Some Integral Formulas in Complex Projective Spaces

By

Toru Ishihara (Received May 13, 1983)

§ 1. Introduction

The integral geometry in the complex projective space $P^n(C)$ was initiated by W. Blaschke [1] and further exploited by L. A. Santalo [4]. In order to get the general kinematic formula for submanifolds in the Euclidean n-space E^n , S. S. Chern [2] gave some formulas about densities of linear subspaces in E^n . In this paper, analogous formulas about densities of linear subspaces in $P^n(C)$ are obtained. Recently, a lot of contribution to the integral geometry in the complex projective space $P^n(C)$ was made by P. A. Griffiths [3] and T. Shifrin [6].

Let $C^{n+1} = \{z = (z^0, ..., z^n)\}$ be the complex Euclidean (n+1)-space with natural inner product $(z, w) = \sum_{k=0}^{n} z^k \overline{w}^k$, $z, w \in C^{n+1}$. The Euclidean metric g on C^{n+1} is given by

$$g(z, w) = Re(z, w), \quad z, w \in C^{n+1}.$$

The unit sphere $S^{2n+1} = \{z \in C^{n+1}; (z, z) = 1\}$ is a principal fibre bundle over $P^n(C)$ with structure group S^1 and projection π . For $z \in C^{n+1}$, put $\pi(z) = [z] \in P^n(C)$. We may regard $z = (z^0, ..., z^n)$ as the homogeneous coordinate system of the point [z]. With the natural identification between vectors tangent to S^{2n+1} and vectors in C^{n+1} , one can show that for $z \in S^{2n+1}$, the tangent space $T_z S^{2n+1}$ at z is given by

$$T_z S^{2n+1} = \{ w \in C^{n+1}; g(z, w) = 0 \}.$$

If we define T'_z by

$$T'_z = \{ w \in C^{n+1}; g(z, w) = g(iz, w) = 0 \},$$

then T_z' is a subspace of T_zS^{2n+1} whose orthogonal complement is $\{iz\}$. The projection π induces a linear isomorphism π_* of T_z' onto $T_{[z]}P^n(C)$, and π_* maps $\{iz\}$ into 0 for each $z \in S^{2n+1}$. We define the Fubini-Study metric, \tilde{g} of constant holomorphic sectional curvature 4 by the equation

$$\tilde{g}(X, Y) = g(X', Y'),$$

where $X, Y \in T_{[z]}P^n(C)$ and X', Y' are their respective horizontal lifts at z.

16 Toru Ishihara

From now on, we will follow the general method in [4]. We consider the group U(n+1), called the unitary group, of all linear transformations z' = Az that leave invariant the sphere S^{2n+1} . Then the $(n+1)\times(n+1)$ complex matrix A satisfies

(1.1)
$$A\overline{A}^{t} = E, \quad A^{-1} = \overline{A}^{t}, \ \overline{A}^{t}A = E,$$

where E is the $(n+1)\times(n+1)$ unit matrix. A linear transformation A acts on $P^n(C)$ such that A[z]=[Az]. Then A and $exp(i\alpha)A$ define the same map on $P^n(C)$. Hence if $R \subset U(n+1)$ denotes the groups of matrices $exp(i\alpha)E$, the factor group H(n+1)=U(n+1)/R, the Hermitian elliptics group, acts on $P^n(C)$. An element of H(n+1) is represented by $A \in U(n+1)$ with det A = 1.

The Maurer-Cartan forms of U(n+1) are given by

(1.2)
$$\omega_{jk} = \sum_{h=0}^{n} \overline{a}_{hj} da_{hk} = \overline{(a_j, da_k)}, \quad \omega_{jk} + \overline{\omega}_{kj} = 0,$$

where a_{hk} are the components of the matrix A. The kinematic density of U(n+1) is equal to, ut to a constant facotor,

$$(1.3) dU(n+1) = \wedge (\omega_{jk} \wedge \overline{\omega}_{jk}) \wedge \omega_{hh}, \quad j < k, \ 0 \le j, \ k, \ h \le n.$$

The structure equations are

$$(1.4) d\omega_{jk} = -\sum_{i=0}^{n} \omega_{ji} \wedge \omega_{ik}.$$

The group H(n+1) has the same invariant forms (1.2) and the same structure equations (1.4). The only difference is that now the relation $\omega_{00} + \omega_{11} + \cdots + \omega_{nn} = 0$ holds, as follows by differentiating the relation $\det A = 1$. Hence the kinematic density for H(n+1) is the exterior product (1.3) of all the ω_{ij} except one of the forms ω_{ii} .

