2$. Thus we have

Proposition 1.A complete oriented genus zero pseudo-embedded minimal surface in R^3 has at least two Catenoids ends.

As a corollary, we have that the case (1) of theorem 2 does not occur. Next we show

Proposition 2. Let $x: M \to R^3$ be a regular complete pseudo-embedded minimal immersion. Then, the two-sheeted covering \tilde{M} is conformally equivalent to $C - \{0, a_1, -1/\bar{a}_1, \cdots, a_n, -1/\bar{a}_n, b_1, -1/\bar{b}_1, \cdots, b_m, -1/\bar{b}_m\}$, where $0, \infty, a_1, -1/\bar{a}_1, \cdots, a_n, -1/\bar{a}_n$ are Catenoid ends, $b_1, -1/\bar{b}_1, \cdots, b_m, -1/\bar{b}_m$ are planar and n + m + 1 = k. Moreover, the double surface $\tilde{x}: \tilde{M} \to R^3$ is given by (1) with

(2)
$$\phi_1 = \frac{i\lambda(\bar{B}\alpha_1 - B\alpha_2)}{2}, \ \phi_2 = -\frac{\lambda(\bar{B}\alpha_1 + B\alpha_2)}{2}, \ \phi_3 = i\lambda\alpha_3,$$

where $B \in \mathbb{C}$ with $|B| = 1, \lambda \in R - \{0\}$ and

$$\alpha_{1} = \frac{\prod_{i=1}^{n} (\bar{c}_{i}z+1)^{2} \prod_{j=1}^{m} (\bar{b}_{j}z+1)^{2}}{z^{2} \prod_{i=1}^{n} (z-a_{i})^{2} \prod_{j=1}^{m} (z-b_{j})^{2}} dz,$$

$$\alpha_{2} = \frac{\prod_{i=1}^{n} (z-c_{i})^{2} \prod_{j=1}^{m} (z-b_{j})^{2}}{\prod_{i=1}^{n} (\bar{a}_{i}z+1)^{2} \prod_{j=1}^{m} (\bar{b}_{j}z+1)^{2}} dz,$$

$$\alpha_{3} = \frac{\prod_{i=1}^{n} (z-c_{i})(\bar{c}_{i}z+1)}{z \prod_{i=1}^{n} (z-a_{i})(\bar{a}_{i}z+1)} dz.$$

Here, each c_i is not an end or coinsides with some of b_j . In addition, the 1-forms α_1, α_2 are exact and there exist real numbers $\lambda_1, \dots, \lambda_n$ such that

(4)
$$\alpha_3 = i \sum_{i=1}^n \frac{\lambda_i(\bar{a}_i z^2 + a_i)}{z(z - a_i)(\bar{a}_i z + 1)} dz.$$

Conversely, suppose that $B \in \mathbb{C}$ with $|B| = 1, \lambda \in R - \{0\}$ are given and 1-forms $\alpha_1, \alpha_2, \alpha_3$ are defined by (3). If α_1 or α_2 is exact and there exist real numbers $\lambda_1, \dots, \lambda_n$ which satisfy (4), the associated minimal surface given by (1) with (2) is the double surface of a regular complete pseudo-embedded minimal immerion of M.

Proof. We may assume that $0, a_1, \dots, a_n, b_1, \dots, b_m$ are zeros of the Gauss map g of the double surface $\tilde{x}: \tilde{M} \to R^3$. Then $\infty, -1/\bar{a}_1, \dots, -1/\bar{a}_n, -1/\bar{b}_1, \dots, -1/\bar{b}_m$ are its poles. It is known (see [1],[5]) that $\tilde{x} \cdot I = \tilde{x}$ if and only if

