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1. Introduction

In this paper, first we shall describe an interesting example which relates to
Michael’s result [1, p. 178]: Suppose that a Hausdorff space (X, T) can be partially
ordered as a tree, such that the order topology P is coarser than T, and such that
X has only a finite number of branch points. Then X is an S, space.

Next we shall give a necessary and sufficient condition in order that a tree with
the partial order topology (X, P) be a Hausdorff space, and consider some con-
ditions under which (X, P) be an S, space.

2. Definitions

We now give main definitions which are used in this paper. Definitions which
are not given here will be defined later when they come up or may be found in
reference [2].

A partially ordered set is a set with a reflexive, anti-symmetric and transitive
binary relation <. A tree is a partially ordered set X, such that {¢{|t<x} is linearly
ordered for all x e X, and such that any two elements of X have a greatest lower
bound. Hereafter, greatest lower bound is abbreviated to g.1.b. A branch point
of a tree X is a point x € X which is the g.1.b. of two distinct points of X, both of
which are different from x. An end point of a tree X is a point xe X which has
no point ¢ € X such that x<t.

The partial order topology P on a tree X is generated by sub-basic open sets of
the following two kinds:

{t|t<x}, xeX,
{t|tis not <x}, xeX.

In this paper, we denote by (X, P) a tree X with the partial order topology P.
Let Y be a topological space. We denote by 2Y the collection of all nonempty
closed subsets of Y with the Vietoris topology. The topology is generated by the
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base consisting of all the sets of the form (U,,..., U y={4€2¥Y|Ac\Uk  U; and
AnU;#¢ for i=1,..., k}, where U,,..., U, are open sets of Y.

Let I" be a subcollection of 2Y. A function f of I' in Yis called a selection for I"
provided f is continuous and for each AT, f(4)€ A.

Following E. Michael [1], we define an S, space to be a Hausdorff space Y
which admits a selection for each covering of Y by mutually disjoint nonempty
compact subsets.

3. Example.

In the plane R?, let
X= {b9 €y, 62} U (U:o=0 In) U (U:o=1 Jn) where

b=(_2> O)a e1=(09 1)9 ez=(0, —1),

- 217 <x< — —2—,,%} for each n=0, 1,...,

In= {(xa (_l)n)
_]n={<_2l”,y>\-1§y§l} foreach n=1, 2,....

Let us define a partial order relation < on X as follows:

P=p for all pe X,

b=sp forall peX

p1<p, for any two distinct points p, =(xy, y;), p2=(%3, ¥2)

of (UZo 1)U (UL, J,) if and only if any one of the following conditions is satisfied :

X1 <Xz,
P1s P2€Ja—1 and y,>y, for some n,
Pi, P2€J,, and y; <y, for some n.

It is easy to see that the above set X is a tree.
We shall consider the space (X, P) with the partial order topology P and the
space (X, T) with the topology T induced from the usual topology on the plane R2.

Then the following facts hold:

(i) X has one branch point b and two end points ey, e,,

(ii) (X, T) is a Hausdorff space, but (X, P) is not,

(iii) P is coarser than T,

(iv) (X, T)is not an S, space.

For, (i) and the first part of (ii) are evident.

In view of the definition of (X, P), we can take as a base for P the collection



Trees with the Partial Order Topology and.Selections 3
of {b} and all subsets of the following two forms:
{t|p<t<qand p, g€(\Uro [ U(UsZ1 I}
feJu{tlp<tand pe(Uizo ) U(\Ui=y JW)}-

Therefore P is coarser than T, and e, and e, can not be separated by open sets
in (X, P) and hence (X, P) is not a HausdorfT space.

Now, to prove (iv), assume, on the contrary, that (X, T) is an S, space. We
consider the covering of (X, T) by the following mutually disjoint compact sets

{b}’ {el’ e2}7
{p} forall pe\Uiiel,

{(_7217@ <_2% —y)} foralln=1,2,.., ~1Sy<l.

