Some Integral Formulas in Fubini-Study Spaces

By

Toru Ishihara (Received May 10, 1985)

§ 1. Introduction

In the previous paper [1], we got some integral formulas in a complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4. In this paper, firstly we will extend all formulas in [1] to those in Fubini-study spaces of constant holomorphic sectional curvature 4λ ($\lambda > 0$). Next we will give the complex version of the formula (14.70) in [2].

Let $C^{n+1}=\{z=(z^0,\ldots,z^n)\}$ be the complex Euclidean (n+1)-space with natural inner product $(z,w)=\sum\limits_{k=0}^n z^k\overline{w}^k$, for $z,w\in C^{n+1}$. The Euclidean metric g on C^{n+1} is given by g(z,w)=Re(z,w). Put $S^{2n+1}(\lambda^{-1/2})=\{z\in C^{n+1},g(z,z)=1/\lambda\}$. Then it is a principal fibre bundle over the complex projective n-space $P^n(C)$ with structure group S^1 and projection π . We may regard $z=(z^0,\ldots,z^n)$ as the homogeneous coordinate system of the point $[z]\in P^n(C)$, where $[z]=\pi(z)$. For $z\in S^{2n+1}(\lambda^{-1/2})$, we may put $T_zS^{2n+1}=\{w\in C^{2n+1};g(z,w)=0\}$. The space given by $T_z'=\{w\in C^{n+1};g(z,w)=0\}$. The space given by $T_z'=\{w\in C^{n+1};g(z,w)=0\}$ is a subspace of T_zS^{n+1} whose orthogonal complement is $\{iz\}$. The projection π induces a linear isomorphism π_* of T_z' onto $T_{[z]}P^m(C)$. The standard Riemannian metric on $S^{2n+1}(\lambda^{-1/2})$ is given by $(1/\lambda)g(W,Z)$, for $W,Z\in T_zS^{2n+1}$. We define the Fubini-Study metric g of constant holomorphic sectional curvature 4λ by

$$g(X, Y) = \frac{1}{\lambda} g(X', Y'),$$

where $X, Y \in T_{[z]}P^n(C)$ and X', Y' are their respective horizontal lifts at z.

§ 2. Total volumes of complex Grassmann manifolds

Let $a_0, ..., a_n$ be a unitary frame field on C^{n+1} . Put $da_k = \sum_{j=0}^n \omega_{jk} a_j$. Let L_r^0 be a fixed projective r-space of $P^n(C)$. Assume that L_r^0 is defined by the points $a_0, ..., a_r$. Then we have $\omega_{jk} = 0$ for $0 \le k \le r$ and $r+1 \le j \le n$. Thus a density for projective r-spaces which is invariant under the unitary group U(n+1) may be given by

(2.1)
$$dL_r = \left(\frac{\sqrt{-1}}{2\lambda}\right)^{(n-r)(r+1)} \bigwedge_{j,k} (\omega_{jk} \wedge \overline{\omega}_{jk}), (0 \leq k \leq r, r+1 \leq j \leq n).$$

For r=0, we get the density for points, that is, the volume element of $P^n(C)$ deduced from the Fubini-Study metric given in §1.

The point $\lambda^{-1/2}a_0$ moves on the sphere $S^{2n+1}(\lambda^{-1/2})$ centerd at the origin. Since $d(\lambda^{-1/2}a_0)=\sum\limits_{j=0}^n (\lambda^{-1/2})\omega_{j0}a_j$. The volume element ds^{2n+1} for $S^{2n+1}(\lambda^{-1/2})$ is given by

(2.2)
$$ds^{2n+1} = (\sqrt{-1/2\lambda})^n (-\sqrt{-1/\lambda}\omega_{00}) \wedge (\omega_{i0} \wedge \omega_{i0}), \quad (1 \le i \le n).$$

The restriction of the form $\sqrt{-1/\lambda\omega_{00}}$ to each fibre of the fibre bundle π : $S^{2n+1}(\lambda^{-1/2}) \to P^n(C)$ is regarded as the standard volume element of $S^1(\lambda^{-1/2})$. Hence the total volume $m(P^n(C))$ is given

(2.3)
$$m(P^{n}(C)) = \frac{1}{2\pi\sqrt{\lambda}} m(S^{2n+1}(\lambda^{-1/2})) = \frac{\pi^{n}}{\lambda^{n} n!}.$$

Let L_{n-1} be the (n-1)-plane in $P^n(C)$ perpendicular to a_0 . Put $L_{r-1}^{n-1} = L_r \cap L_{n-1}$. Then we have the density for (r-1)-planes L_{r-1}^{n-1} in L_{n-1} as follows.