§ 2. Densities for linear subspaces

Let L_r^o be a fixed r-plane of $P^n(C)$ and let H_r denote the subgroup of H(n+1) that leaves L_r^o invariant. The invariant density for r-planes is the invariant volume element of the homogeneous space $H(n+1)/H_r$. Let a_k denote the point of C^{n+1} whose coordinates are the columns of matrix A. Conditions (1.1) give $(a_j, a_k) = \delta_{jk}$ and from (1.2), it follows that $da_k = \sum_{j=0}^n \omega_{jk} a_j$. It follows that, assuming L_r^o defined by the points a_0, \ldots, a_r , we have $\omega_{jk} = 0$ for $0 \le k \le r$ and $r+1 \le j \le n$. Hence it follows that $\overline{\omega}_{jk} = 0$. Thus the density for r-planes invariant under U(n+1) is

$$(2.1) dL_r = \left(\frac{\sqrt{-1}}{2}\right)^{(n-r)(r+1)} \wedge (\omega_{jk} \wedge \overline{\omega}_{jk}), \quad 0 \leq k \leq r, \quad r+1 \leq j \leq n.$$

For r=0 we get the density for points, that is, the volume element of $P^n(C)$ with respect to the hermitian geometry, which coincides with the volume element deduced from the Fubini-Study metric given in §1. The point a_o moves on the unit sphere S^{2n+1} centered at the origin o. Since $da_0 = \sum_{j=0}^n \omega_{j0} a_j$, the volume element ds^{2n+1} for S^{2n+1} is given by

(2.2)
$$ds^{2n+1} = \left(\frac{\sqrt{-1}}{2}\right)^n \left(-\sqrt{-1}\omega_{00}\right) \wedge \left(\omega_{i0} \wedge \overline{\omega}_{i0}\right).$$

The restriction of the form $\sqrt{-1}\omega_{00}$ to each fibre of the fibre bundle $\pi: C^{n+1} \to P^n(C)$ is regarded as the standard volume element of S^1 . Hence the total volume $m(P^n(C))$ is given by

(2.3)
$$m(P^n(C)) = \frac{1}{2\pi} m(S^{2n+1}) = \frac{\pi^n}{n!} .$$

Let L_{n-1} be the (n-1)-plane in $P^n(C)$ perpendicular to a_0 . Calling L_{r-1}^{n-1} to the (r-1)-plane $L_r \cap L_{n-1}$, we have that the density for $L_r \cap L_{n-1}$ in L_{n-1} is

(2.4)
$$dL_{r-1}^{n-1} = \frac{(\sqrt{-1})^{r+1}}{2^r} \wedge (\omega_{hi} \wedge \overline{\omega}_{hi}), \quad 1 \leq i \leq r, \quad r+1 \leq h \leq n.$$

Hence we have

$$(2.5) dL_r \wedge \frac{(\sqrt{-1})^{r+1}}{2^r} (-\omega_{00}) \wedge \omega_{10} \wedge \overline{\omega}_{10} \wedge \cdots \wedge \omega_{r0} \wedge \overline{\omega}_{r0} = dL_{r-1}^{n-1} \wedge ds^{2n+1}.$$