For simplicity, we denote the covering by {K,Ja€ A}. Since (X, T) is an S, space,
we can choose a selection f for {K,Jxe A}. We may assume without loss of generality
that f({ey, e;})=e;. Let ¥V, V, be open sets such that e; eV, e;€V; and VinV,=

é.

Then, by virtue of the continuity of f, we can find two open sets U, U, such that
e,eU,cVy, eel,c),
f(K) eV, for every K, e{K,|aeA} suchthat K, e{U;, Uy).
Since the sequences of points {(— 2%,, 1)‘ n=1, 2,...} and {(— 2—1,, , —1>}

n=1, 2,...} converge to e, and e, respectively, we can take a sufficiently large

integer m such that

oo (- i), (e (- b 1) (1)

belong to (U, U,).
Then we have

o Al ) (e )= ().
o Acrbr ) () ()

On the other hand, {(— —22,1,,—_1, 1>, <— —2—%7,,— , — 1)} and {(—— —2271,;_7, —1),
(— . 1)} are the end points of the simple arc in 2(*:T)

22m ’
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(- 2ter ). (e o) rsrs)

Hence, by use of the continuity of f and (1), we have

) (e )= (- ),

which contradicts (2).
Thus (X, T) is not an S, space.

4. Theorems

Theorem 1. Let (X, P) be a tree with the partial order topology. Then,
(X, P) is a Hausdorff space if and only if any one of the following three conditions
is satisfied:

(i) X has no end point,

(ii) X has only one end point,

(i) X has only a finite number of end points ey, ..., e,, and X=Ut {tlt<e}.

Proof. To prove the “only if”” part, we assume that (X, P) is a Hausdorff
space. We shall show that if X has at least two end points, then X satisfies the
condition (iii). Let p, and p, be two distinct end points of X. Every end point of
(X, P) has an open neighborhood base consisting of open sets of the form N, {tltis
not =<x;}, because any set of the form {t|t<x} contains no end point of X.

Hence, since (X, P)is a Hausdorff space, there exist disjoint open sets IAVAPREIIAT
not <xy;} and N7z, {t|t is not <x,;} containing p, and p, respectively. By taking
the complements of the two open sets, we get

(U {tlt<x; DU (\mz, {t] t<x,;})=X.
Therefore, the set E of all end points of X is a subset of the set

{X115e0es Ximys X21seevs X2my) s

and so we can put E={e,,..., ¢,}.

Then we can easily see that X =\U?_, {t{f<e;]} and hence (X, P) satisfies the
condition (iii).

Thus the “only if”’ part is proved.

Next, to prove the “if”’ part, we assume that (X, P) satisfies any one of the
three conditions (i), (i) and (iii). Let x and y be a given pair of distinct points of X.

Case 1: x<y. If there is a point ze X such that x<z<y, then {f/t<z} and
{t]t is not <z} are disjoint open sets containing x and y, respectively. If there is no
point z such that x<z<y, then {t[t<y} and {r7]t is not<x} are disjoint open sets
containing x and y, respectively.
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Case 2: neither x<y nor y<x holds, and at least one of x and y is not an end
point of X. Assume that x is not an end point, and let x, be a point such that
x<x,. Then, since {t|t<x,} is a linearly ordered set containing x, y does not
belong to {t|t<x,}.

Hence {t|t<x;} and {t|t is not <x,} are disjoint open sets containing x and y,
respectively.

Case 3: both x and y are end points of X. Then, note that X necessarily
satisfies the condition (iii). Hence, without loss of generality, we may assume x=e,
and y=e,, where e; and e, are the same ones as in (iii).

To prove that N7, {t|t is not Ze;} and N7z{ {t|t is not Ze;} are disjoint open
sets containing x and y respectively, it remains only to show that these sets are
disjoint.