(2.4)
$$dL_{r-1}^{n-1} = \left(\frac{\sqrt{-1}}{2\lambda}\right)^{(n-r)r} \wedge (\omega_{hi} \wedge \overline{\omega}_{hi}), (1 \leq i \leq r, r+1 \leq h \leq n).$$

If ds^{2r+1} denotes the volume element of $S^{2r+1}(\lambda^{-1/2})$ in L_r , we have

$$(2.5) dL_r \wedge ds^{2r+1} = dL_{r-1}^{n-1} \wedge ds^{2n+1}.$$

Successive exterior multiplication by ds^{2r-1} , ds^{2r-3} ,..., ds^3 , ds^1 gives

$$(2.6) \quad dLr \wedge ds^{2r+1} \wedge ds^{2r-1} \wedge \cdots \wedge ds^{3} \wedge ds^{1} = ds^{2(n-r)+1} \wedge ds^{2(n-r)+3} \wedge \cdots \wedge ds^{2n+1}.$$

Integrating over the spheres $S^{2n+1}(\lambda^{-1/2})$, $S^{2n-1}(\lambda^{-1/2})$,..., $S^3(\lambda^{-1/2})$, $S^1(\lambda^{-1/2})$, we get (see [1], [2])

Proposition 1. The total volume of the r-planes in the Fubini-Study space $P^n(C)$ of constant holomorphic sectional curvature 4λ , that is, the total volume of the complex Grassmann manifold $G_{r+1,n-r}$ of (r+1)-planes in C^{n+1} , is given by

$$m(G_{r+1,n-r}) = \frac{1!2!\cdots\cdots r!}{n!(n-1)!\cdots(n-r)!} \left(\frac{\pi}{\lambda}\right)^{(n-r)(r+1)}.$$

§ 3. Densities for linear subspaces

Let L_r^0 be a fixed projective r-space of $P^n(C)$. Assume that L_r^0 is defined by the points a_0, \ldots, a_r . Let L_q^0 be a fixed projective q-subspace contained in L_r^0 .

Suppose that $a_0,..., a_q$ span L_q^0 . Then the density for projective r-spaces containing L_q^0 is

$$(3.1) dL_{r[q]} = \left(\frac{\sqrt{-1}}{2\lambda}\right)^{(n-r)(r-q)} \wedge (\omega_{hi} \wedge \overline{\omega}_{hi}), (q+1 \leq i \leq r, r+1 \leq h \leq n).$$

Let L_{n-q-1} be the projective (n-q-1)-subspace perpendicular to L_q^0 . Ecah $L_{r[q]}$ can be defined by the intersection $L_{r[q]} \cap L_{n-q-1}$, which is a projective (r-q-1)-subspace, and consequently the density of all $L_{r[q]}$ is equal to the density of all L_{r-q-1} in L_{n-q-1} , that is,

(3.2)
$$dL_{p[q]} = dL_{n-q-1}^{r-q-1}.$$

Let L_r and L_q be a moving projective r-subspace and a fixed projective q-subspace respectively in $P^n(C)$. Assume that r+q>n. Denote by L_{r+q-n} the intersection $L_q \cap L_r$. Take a unitary frame field $\{a_0,\ldots,a_n\}$ such that a_0,\ldots,a_{r+q-n} span L_{r+q-n} and $a_{r+q-n+1},\ldots,a_r$ lie on L_r . Moreover take points $b_{r+q-n+1},\ldots,b_n$ such that $a_0,\ldots,a_{r+q-n},b_{r+q-n+1},\ldots,b_n$ form a unitary frame field and $a_0,\ldots,a_{r+q-n},b_{r+q-n+1},\ldots,b_r$ span L_q . As similarly as (3.5) in [1], we get

(3.3)
$$dL_r = |\Delta|^{2(r+q-n+1)} dL_{r[r+q-n]} \wedge dL_{r+q-n}^q,$$

where $\Delta = det(a_h, b_k)$, $(r+1 \le k, h \le n)$. By putting N = 2n - r - q - 1, v = r + q - n + 1, $\rho = n - q - 1$, we get (see Proposition 2 in [1])

(3.4)
$$\int_{G_{N-\rho,\nu+1}} |\Delta|^{2\nu} dL^N = \frac{m(G_{N-\rho,\nu+\rho+1})}{m(G_{n-\rho,\nu})}.$$

Let $F(L_r)$ be an integrable function that depends only on $L_{r+q-n}^q = L \cap L_q$. From (3.3), it follows that

$$\int f(L_r) \ dL_r = \int |\Delta|^{2(r+q-n+1)} \ dL_{r[r+q-n]} \int F(L_{r+q-n}^q) dL_{r+q-n}^q.$$

Applying (3.2) and (3.4), we obtain

Proposition 2. Let $F(L_r)$ be an integrable function that depends only on $L_{r+q-n}^q = L_r \cap L_q$. Then

$$\int F(L_r) dL_r = \frac{m(G_{r+1, n-r})}{m(G_{r+q-n+1, n-r})} \int F(L_{r+q-n}^q) dL_{r+q-n}^q.$$

§4. Intersections of projective subspaces and submanifolds

Let L_r be a moving projective r-space and M^q be a Kaehlerian submanifold in $P^n(C)$. Let $\{a_0,\ldots,a_n\}$ be a unitary frame field such that a_0,\ldots,a_r span L_r . For any submanifold X of $P^n(C)$, denote by PT_xX the projective tangent space of X at