If ds^{2r+1} denotes the volume element of the unit (2r+1)-sphere in L_r , (2.5) can be written as

$$(2.6) dL_r \wedge ds^{2r+1} = dL_{r-1}^{n-1} \wedge ds^{2n+1}.$$

Exterior multiplication by ds^{2r-1} gives, ut to the sign,

$$\begin{split} dL_r \wedge ds^{2r+1} \wedge ds^{2r-1} &= dL_{r-1}^{n-1} \wedge ds^{2r-1} \wedge ds^{2n+1} \\ &= dL_{r-1}^{n-1} \wedge ds^{2n-1} \wedge ds^{2n+1}. \end{split}$$

As $ds^{2(n-r)+1} = (-\sqrt{-1}\omega_{rr}) \wedge dL_0^{n-r}$, Successive exterior multiplication by $ds^{2r-3}, \dots, ds^3, ds^1$ gives

$$(2.7) dLr \wedge ds^{2r+1} \wedge ds^{2r-1} \wedge \cdots \wedge ds^{3} \wedge ds^{1} = ds^{2(n-r)+1} \wedge ds^{2(n-r)+3} \wedge \cdots \wedge ds^{2n+1}.$$

Integrating over the unit spheres S^{2n+1} , S^{2n-1} ,..., S^3 , S^1 , we get (see [4], [5]).

Proposition 1. The total volume of the r-planes in $P^n(C)$, that is the total volume of the complex Grassmann manifold $G_{r+1,n-r}$ of (r+1)-planes in C^{n+1} , is given by

$$m(G_{r+1,n-r}) = \frac{1!\cdots\cdots r!}{n!\cdots(n-r)!} \pi^{(n-r)(r+1)}.$$

Let q-plane L_q^o be fixed in $P^n(C)$. We seek a density for r-plane $L_r(r>q)$ that contains L_q^o . We assume that a_0, \ldots, a_r span L_q^o and that L_q^o and a_{r+1}, \ldots, a_q span L_r . The group $H_{r[q]}$ of all motions that keep L_r fixed, considered as a subgroup of the group H_q of all motions that that keep L_q^o fixed is defined by

$$\omega_{hi} = 0$$
, $\overline{\omega}_{hi} = 0$, $q+1 \le i \le r$, $r+1 \le h \le n$,

because $e_{q+1},...,e_r$ can only vary in L_r^o . Thus the invariant volume element of $H_q/H_{r[q]}$, which is equal to the density for r-planes about L_q^o , reads

$$(2.8) dL_{r[q]} = \left(\frac{\sqrt{-1}}{2}\right)^{(n-r)(r-q)} \wedge (\omega_{hi} \wedge \overline{\omega}_{hi}), \quad q+1 \leq i \leq r, \quad r+1 \leq h \leq n.$$

Let L_{n-q-1} be the (n-q-1)-plane perpendicular to L_q . Each $L_{r[q]}$ can be defined by the intersection $L_{r[q]} \cap L_{n-q-1}$, which is an (r-q-1)-plane, and consequently the density of all $L_{r[q]}$ is equal to the density of all L_{r-q-1} in L_{n-q-1} , that is,

$$(2.9) dL_{r[q]} = dL_{r-q-1}^{n-q-1}.$$

§3. Relations between densities of linear subspaces

Let L_r and L_q be a moving r-plane and a fixed q-plane respectively. Assume q+r>n so that $L_q\cap L_r$ is, in general, an (r+q-n)-plane, which we denote by L_{r+q-n} . We can suppose that

- (a) $a_0, ..., a_{r+q-n}$ span L_{r+q-n} ,
- (b) $a_{r+q-n+1},..., a_r$ lie on L_r .

Take points $b_{r+q-n+1}, \ldots, b_n$ such that

- (c) $a_0, \dots, a_{r+q-n}, b_{r+q-n+1}, \dots, b_n$ form an unitary base of C^{n+1} ,
- (d) $a_0,..., a_{r+q-n}, b_{r+q-n+1},..., b_r$ span L_q .