In fact, (N2, {t|t is not <e}) N(NZL{t|isnot <e})=X—[(\U1, {tlt Se})U
(Vist {tltse)]=X -Vl {tlise}=X-X=¢.

Therefore, the “if”’ part is proved.

Thus the proof of Theorem 1 is complete.

In what follows, we assume the axiom of choice.

Theorem 2. Let (Y, T) be a Hausdorff space. Then (Y, T) is an S, space if
and only if there exists a covering {O,lo€ A} of (Y, T) by mutually disjoint open
sets such that O, is an S, space for every a € A.

Proof. The “only if*’ part is evident.

To prove the “if”’ part, we assume that there exists a covering {O,|la€ A} of
(Y, T) satisfying the condition in Theorem 2. Here, by Zermelo theorem, we may
consider A as a well order set. Let {K;|f e B} be an arbitrary covering of (¥, T) by
mutually disjoint compact sets. We note that, for every K, € {K,|f € B},

(1) Kj intersects only finitely many members of {O,|ae A},

(2) if KznO,#¢, then K;nO, is a compact set, because K, is a compact
subset of a Hausdorff space and O, is a closed set, which is the complement of an
open set U {O,|a' € A—a}.

Now, we shall construct a selection for {K,|f € B}.

First, let us define a function ¥ of B in 4 by, for each fe B, ¥(p) is the first
element of {a e A|K; N O,# ¢} with respect to the well order. Put B,={f € B|y(f)=
o}. S

Then, for each ae A, the collection {K;NO,feB,} U{{y}lye0,—\Up.p, Kg}
is a covering of O, by mutually disjoint compact sets. Since O, is an S, space, we
can choose a selection for the above covering of O,, and denote it by f,.

Finally, we define a function f of {K;|f € B} in Y as follows:
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Then, it is obvious that f(K,) € K.

Further, to show that f is continuous, let K, € {K4|f € B} and let V be an open
neighborhood of f(K,). By (1), we can put {O,|Kz nO,#¢}={0,, 0,,,...,0,.}
where Y(fo) =0, <o, <--- <a,,.

In view of the continuity of f,,,,, we can choose open sets Uy,..., U, of Oypo)
such that

Kﬂo n Ow(ﬂo) e <U1,---, Un> .
if BeByp, and KzNOyp,€<Uy,..., U,>, then Jopoy (KN Oy EV.
Then, it is easy to see that
Kﬂoe (Uy,..., U, Oaz,..., 0am> R
if KyedUy,...,U, O,,...,0,,>, then
FK) =15 (Kp N Oyp))=Fyg0) (Kp N Oyp)) € V-

Therefore, f is continuous, and hence f is a selection for {K,|p € B}.
Thus the proof of Theorem 2 is complete.

We define a chain to be a subset of a partially ordered set X which is linear with
respect to the partial order. A maximal chain of X is a chain which is properly
contained in no other chain of X.

We first prove some preliminary lemmas which will be used in- the proof of
Theorem 3. It is well-known that Zorn’s lemma assures Lemma 1.

Lemma 1. Let L be a chain of a tree X. Then there exists a maximal chain
of X which contains L.

Lemma 2. Let M be a maximal chain of (X, P). Then we can take as an
open sub-base of M, the collection of all intervals of the form

{tlt<x}, {t]1=b} or M—{r]t<x},
where x € M and b is a branch point of X such that be M.

Proof. First, note that for each x e M, {t|t<x} is a subset of M, because M is a
maximal chain. By virtue of the definition of (X, P), the collection of all sets of the
form M n {t|t<x} or M n {t|t is not <x}, where x € X, is an open sub-base of M.

Case 1: xe M. Then we obtain

Mn{t|t<x}={t|t<x},

Mn{t|tisnot <x}=M-—{t|t<x}.
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Case 2: xe X—M. Let b be the g.1.b. of x and a point of M — {¢|t < x}, then
b is a branch point of X such that be M. Then

Mn{t|t<x}={t|t<b},
Mn{t|tisnot Ex}=M-Mn{t|t<x}=M—{t|t<b}.
Thus Lemma 2 is proved.