(5)
$$g \cdot I = -1/\bar{g} , I^* \omega = -\overline{g^2 \omega}.$$

Now we can put

(6)
$$g = B \frac{z \prod_{i=1}^{n} (z - a_i) \prod_{j=1}^{m} (z - b_j)^2 \prod_{l=1}^{t} (z - c_l)}{\prod_{i=1}^{n} (\bar{a}_i z + 1) \prod_{j=1}^{m} (\bar{b}_j z + 1)^2 \prod_{l=1}^{t} (\bar{c}_l z + 1)},$$

where |B|=1 and since all the ends are embedded, we have deg(g)=2k-1. Hence we obtain t=n. An end is embedded if and only if

$$Max\{O(\phi_j), j = 1, 2, 3\} = 2$$
,

where $O(\phi_j)$ is the order of the pole at the end. Thus using (5), we obtain

(7)
$$\omega = A \frac{\prod_{i=1}^{m} (\bar{b}_{j}z+1)^{2} \prod_{j=1}^{n} (\bar{c}_{j}z+1)^{2}}{z^{2} \prod_{i=1}^{n} (z-a_{i})^{2} \prod_{j=1}^{m} (z-b_{j})^{2}} dz,$$

where A satisfies $\overline{AB} = -AB$. Hence we can put $AB = i\lambda$. Thus we have the representation (2). Since the 1-forms ϕ_1 , ϕ_2 ϕ_3 have no real periods on \tilde{M} , α_1 , α_2 are exact and α_3 has no imaginary periods, that is, $\oint \alpha_3$ is a real number. As we have

$$I^*\alpha_1 = \bar{\alpha}_2$$
, $I^*\alpha_3 = -\bar{\alpha}_3$

 α_1 is exact if and only if α_2 is so, and α_3 has no imaginary periods if and only if there exist real numbers $\lambda_1, \dots, \lambda_n$ which satisfy (4). Now, it is evident that the converse is true. Q.E.D.

§3. A proof of theorem 1

Assume that there is an embedding x of M into R^3 . Then, $\tilde{x}:\tilde{M}\to R^3$ is a pseudo-embedded complete minimal immersion with $\tilde{x}\cdot I=\tilde{x}$. We may put $q_1=0$ and $q_1'=\infty$. We assume that z=0 is a zero of g. For $z\in \tilde{M}$, put $z=re^{i\theta}, 0\leq r\leq \infty, 0\leq \theta\leq \pi$. We may suppose that the lines given by $\theta=0$ and by $\theta=\pi$ do not pass the points q_2,q_2',\cdots,q_k,q_k' . We decompose the minimal surface \tilde{x} into four parts I_1,I_2,I_3 and I_4 such that $I_1=\tilde{x}(re^{i\theta}), 0\leq r\leq 1, 0\leq \theta\leq \pi$, $I_2=\tilde{x}(re^{i\theta}), 1\leq r\leq \infty, 0\leq \theta\leq \pi$, $I_3=\tilde{x}(re^{i\theta}), 0\leq r\leq 1, \pi\leq \theta\leq 2\pi$, and $I_4=\tilde{x}(re^{i\theta}), 1\leq r\leq \infty, \pi\leq \theta\leq 2\pi$. Let e_1 and e_3 be the edges of I_1 given by $0\leq r\leq 1, \theta=0$ and $0\leq r\leq 1, \theta=\pi$ respectively. Similarly, e_2 and e_4 are the egdes of I_2 given by $1\leq r\leq \infty, \theta=0$ and $1\leq r\leq \infty, \theta=\pi$ respectively. Let M_0 (resp. M_0') be the end corresponding to $q_1=0$ (resp. $q_1'=\infty$)(see §2 in [9]). The ends have simple forms as shown in [9]. In fact, by changing coordinate in the $\tilde{x}_1\tilde{x}_2$ -plane we can get

$$\tilde{x}_3 = a \log y + b + \frac{c_1 \tilde{x}_1}{y^2} + \frac{c_2 \tilde{x}_2}{y^2} + O(y^{-2})$$

for suitable constants a,b,c_1,c_2 , where we set $y=\sqrt{\tilde{x}_1^2+\tilde{x}_2^2}$. Put $M_1=M_0\cap I_1,M_2=M_0'\cap I_2,M_3=M_0\cap I_3,M_4=M_0'\cap I_4$. We may consider that the image of M_2 coincides with that of M_3 . Think of the parts I_1 and I_2 . They have the common part $r=1,0\leq\theta\leq\pi$. The edge e_2 (resp. e_4) lies exactly on the edge e_3 (resp. e_1). But these can be done when I_1 and I_2 intersect. We get a contradiction. Q.E.D.