 $x \in X$, that is, $\pi((d\pi)^{-1}(T_xX))$, where $\pi: C^{n+1} \to P^n(C)$. We may assume that $x = a_r \in L_r \cap M^q$ and a_0, \ldots, a_{r+q-n} span $PT_x(L_r \cap M^q)$. Let b_{r+1}, \ldots, b_n be a set of unitary vectors such that PT_xM is spanned by $a_1, \ldots, a_{r+q-1}, b_{r+1}, \ldots, b_n$. We can put, up to a constant factor,

$$(4.1) \quad dL_r = \bigwedge_h (\omega_{hr} \wedge \overline{\omega}_{hr}) \bigwedge_{i,k} (\omega_{kj} \wedge \overline{\omega}_{kj}), \quad (r+1 \leq h \leq n, \ 1 \leq j \leq r-1, \ r+1 \leq k \leq n).$$

Let L'_{n-r} be the linear (n-r)-space in C^{n+1} orthogonal to L_r and $L_{r-1[x]}$ be the projective (r-1)-space in L_r orthogonal to $x=a_r$. The volume element of L'_{n-r} is given by, up to a constant factor,

$$(4.2) d\sigma_{n-r} = \bigwedge_{h} (\omega_{hr} \wedge \overline{\omega}_{hr}), \quad (r+1 \leq h \leq n).$$

Hence we get, up to a constant factor,

$$(4.3) dL_r = d\sigma_{n-r} \wedge dL_{r-1[x]}.$$

As $x \in M^q$, it holds $dx = \sum_{i=0}^{q+r-n} \lambda_i a_i + \sum_{k=r+1}^n \beta_k b_k$, where λ_i and β_k are differential 1-forms. We have

$$\omega_{hr} = -(dx, a_h) = -\sum_{k=r+1}^{n} \beta_k(b_k, a_h).$$

If follows from (4.2), up to a constant factor,

(4.4)
$$d\sigma_{n-r} = |\Delta|^2 \wedge (\beta_k \wedge \bar{\beta}_k), \quad (r+1 \leq k \leq n),$$

where $\Delta = det(b_k, a_h)$. If we denote by $\sigma_{r+q-n}(x)$ and $\sigma q(x)$ the volume elements of $L_r \cap M^q$ and M^q respectively. We have, up to a constant factor,

(4.5)
$$d\sigma_q(x) = \bigwedge_k (\beta_k \wedge \overline{\beta}_k), \quad (r+1 \le k \le n).$$

From (4.3), (4.4) and (4.5), it follows, up to a constant factor.

$$(4.6) d\sigma_{r+q-n}(x) \wedge dL_r = |\Delta|^2 d\sigma^q(x) \wedge dL_{r-1}(x).$$

Since Δ is independent of x, integrating the both sides of (4.6) over all projective r-space intersecting M^q , we obtain

$$\int_{L_r \cap M^q \neq \emptyset} m(M^q \cap L_r) dL_r = Cm(M^q),$$

where C is a constant. We need to determine it. For this purpose, we calculate the both side of (4.7) for $M^q = L_q = P^q(C)$. Using (2.3) and Proposition 1, we get

$$C = \frac{m(G_{r+1,n-r}) \times m(P^{q+r-n}(C))}{m(P^q(C))} = \frac{1! \cdots r! q!}{n! \cdots (n-r)! (q+r-n)!} \left(\frac{\pi}{\lambda}\right)^{(n-r)r}.$$

Thus we obtain

Proposition 3. Let M^q be a q-dimensional compact Kaehler submanifold of a Fubini-Study space $P^n(C)$ of constant holomorphic sectional curvature 4λ . Let L_r a projective r-space in $P^n(C)$. Denote by $m(M^q)$ and $m(M^q \cap L_r)$ the volumes of M^q and $M^q \cap L_r$ respectively. Then we have

$$\int_{M^q \cap L_r \neq \emptyset} m(M^q \cap L_r) dL_r = \frac{1!2! \cdots \cdots r! q!}{n! (n-1)! \cdots (n-r)! (q+r-n)!} \left(\frac{\pi}{\lambda}\right)^{(n-r)r} m(M^q),$$

where dL_r is the density for projective r-spaces in $P^n(C)$.

When q+r=n, the intersection of a q-dimensional submanifold M^q and a projective r-space L_r is, in general, a finite set of points in $P^n(C)$. In this case, the above formula becomes

Corollary. Let denote by $\sharp (M^{n-r} \cap L_r)$ be the number of the points in $M^{n-r} \cap L_r$. Then it holds

$$\int_{M^{n-r}\cap L_r\neq\emptyset} \sharp (M^{n-r}\cap L_r) dL_r = \frac{1!2!\cdots r!}{n!(n-1)!\cdots (n+r+1)!} \left(\frac{\pi}{\lambda}\right)^{(n-r)r} m(M^{n-r}).$$

This work was partially supported by the Grant in Aid for Scientific Resarch (No. 59540045).

Department of Mathematics Faculty of Education Tokushima University

References

- [1] T. Ishihara, Some integral formulas in complex projective spaces, J. Math. Tokushima Univ. 17 (1983), 15–20.
- [2] L. A. Santalo, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Addison-Wesley (1976).