Remark. Let L be a chain of (X, P) and M a maximal chain of (X, P) contain-
ing L. Then we can take as an open sub-base of L, the collection of all intersections
of L and the members of the open sub-base of M described in Lemma 2.

Lemma 3. Let (X, P) be a tree with the partial order topology. Assume
that (X, P) is a Hausdorff space. Let K, L and M be a compact set, a compact
chain and a maximal chain of (X, P), respectively. Let b be a branch point of X
such that be M. Then

(i) L has the first point,

(i) if MnNK#¢, then M n K has the first point,

(i) if (M—{t|lt=b}) N K#¢, then (M —{t|t<b}) N K has the first point.

Proof. To prove (i), suppose, on the contrary, that L does not have the first
point. Let us assign to each x € L a point x’ € L such that x’' <x, and define U(x)=
L—{t|lt<x'}. Then, since the collection {U(x)|x€ L} is an open covering of the
compact set L, we can find a finite set {x,,..., x,} such that L=U(x{) U --- U U(x,).
Let x; be the first point of the set {x},..., x,} with respect to the order on L. Then,
in view of the definition of U(x), we have L=U(x;) U --- U U(x,)= U(x,), and hence
X} is not a point of L. This contradiction proves (i).

Next, to prove (ii), let x, be a point of M n K. Since M is a maximal chain,
{tlt<xo} N K is a subset of M and a compact chain.

Therefore, by (i) shown in the above, there exists the first point of {t|{t<x,} n K.
It is obvious that the point is also the first point of M n K. Thus (ii) is proved.

Finally, the proof of (iii) is quite analogous to that of (ii), if we replace M in
the proof of (ii) with M — {t|t < b}.

Lemma 4. Let (X, P) be a tree with the partial order topology. Assume
that (X, P) is a Hausdorff space. Then every chain L of (X, P) is an S, space.

Proof. Let {K,|lae A} be a covering of L by mutually disjoint compact subsets
of L. Then, by (i) of Lemma 3, every K, e {K, Ja € A} has the first point, and let
denote it by x,. '

Now, we define a function f of {K Jxe 4} in L by

f(K)=x, foreach K,e{K,|oeA}.
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To prove the continuity of f, let K, be a given element of {K,|xe€ A} and V an
open neighborhood of x, in L. In view of Remark, we can find an open interval I
of Lsuch that x,eIcV.

In case K,#{x,} (resp. K,={x,}), the open neighborhood (I, L—{t|t<x,})
(resp. {I)) of K, in 2L satisfies the following condition:

f(K,)=x,elcV  forevery K, e€{K,Jae A} such that
Ky eI, L—{tlt=x.}> (resp.<{I)).

Therefore, f is continuous, and hence f is a selection for {K,|ae A}. Thus
Lemma 4 is proved.

Theorem 3. Let (X, P) be a tree with the partial order topology. Assume
that (X, P) is a Hausdorff space, and that the set B of all branch points of X
satisfies the following conditions:

(i) B is at most countable,

(ii) for every point x € X —\U,,p {t|t<b}, BN {t|t<x} has the last point rela-
tive to the order.

Then (X, P) is an S, space.

Proof. By (i), we can put B={b;Ji=1, 2,...}. Since (X, P) is Hausdorff, the
proof will be carried out by considering three cases each of which satisfies any one of
the three conditions of Theorem 1.

Case I: X has no end point.

Put b;, =b;. Let My, be a maximal chain of (X, P) containing b;,. To show
that My, is an open set, let x be any point of Ms,. Since My, is a maximal chain
of (X, P) in case I, there is a point x’e€ My, such that x<x’. Then {t|t<x'} is
an open set which satisfies x € {t|[t € x'} = Mp,. Therefore Ms, is an open set.

