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§1. Introduction

T. Mitsui [2], one of the authors, has established a useful numero-analytical
method of investigation of numerical solutions to two nonlinear quasiperiodic differ-
ential equations, that is, Duffing type and Van der Pol type. But he fails to estimate
the norm of the Green function to Van der Pol equation.

In the present paper we correct his failures.

§2. Notations and Fundamental Theorem

A function f() is said to be guasiperiodic with periods w,,..., @, if f(2) is
represented as

2.1 fO=fo(t, t,.... 1)

for some continuous periodic function fo(uy, u,,..., 4,,) With period w; in each u;.

A linear differential operator

_dz

(2.2) Lz—-—ﬂ Az
is said to be almost periodic (or quasiperiodic) if A(t) is almost periodic (or quasi-
periodic) matrix.

An almost periodic operator L is said to be regular if and only if for any almost
periodic function f(¢) the equation

(2.3) Lz=£(f)

has at least one solution bounded for all t€J, where J denotes the real line.

A quasiperiodic operator is said to be regular if it is regular as an almost periodic
operator.

Let () be the fundamental matrix of the linear homogeneous equation

(2.9) Lz=0
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satisfying the initial condition @(0)=E (unit martix). Then we have

Proposition 1 ([1]). L is regular if and only if there is a square matrix P such
that

(i) P?*=P,

(ii) [|P()PP~Y(s)[| S Cemo™™ for t2s,

(i) [PN(E-P)P Y (s)|<Ce o™ for t<s,

where C and o are positive numbers.

Proposition 2 ([3]). If a quasiperiodic operator L with periods w,, ®,,..., ®,,
defined by (2.2) is regular, then for any quasiperiodic function f(t) with periods
Wy, Wy,..., ®, the differential equation (2.3) possesses a unique quasiperiodic solu-
tion z=2z(t) with the same periods given by

CON 20={"_ 6t )1
where

O(HPP~(s) for t=s,
(2.6) G(t, s)= {

- DN (E—-P)P~(s)  for t<s.

G(t, s) is called a Green function for L, and satisfies the inequality
@.7) 1G(t, )] < Ceele=sl,

Our numerical analysis for the quasiperiodic oscillations is based on the follow-
ing fundamental theorem.

Theorem 1 ([3]). Given a nonlinear differential equation
(2.8) —”—I-Z—=X(t, z),

where z and X(t, z) are vectors and X(t, z) is quasiperiodic in t with periods w,,
W35..., Wy, and is continuously differentiable with respect to z belonging to a region
2 of z-space.

Suppose that there is a quasiperiodic function zy(t) with periods w,, w,,..., ®,,
such that

zo(He 2,

A0 (0= XTt, 201 <7

for all teJ. Further suppose that there are a positive number 8, a nonnegative
number k <1 and a quasiperiodic matrix A(t) with periods w,, ®,,..., w,, such that
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(i) the quasiperiodic differential operator L defined by (2.2) is regular;

( Ds={z; |z—zo()|£6 for some telJ}c2,
(2.9) (i) [¥(1, 2)— A é whenever |z —zy(D)|| <S4,
Mr
l—rc_éé‘

Here ¥(t, z) is the Jacobian matrix of X(t, z) with respect to z and

(2.10) M_%Q

where C and o are positive numbers satisfying (2.7).
Then the given equation (2.8) possesses a solution z=2(t) quaszperzodzc int
with periods w,, ®,,..., 0, such that

2.11) 20— 2] S22

for all teJ. For the solution 2(t), a quasiperiodic differential operator L defined
by

Ly=% —wt, 290y

is regular. Furthermore, to equation (2.8) there is no other quasiperiodic solution
belonging to 9; besides z =2(t).

§3. Van der Pol equation
Consider a Van der Pol equation with a quasiperiodic forcing term such as

3.1 ‘fltf —2A(1 —xz) +x a cos vyt +b cos v,t,

. .. 2 2n .. . .
where A is a positive parameter, v, = V= w,/w, is irrational and neither v,
1 2

nor v, are equal to 1.
The equation (3.1) can be written into the vector form

(3.2) jz — A(D)z+ (1) +n(2),

where 0 1 0
Z=<x>’ A(A)=( >, d)(t)=( )
Y -1 24 a cos vyt +b cos vyt

0
n(z)= ( )
—2x%y
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Consider a linear differential operator depending on /A such that

