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§1. Introduction

The integral geometry in the complex projective space P"(C) was initiated by
W. Blaschke [1] and further exploited by L. A. Santalo [4]. In order to get the
general kinematic formula for submanifolds in the Euclidean n-space E”, S. S. Chern
[2] gave some formulas about densities of linear subspaces in E”. In this paper,
analogous formulas about densities of linear subspaces in P"(C) are obtained.

Recently, a lot of contribution to the integral geometry in the complex projective
space P"(C) was made by P. A. Griffiths [3] and T. Shifrin [6].
Let C"*1={z=(z%..., z")} be the complex Euclidean (n+ 1)-space with natural

inner product (z, w)= i zkwk z, we C**', The Euclidean metric ¢ on C"*! is
k=0
given by
g(z, wy=Re(z, w), z, we C"l
The unit sphere S2"*1={ze C"*'; (z, z)=1} is a principal fibre bundle over P"(C)
with structure group S! and projection n. For ze C"*!, put n(z)=[z] e P*(C).
We may regard z=(z%..., z") as the homogeneous coordinate system of the point

[z]. With the natural identification between vectors tangent to S2"*! and vectors
in C"*!, one can show that for z € S2"*!, the tangent space T,S?"*! at z is given by

T,S?m 1 ={we C"; g(z, w)=0}.
If we define T, by
T,={weC"'; g(z, w)=g(iz, w)=0},

then T, is a subspace of 7,S2"*! whose orthogonal complement is {iz}. The pro-
jection m induces a linear isomorphism m, of T, onto 71;,;P"(C), and n, maps {iz}
into O for each z e S2"*1,  We define the Fubini-Study metric, § of constant holo-
morphic sectional curvature 4 by the equation

g(X, Y)=g(X', Y'),

where X, Ye T;,,P"(C) and X', Y’ are their respective horizontal lifts at z.
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From now on, we will follow the general method in [4]. We consider the
group U(n+1), called the unitary group, of all linear transformations z'= Az that
leave invariant the sphere S2"*!. Then the (n+1)x(n+1) complex matrix A
satisfies

(1.1) AAt=E, A=A, A'A=E,

where E is the (n+1)x(n+1) unit matrix. A linear transformation A4 acts on
P*(C) such that A[z]=[Az]. Then A and exp(ix)A define the same map on P"(C).
Hence if RcU(n+1) denotes the groups of matrices exp(ia)E, the factor group
H(n+1)=U(n+1)/R, the Hermitian elliptics group, acts on P"(C). An element of
H(n+1) is represented by A e U(n+1) with det A=1.

The Maurer-Cartan forms of U(n+ 1) are given by

n S

(1.2) Op= 3 Aydan=(a; day), ©u+Dy=0,

where a,, are the components of the matrix 4. The kinematic density of U(n+1) is
equal to, ut to a constant facotor,

(1.3) dU(n+1)= A opADp) Aoy, j<k, 0=j, k, h=<n.

The structure equations are

(1.4) dwjk= - i a)ﬁ/\wik.

i=0
The group H(n+ 1) has the same invariant forms (1.2) and the same structure equa-
tions (1.4). The only difference is that now the relation wyq+w;+ - +®,,=0
holds, as follows by differentiating the relation det A=1. Hence the kinematic
density for H(n+1) is the exterior product (1.3) of all the w;; except one of the
forms w;;.

§2. Densities for linear subspaces

Let L¢ be a fixed r-plane of P*(C) and let H, denote the subgroup of H(n+1)
that leaves L¢ invariant. The invariant density for r-planes is the invariant volume
element of the homogeneous space H(n+1)/H,. Let a, denote the point of C»*!
whose coordinates are the columns of matrix 4. Conditions (1.1) give (a;, a,)=9,,

and from (1.2), it follows that da, = i wpa;. It follows that, assuming L¢ defined
i=0

J
by the points a,..., a,, we have w; =0 for 0Sk=<r and r+1=<j<n. Hence it
follows that @; =0. Thus the density for r-planes invariant under U(n+1) is

21 JL.— \l/t__l (n—r)(r+1) _ 0<k< 1<i<
() r— 2 A(wjk/\wjk): SKST, r+ =._]=n'
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For r=0 we get the density for points, that is, the volume element of P*(C)
with respect to the hermitian geometry, which coincides with the volume element
deduced from the Fubini-Study metric given in §1. The point a, moves on the

h
unit sphere §2"*! centered at the origin o. Since da,= ) wja;, the volume
Jj=0

7

element ds?"*1 for S27*1 is given by

(2.2) dstret =( ALY (== 10g0) A (@107 D).

L

The restriction of the form / — 1w, to each fibre of the fibre bundle n: C*!— P*(C)
is regarded as the standard volume element of S*. Hence the total volume m(P"(C))
is given by

(2.3) m(P"(C)) :filgm(sml) =_Z~, .