Then the equation (2.1) can be written as

(3.1)
$$dL_{r} = \left(\frac{\sqrt{-1}}{2}\right)^{(n-r)(r+1)} \wedge (\omega_{hi} \wedge \overline{\omega}_{hi}) \wedge (\omega_{h\alpha} \wedge \overline{\omega}_{h\alpha}),$$

$$0 \le i \le r + q - n, \quad r+1 \le h \le n, \quad r+q-n+1 \le \alpha \le r.$$

According to (2.8), we get

(3.2)
$$dL_{r[r+q-n]} = \left(\frac{\sqrt{-1}}{2}\right)^{(n-r)(n-q)} \wedge (\omega_{h\alpha} \wedge \overline{\omega}_{h\alpha}),$$

$$r+1 \leq h \leq n, \quad r+q-n+1 \leq \alpha \leq r.$$

The density for (r+q-n)-planes in L_q is given by

(3.3)
$$dL_{r+q-n}^{q} = \left(\frac{\sqrt{-1}}{2}\right)^{(n-r)(r+q-n+1)} \wedge \left((da_i, b_h) \wedge \overline{(da_i, b_h)} \right),$$

$$0 \le i \le r+q-n, \quad r+1 \le h \le n.$$

Put

$$a_h = \sum u_{h\alpha}b_{\alpha} + \sum u_{hk}b_k$$
, $r+q-n+1 \le \alpha \le r$, $r+1 \le h$, $k \le n$.

From $(b_{\alpha}, a_i) = 0$, it follows that $(b_{\alpha}, da_i) = -(db_{\alpha}, a_i) = 0$. Hence we have

$$\omega_{hi} = (da_i, a_h) = \sum_{i} u_{hk}(da_i, b_k)$$
.

From (3.1), (3.2), (3.3) and (3.4), we get the desired formula

(3.5)
$$dL_{r} = |\Delta|^{2(r+q-n+1)} dL_{r[r+q-n]} \wedge dL_{r+q-n}^{q},$$

where

$$(3.6) \Delta = det(a_h, b_k).$$

Since Δ depends only on $L_{r[r+q-n]}$, integrating (3.5) over all L_r , we obtain

(3.7)
$$\int |\Delta|^{2(r+q-n+1)} dL_{r[r+q-n]} = \frac{m(G_{r+1,n-r})}{m(G_{r+q-n+1,n-r})}$$

From (2.9), if follows that

$$dL_{r[r+q-n]} = dL_{n-q-1}^{2n-q-r-1}.$$

Hence making the change of notations 2n-r-q-1=N, r+q-n+1=v, $n-q-1=\rho$, we get from (3.7).

Proposition 2. Let L^o_ρ be a fixed ρ -plane in $P^N(C)$. We have

$$\int_{G_{N-\rho,\rho+1}} |\langle L_{\rho}, L_{\rho}^{o} \rangle|^{2\nu} dL_{\rho}^{N} = \frac{m(G_{N-\rho,\nu+\rho+1})}{m(G_{N-\rho,\nu})}$$

Notice that if L_{ρ}^{o} is spanned by $a_{0}^{o},...,a_{\rho}^{o}$, and L_{ρ} is spanned by $a_{0},...,a_{\rho}$, then $\Delta = det(a_{i}^{o}, a_{i}), 0 \le i, j \le \rho$.

Department of Mathematics

Faculty of Education

Tokushima University

This work was partially supported by the Grant in Aid for Scientific Research (No. 57540035).

References

- [1] W. Blaschke, Desita negle spazi di Hermite, Rendiconiti dell' Academica dei Lincei 29 (1939), 105-108.
- [2] S. D. Chern, On the kinematic formula in integral geometry, J. Math. and Mech. 16 (1966), 101–118.
- [3] P. A. Griffiths, Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties, Duke Math. J. 45 (1978), 427–512.
- [4] L. A. Santalo, Integral geometry in Hermitian spaces, Amer. J. Math. 74 (1952), 423-434.
- [5] L. A. Santalo, Integral geometry and geometric probability, Encyclpedia of Mathematics and its Applications, Addison-Wesley (1976).
- [6] T. Shifrin, The kinematic formula in complex integral geometry, Trans. Amer. Math. Soc. **264** (1981), 255–293.