(3.3) L(ﬂ)wn—‘c’iﬁ—A(z)w
then we have that L(A) is regular as a quasiperiodic operator for A< 1 and that the

Green function for L(4) is given by

0 for t>s
(34) G(r. 5) = cos 0t —s) — 5 sme(z—s) L sin 0(t~)
A=)
“‘%‘Sin o(t —s) cos 0(t —s) + 5 A sin 0(t—5)
for t<s,

where §=v1—42. Hence, for the ¢, norm, the Green function G(t, s) satisfies the
inequality
(35 1601, 9l $-2E2E emaiems,

and the quasiperiodic solution to the linear equatiori'

36 - , L()z=(1) -
is given by z=2z4(t; ;I)r-(;gg; f{;), where
xo(t; A) _(T“WZ”)T?WE{G - vf)‘coks vit—2Av, sin vt} +

+ = v%)§+ 4/12‘)%{(1 —v2) €OS V1 — 24y, sin v,1},

av :
Yolt; /1)=(l =37y ;—4).211%{—(1 —v3)sin v t—21v, cos vt} +

bv,

MDY 2T

{—(1—v3)sin v,t—21v, cos v,t}.

Define the constant number K by

| la| Ib| lalv, , by
37 K= max(ll— At T—vg [1—vi T3/

then we have the following estimate

(3.8) [xo(t; DI, 1yolt; VI<K
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for all teJ and O0<A<1. Using the estimate (3.8) for x4(¢; A) and yy(t; 1), we can
estimate the residual function for z(¢; A) in the following form:

iz_q.g(l’t_éil_A(,l)zo(z; 2)— (1) — An(zo(t; /D)H

=l =An(zo(t; )|
<2A0x3(t; Ayolt; A
<21AK3.
Hence we can choose
(3.9) r=2AK3.
Let D,={z; |z| £2K}, D'= U {z; |z—zo(t; H)||£K}. It is clear that zy(t; A)e
D, for any teJ and D' < D,. '

Let us denote the Jacobian matrix of the right-hand side of (3.2) with respect to
z by Y(z; 2). Then we have for z € D’ the inequality

(3.10) 1¥(z; )= A £222]y] + |x)Ix|
<24AK2,
By (2.10), the inequality (3.5) implies

(3.11) M="705

In order to apply Theorem 1 to the present case, we have to check with the
inequalities in (2.9). The question is “Is it possible to take a nonnegative number
k <1 satisfying the both inequalities

A1 —A2
(3.12) 24K S5 5 ni K
202+ 24
(3.13) ‘jj%7~2).K3§(1—1c)K

under the assumption 0<A<17".
The answer is affirmative when the inequality

1=
< s
k= \/52«/2-1-2/1

holds, because then we have the inequalities -
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292+ 2] , 48
B <
{ oz =S
202+ 24 1o 4
l“m“t—a?“ W=

so that we can obtain such a nonnegative number x <1 that the both inequalities
(3.12) and (3.13) hold. Hence we have

Theorem 2 ([2]). If0<A<1 holds, and if the constant

_ ol L lalvy bl )
K max(ll—v%l+ll—v%l’ T—va T3]

satisfies the inequality

NI
(3.14) K=/ sam+27>

then the given equation (3.1) possesses a quasiperiodic solution z=2(t) with periods
Wy, W, such that

12(t) —zo(t; DIISK  forall teld.

If the inequality (3.14) does not hold, in order to assure the existence of an exact
quasiperiodic solution 2(f) to (3.1) we have to compute a more accurate approximate
solution than zy(t; 4). For this purpose we have considered an approximate quasi-
periodic solution written in the form

x,(0)=2(0, 0)+ {:2,1 lbzli {a, cos (p, v)t+ B, sin (p, v)t},

d
ym(t)=7xm(t)’ Where (P, V) =Pp1V1 +P2V2, |P| = |P1| + |le,

and determined the unknown coefficients a(0, 0), «,, §, by means of Galerkin method.
For the detail computations, see [2].
Thus for the computed Galerkin approximation

Sulf)=a0, 0)+ 3 3 (8,05 (p, i+ Bysin (p, V)

we have the residual function

2z -
r(t)= d ;t"'z ) —2i(1 —fﬁ,(t))%)-+fm(t) —acos vt—bcos v,t

which can be expanded into the finite double Fourier series as follows:



On Quasiperiodic Solutions to Van der Pol Equation 7
3m .
(=0, 0+ 2 | IZ {fpcos (p, v)t+g,sin(p, )t}.
r=1 |p|=r
Put

(3.15) r=1f0. 01+ 8 % (1l +g,1},

then we have

Ir(Ol<r  forall teld.