Let L,_; be the (n—1)-plane in P*(C) perpendicular to a,. Calling L=} to
the (r—1)-plane L, n L, _, we have that the density for L. N L, _, in L,_, is

—1\r+t1
e au=NT" Nunm. 1sisr rtishsn

Hence we have

_1yr+ .
(2.5) dLr A L\l ,)i)"“”*A'(—woo) A a)10 A @10 VANEERIVAN CU,.O A 6,.0: dL,’.'__ll A d52n+1.

If ds?*! denotes the volume element of the unit (27+ 1)-sphere in L,, (2.5) can be
written as

(2.6) dL,Ands*tl=dLr=1 Ads?mti,
Exterior multiplication by ds?'~1 gives, ut to the sign,
dL A ds* P Ads? 1 =dLr=} Ads? 1 Ads?n!
=dLiZ{ Ads?P T Ads?rt,

As ds? 1 =(—./—1w,,) A dL§™", Successive exterior multiplication by ds?"=3,---
ds3, ds! gives

b

2.7  dLrAds* P Ads? 1A o AdsP Adst =ds2FL A dg2(mE3 AL A dg2nt L
Integrating over the unit spheres S2#+1, §2=1 . §3 St we get (see [4], [S]).-

Proposition 1. The total volume of the r-planes in P"(C), that is the total
volume of the complex Grassmann manifold G,y ,_, of (r+1)-planes in C"*1, is
given by
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N e, U ot
nl(GrH,n—r)—m)-!*n( D),

Let g-plane L be fixed in P*(C). We seek a density for r-plane L.(r>q) that

contains L. We assume that aq,..., a, span Lj and that Lj and 4,,,,..., 4, span

L,. The group H,,, of all motions that keep L, fixed, considered as a subgroup of

the group H, of all motions that that keep L fixed is defined by
wlli:()’ ajhizo’ q+1§l§r> r+1§h§na

because e, y,..., ¢, can only vary in L¢. Thus the invariant volume element of

H,/H,;, which is equal to the density for r-planes about Lj, reads

— 1 \(n=r)(r—a)
(28) dLr[fl] = <\/A2L> ' A (whi A a_)hi)ﬂ q-+ 1gigr, r+ I=hsn.

Let L, ,; be the (n—g—1)-plane perpendicular to L,. Each L, can be
defined by the intersection L,;,;NnL,_,_;, which is an (r—q—1)-plane, and con-
sequently the density of all L, is equal to the density of all L,_,_, in L, _,_,, that s,

(2.9) dLr[q]:dL;’:g:}.

§3. Relations between densities of linear subspaces

Let L, and L, be a moving r-plane and a fixed g-plane respectively. Assume
g+r>nsothat L, n L, is, in general, an (r+ g —n)-plane, which we denote by L, .
We can suppose that

(@) agy-.s Apyy-pSpan L, ,_,,

(b) ay4y—u+1---->a.lieon L,.

Take points b, ,_,+1,...» b, such that
(¢) gy pigops Dyig—n+1s---» b, form an unitary base of C"*',
(d) agseees Qpigons brigns1s-., by span L.

Then the equation (2.1) can be written as

_ (n=r)(r+1)
(3.1 dL, =<f\/7—l- > A(@p; A D) A (@ A D)

0gigr+q—n, r+1=hZn, r+gq—n+1=Za=r.

According to (2.8), we get
—

(n—r)(n—q) _
(32) dLr[r+q—n] = <,\l? 7) A (wha A wha) s

r+1<h<n, r+q—n+1=Za=sr.

The density for (r+ g —n)-planes in L, is given by



(3.3)

Put
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_ (n—r)(r+qg—n+1 —
Lty =(Y L) A da b A e B,

0<igr+q—n, r+1<h=n.

ah=zuhaba+zuhkbk’ r+q—n+l§oc§r, l‘+]§h, kén'

From (b,, a;)=0, it follows that (b,, da;)= —(db,, a;)=0. Hence we have

wy,;=(da;, a,)=3 uylda; by).

From (3.1), (3.2), (3.3) and (3.4), we get the desired formula

(35) dLr= |Al2(r+q_n+l)dl‘r[r+q—n] A dLi(‘I+qu
where
(36) A=det (aha bk) .

Since 4 depends only on L,, . ,_,j, integrating (3.5) over all L,, we obtain

(3.7)

m(G -
S |A|2(r+q_n+1)dLr[r+q—n]=' G( rt+1,n r)
m( rtq—n+1,n—r)

From (2.9), if follows that

— 2n—4-r—1
dLr[r+q-—n]_dLnﬁqglr .

Hence making the change of notations 2n—r—q—1=N, r+q—n+1=v, n—
q—1=p, we get from (3.7).

Proposition 2. Let L3 be a fixed p-plane in PX(C). We have

v g N = T GN=p,vip11)
SGN"P:P+1 |<LD’ Lp>] de m(GN—P,v)

Notice that if L is spanned by ag,..., a3, and L, is spanned by do,..., a,, then

A=det(as, a)), 0Zi, j<p.
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