§4. The cases (2) and (3) of theorem 2

In the present section we prove that The cases (1) and (2) of the thorem do not occur. We use the notations in Proposition 2. Assume that the immersion $x: M \to R^3$ has only one Catenoid end, that is, n = 0. Then $\alpha_3 = 1/z$ and it has an imaginary period. We get a contradiction. Next we suppose the case (2). Then we can put

$$\alpha_3 = \frac{(\bar{c}z+1)(z-c)}{z(z-a)(\bar{a}z+1)}dz = i\frac{\lambda_i(\bar{a}z^2+a_i)}{z(z-a)(\bar{a}z+1)}dz.$$

Hence, we can put, up rotation in R^3 ,

(8)
$$\lambda_1 = \frac{1}{|a|}, \quad c = -i \frac{a}{|a|}.$$

Since Meeks [3] showed that there is no complete pseudo-embedded minimal immersion of a projective plane with two ends, we suppose the nonorientable minimal surface $x:M\to R^3$ has two Catenoids ends and one flat end. Then we can set

$$\alpha_2 = \frac{P^2}{Q^2} dz ,$$

where P = (z - b)(z - c) and $Q = (\bar{a}z + 1)(\bar{b}z + 1)$. Lopez proved in [5] that α_3 is exact if and only if F = PQ'' - 2P'Q' = 0 at $-1/\bar{a}$ and $-1/\bar{b}$. Hence we have $F = -6(\bar{a}z + 1)(\bar{b}z + 1)$, that is,

(9)
$$\bar{a} + \bar{b} + \bar{a}\bar{b}(b+c) = 0,$$

(10)
$$(b+c)(\overline{a+b}) + \overline{abbc} + 3 = 0.$$

Set

$$a = r(\cos \theta + i \sin \theta), 0 \le r \le 2\pi, \quad b = x + iy.$$

Then $c = \sin \theta - i \cos \theta$. From (9), we get

(11)
$$x - ry = -r(1+t)\cos\theta, \quad rx + y = -r(1+t)\sin\theta,$$

where $t = x^2 + y^2$. It fllows from (11) that t must sastisfy the equation

$$r^2t^2 - (1 - r^2)t + r^2 = 0.$$

There exist positeve real numbers which satisfy the above equation if and only if

$$(12) 0 < r \le \frac{1}{\sqrt{3}}.$$

From (11), we get

$$x = -\frac{r(\cos\theta + r\sin\theta)(1+t)}{1+r^2}, \quad y = -\frac{r(\sin\theta - r\cos\theta)(1+t)}{1+r^2}.$$

Substituting these into (10), we obatain

$$(3+r^2) + (1-r^2)t = 0.$$

This contradicts (12). Thus we show the desired result.

§5. The case (4) of theorem 2

Assume that M has three Catenoid ends, that is n=2 and m=0. Since the 1-form α_3 has no imaginary periods, there exist real numbers λ_1, λ_2 such that

$$\frac{\prod_{i=1}^{2} (z - c_{i})(\bar{c}_{i}z + 1)}{z \prod_{i=1}^{2} (z - a_{i})(\bar{a}_{i}z + 1)} dz = i \sum_{i=1}^{2} \frac{\lambda_{i}(\bar{a}_{i}z^{2} + a_{i})}{z(z - a_{i})(\bar{a}_{i}z + 1)} dz.$$

Hence if we set

$$\lambda_1 + \lambda_2 = 2\mu_1, \quad (\lambda_1 - \lambda_2) = 2\mu_2,$$

$$c_1 + c_2 = C_1$$
, $c_1c_2 = C_2$, $a_1 + a_2 = A_1$, $a_1a_2 = A_2$, $a_1 - a_2 = A_3$,

we have

$$(13) C_2 = -i2\mu_1 A_2$$

$$(14) 1 + |C_2|^2 - |C_1|^2 = i2\mu_2(a_1\bar{a}_2 - \bar{a_1}a_2),$$

(15)
$$i(C_1 - C_2\bar{C}_1) = \mu_1(A_1 - A_2\bar{A}_1) + \mu_2(A_3 + A_2\bar{A}_3).$$