We put Oy =Mpy,,.

Now, assume that {My, |n=1,...,j—1} and {Op,|n=1,...,j—1} have been
defined. Let b;, be the point with the least index of the branch points of X which
belong to X —\JJZiMs,,, and let M, be a maximal chain of (X, P) containing b;,.
For each n=1,..., j—1, let denote by b ;, the g.1.b. of b;, and a point of My, —
My,

We put Oy;=My,,—\J5=H{tlt< b0}

Thus, by the indutive process, we get a collection of chains {O,lrn=1, 2,...}.
About {O;,ln=1, 2,...}, we note that

(1) the members of {Oy,|n=1, 2,...} are mutually disjoint open sets,

(2) B {tlt=b}c\J, Oy

Next, let us denote by {Oy;|A€ A} the collection of all maximal chains of
X—\, 0, We shall show that the members of {Oy,|]Ae A} are also mutually
disjoint open sets. Suppose, on the contrary, that there exists a point ce Oy, N
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Op,, for some A;#1, Let x;€0p; —Op;,, X;€0m,—O0p;, and let b be the
g.1.b. of x; and x,. Then b is a branch point of X such that c<b. Hencece
\J, 01,. This contradicts the fact that ce Op;, =X -\, Oy,

Thus Oy;, N Oy, =¢ for any 4, # 4,.

For any fixed Oy, let x, be a point of Oy, and M, a maximal chain of X
containing x,. Since x,€0p,cX—\U,0,<cX—\U;{tit<h;}, we can choose
the last point of B 0 {t|{t<x,} by the condition (ii), and denote it by b;,,,. Then, to
prove that Oy, is an open set, it suffices to show that Op,=M, —{t]t<b,}-
To do this, suppose that there exists a point x € M, — {t|t< by} such that xeOy;
for some j. Let My, be the member of {My, [n=1,2,...} containing the set Oy;.

In case xo<x, then x, € {t|{t<x} <My, ,=\U, Oy, contradicting x, € Oq,cX—
U, Op,. In case by, <x<x,, we denote by b the g.1.b. of x, and a point of M, —
M,,. Then we have x<b<x,, contradicting the definition of b Therefore
M, —{tlt<b;,,} =X —\U,0y, Thus, by the definition of Oy;, we have M, —
{t]t = bi(xo)} = Oma-

Conversely, let y be any point of Op,. Since M, is a maximal chain, there
exists a point ze M, —{t|t<b;,} such that y<z. Then ye{tjtsz}=M,,. On
the other hand, :

yeOpcX—\U, 0, X - {tlt=b;},

and hence y ¢ {t|t<b;,,)}. Therefore ye M  —{tlt<biy}-

Thus Oy, =M, —{tlt< by} holds.

Now we consider the collection {Oy,ln=1, 2,...} U {Og;|A€ 4}. Then this col-
lection is a covering of (X, P) whose members are mutually disjoint, open and linearly
ordered subsapce. Therefore, by Lemma 4 and Theorem 2, (X, P) is an S, space.

Thus, in case I, Theorem 3 is proved.

Case II: X has only one end point.

We denote this end point by e and put M,={t|[t<e}. Note that M,—e is an
open set but in general, M, is not so.

Let b;, be the point with the least index of the branch points of X which belong
to M,, and put My, =M,. By the same process as in case I, we construct a col-
lection {Oy,ln=2, 3,...} of mutually disjoint, open and linearly ordered sets.

Furthermore, we consider the collection {Op,|A€ A} of all maximal chains of
X—(M,U(U{0q,|n=2,3,...})). Note that the members of {Op,lAe A} are also
mutually disjoint open sets.