Define

(3.16) Q=1a0, 0|+ 3 = (1 +1B,D,
and

(3.17) @=3 % I VIEI+IB),

then we have the inequalities
Qzsup|X, ()] and Q' Zsup|y.(D).
For z which lies into the d-neighbourhood of Z,(f)=4X,(t), y..(t)), we have
1P(z; A)— AN S2A1{Q2Q"+ Q)+ 2(Q" +2Q)6 +36%} .
By (3.11), for the Green function G(t, s), we have

22422

(3.18) =i

If there exist a non-negative number x < 1 and a positive number ¢ satisfying the both
inequalities

1 2{Q2Y +Q)+2(Q +2Q)0+ 302} K e
(3.19) {QQ2Q +Q)+2(Q2"+2Q)0+3 }_2~/2+21K,
r 242422
. <
(3.20) e S8,

then, by Theorem 1, the exact quasiperiodic solution 2(¢)=*(%(¢), $(¢)) with periods
w, and w, exists and the error estimation of Z,, is given by

_ 22F2]
—sl<-t__.
(3.21) IZm(2) O 1—x ANl =12

that is,
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|Xm(1) — £, %xm(r)_d_‘i,e(t) < lr 202427

K MW=

forallteld.

§4. Numerical Results

In the previous paper [2], one of the authors has computed the quasiperiodic

solutions to Van der Pol equation (3.1) with v, =42, v,=+5. As for the case A=1/8,
a=1/16, b=1/16, Theorem 2 is not true, because the inequality (3.14) does not hold.
Hence, by the Galerkin method we have computed

(4.1) Xg(1)=2{—0.0277900 cos v,t —0.0098059 sin v,¢
—0.0076639 cos v,t—0.0010672 sin v,t
—0.0000009 cos 3v,t+0.0000005 sin 3v, ¢
—0.0000011 cos (2v, +v,)t +0.0000009 sin (2v; +v,)t
+0.0000019 cos (2v; —v,)t —0.0000057 sin (2v, —v,)t
—0.0000002 cos (v, + 2v,)t +0.0000002 sin (v, + 2v,)t

—0.0000006 sin (v; —2v,)t}.
We can obtain M in (3.18) as

242422

By (3.15), (3.16) and (3.17) we can obtain r=1.9x107°, 2=0.09267759 and Q'=
0.1454338, respectively. If we take 6=1/16, we have

2M2Q + Q+35)(Q+6)<0.02215336 <X

M
and
x=0.02215336 M =0.53588370.
Hence we can choose x as 0.54, then we have
‘1%%29'9914'” x 1078 <0.10 X 1076 <§.

Thus the Galerkin approximation (4.1) satisfies the both inequalities (3.19) and
(3.20). Hence, from Theorem 1, we can assure that the exact quasiperiodic solution
%(t) exists in the -neighbourhood of X4(7) and we have an error estimation of Xg(f) as
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|%4(1) — 2(1)| <0.10 x 1076,

Similar to the above case 1=1/8, a=1/16, b=1/16, we have computed the
Galerkin approximations to the cases A=1/16, a=1/16, b=1/8; A=1/4, a=1/16,
b=1/16; and A=1/2, a=1/16, b=1/16. (See [2]).

For these cases we apply Theorem 1 and assure in each case that the exact
quasiperiodic solution %() exists in the -neighbourhood of the Galerkin approxima-
tion. Moreover, we obtain the error bounds listed in the following Table which
corrects Table 2 given in the previous paper [2].

Table. Correct error bounds

A al|lb  'm 2 2 r 0 £ error bouuds
L L1 e | 0.09267759 | 0.1454338 1.9%107° | -L.|0.54| 0.10x10°°
g |16 |16 : ' : i6| :

Ll L L] g 0.1045902 0.1752701 2.9%10° |-L|0.63! 0.37x10°¢
616 |8 . : : ic| ¥ :
101011 g | 0.08966011 | 0.1420448 2.4%10° | 31 0.79 | 0.15x10°¢
47|16 |16 | 32

111l g | 0.06885278 | 0.1126341 3.0x10° |-3-|0.75| 0.96x10"
2 116 |16 : | : : 32 ’
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