Put $P=z^2-C_1z+C_2$ and $Q=\bar{A}_2z^2+\bar{A}_1z+1$. Then the 1-form $\alpha_2=\frac{P^2}{Q^2}dz$ is exact if and only if

$$\bar{A}_1 + \bar{A}_2 C_1 = 0,$$

$$\bar{A}_1 C_1 + \bar{A}_2 C_2 = -3.$$

Up reparametrization in $C \cup \{\infty\}$, we can assume

$$A_2=r, \quad r>0.$$

We set

$$A_1 = x_1 + iy_1, \quad A_3 = x_2 + iy_2.$$

Then, from (13) and (16), we have, respectively,

$$C_1 = -\frac{\bar{A}_1}{r}, \quad C_2 = -i2\mu_1 r.$$

Substituting these into (17), we have

(18)
$$x_1^2 - y_1^2 = 3r, \quad x_1 y_1 = \mu_1 r^3.$$

Thus we obtain

(19)
$$x_1^2 = \frac{3r+D}{2}, \quad y_1^2 = \frac{-3r+D}{2},$$

where $D = r\sqrt{9 + 4\mu_1^2 r^4}$. Using (13) and (16), we get

$$i\bar{C}_1 = \mu_1(\bar{A}_1 + \bar{A}_2A_1) - \mu_2(\bar{A}_3 + \bar{A}_2A_3).$$

This equation gives

(20)
$$\mu_2 r(1+r)x_2 = \mu_1 r(1+r)x_1 - y_1,$$

(21)
$$\mu_2 r(1-r)y_2 = -x_1 + \mu_1 r(1-r)y_1.$$

If $\mu_2 = 0$, from (20), we have

$$y_1 = \mu_1 r (1+r) x_1.$$

Substituting this into the second equation of (18), we get $x_1^2 = r^2/(1+r)$. Using (19), we obtain a contradiction

$$r^2 + 3 + (1+r)D = 0.$$

Hence $\mu_2 \neq 0$. If r = 1, from (21), we have $x_1 = 0$. This contradics the first equation of (18). The equation (14) is rewritten as

$$2\mu_2 r^2 (x_1 y_2 - x_2 y_1) = x_1^2 + y_1^2 - (1 + 4\mu_1^2 r^2)r^2.$$

Using (20), (21) and (19), we obtain

(22)
$$(r^2+1)D = 4\mu_1^2 r^4 (1-r^2) - r^4 - 5r^2.$$

From this, we have

(23)
$$0 < r < 1$$
.

Solving (23), we get

(24)
$$\mu_1^2 = \frac{r(11 - 6r^2 - r^4) + (1 + r^2)(3 - r^2)\sqrt{4 - 3r^2}}{8r^3(1 - r^2)^2}.$$

Substituting this into (22), we have

(25)
$$D = \frac{r^2(1+r^2) + (3-r^3)r\sqrt{4-3r^2}}{2(1-r^2)}.$$

Since $A_2 = (A_1^2 - A_3^2)/4$, from (18) it follows

(26)
$$x_2^2 - y_2^2 = -r, \quad x_2 y_2 = \mu_1 r^3.$$

Now we set

(27)
$$F = \mu_1 r^3 \mu_2^2 x_2 y_2.$$

Then it must be that F > 0. Using (20), (21), (23) and (24), we obtain a contradiction;

$$F = -\frac{\mu_1^2 r^3 (r^2 - 3)^2 (r + \sqrt{4 - 3r^2})}{8}.$$

References

- 1. T. Ishihara, Complete Mö bius strips minimally immersed in R³, Proc. Amer. Math. Soc. 107(1989),803-806.
- 2. L. P. Jorge and W. H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curfature, Topology 22(1983), 203-221.
- 3. X. Liang, Some results on pseudo-embedded minimal surfaces in \mathbb{R}^3 , Acta Mathe Sinica 3, 116-124.
- 4. F. J. Lopez, New complete genus zero minimal surfaces with embedded parallel ends, Proc. Amer. Math. Soc. 112(1991),539-544.
- 5. F. J. Lopez and A. Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geometry 33 (1991),239-300.
- 6. M. E. Oliveira, Some new examples of nonorientable minimal surfaces, Proc.

Amer. Math. Soc. 98(1986), 629-635.

- 7. W. Meeks, The classification of complete minimal surfaces in R^3 with total curvature greater than -8π , Duke Math. J. 48(1981),523-535.
- 8. C. K. Peng, Some new examples of minimal surfaces in \mathbb{R}^3 and its application, MSRI, 07510-85.
- 9. R. M Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geometry 18 (1983),791-809.