To prove that (X, P) is an S, space, let {K,|lx€ A} be a given covering of (X, P)
by mutually disjoint compact subsets. Let a(e) be the element of 4 such that ee
Koo

Case (IL1): K,, ={e}. Then the collection whose members are M,—e and
all members of {O;,|n=2, 3;...} U{Op,|Ae A} is a covering of X —e, and {K,|x€
A—a(e)} is also a covering of X —e. Therefore, by Lemma 4 and Theorem 2, X —e
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is an S, space, and hence we can get a selection f for {K_ |a e A —oa(e)}.
Now, we define a function g of {K,|a € A} in X by

g(Ka(e)) =e,
9(K,)=f(K,) foreach K,e{K,|oed—ale)}.

To show that the function g is continuous, let K, be a given element of {K|a e A}
and V be any open neighborhood of g(K,).

If K,={e}, then the following clearly holds:

K,e<V),

9K, eV  forevery K, e{K,|lxeA} suchthat K,e(V).

If K,#{e}, then, since f is a selection for {K,|a € A—afe)}, we can choose an
open set <Uj,..., U> of 2(X:P) such that

K,e{U,,..., U,
9(K,)=f(K,)eV—ecV  forevery K, e{K,|acA}
such that K, e<(U;y,..., Uy.

Therefore g is continuous, and hence g is a selection for {K,|x € A}.

Case (I1.2): K, #{e}. We establish a well order for the collection {M,—e} U
{01,n=2, 3,...} U {Oy;|4 € A} such that the first member in the well order meets the
set K,(,—e, and, for simplicity, we denote this well ordered collection by {0,lyers}.
For every K, € {K,|a € 4}, let denote by 0,,), the first member of {O,|y € I'} such that
K.n0,#¢. By Lemma 3, there exists the first point x, of 0, N K,.

We define a function h of {K |xe A} in X by

hK,)=x, for each K,e {K|ae A}.

To show that the function h is continuous, let K, be a given element of {K |a € A}
and V any open neighborhood of x,.
Then, by Remark to Lemma 2, we can choose an open interval I of O,,,, such
that x,e I VN 0,y,.
If K,=K,,), then

Kaze <I’ X-(Oy(a)l n {tltgxa})> )
hK,)=x,e€V  forevery K,e{K,eeA} such that
Kyedd, X—(0,, N{tlt<x,}).

If K,#K,e.) K, intersects only finitely many members of {O,|yel'}. Let
denote {O,qy,> Oyayyre-s Oyay)> Where y(a) <p(@), <:--<y(a),, the above finite
members. Then we have
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Ka: € <I’ Oy(a)1 - {tlt éxa}, Oy(a)z,---, Oy(a)k> .
WMK,)=x,elcV  forevery K, e{K,|aeA}
such that K, e I, Oy, —{t1t2%,}, Oy 05 Opare) -

Therefore g is continuous, and hence g is a selection for {K,|ae A}. Thus,
in case II, Theorem 3 is proved.

Case III; X has only a finite number of end points {eli=1,..., n} and X=
Uty {tlt<e;}. Note that e; ¢ {tjt<e;} for any i#}].

We put M, ={t[t<e;}, then M, is obviously a closed set. Moreover, since
M, is the union of two open sets {tlt<e;} and X —\U;{M, |j=1, 2,...,n and j#i},
M., is an open set.

PutO,=M,,.

Next, for any i, j with 1Si<j<n, let denote by b, ., the g.1.b. of ¢; and e;.
We put

Oj=Mej_ U{;ll {tl té b(e,-,ei)} .

In this way, we obtain the collection {O;|j=1,..., n}. Then the collection is a
covering of (X, P) by mutually disjoint, open and linearly ordered sets.

Therefore, by Lemma 4 and Theorem 2, (X, P) is an S, space.

Thus the proof of Theorem 3 is complete.

Corollary. Let (X, P) be a tree with the partial order topology. Assume that
(X, P) is a Hausdorff space, and that X has only a finite number of branch points.
Then (X, P) is an S, space.
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